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Abstract— This paper presents the optimal quadratic-
Gaussian controller for uncertain stochastic polynomial systems
with unknown coefficients and matched deterministic distur-
bances over linear observations and a quadratic criterion. As
intermediate results, the paper gives closed-form solutions of
the optimal regulator, controller, and identifier problems for
stochastic polynomial systems with linear control input and a
quadratic criterion. The original problem for uncertain stochas-
tic polynomial systems with matched deterministic disturbances
is solved using the integral sliding mode algorithm.

I. INTRODUCTION

Although the optimal quadratic-Gaussian controller prob-

lem for linear systems was solved in 1960s, based on the

solutions to the optimal filtering [1] and optimal regulator

[2], [3] problems, the optimal controller for nonlinear sys-

tems has to be determined using the nonlinear filtering theory

(see [4], [5], [6]) and the general principles of maximum

[2] or dynamic programming [7], which do not provide an

explicit form for the optimal control in most cases. There is

a long tradition of the optimal control design for nonlinear

systems (see, for example, [8]–[13]) and the optimal closed-

form filter design for nonlinear [14], [15], [16], and in

particular, polynomial ([17]–[20]) systems, as well as the

robust filter design for stochastic nonlinear systems (see,

for example, [21]–[23]). However, the optimal quadratic-

Gaussian controller problem for nonlinear, in particular,

polynomial, systems with unknown parameters has not even

been consistently treated. Indeed, the optimal solution is not

defined, if some parameters are undetermined. The problem

becomes even more complicated, if the plant is affected by

deterministic disturbances. Nonetheless, the problem state-

ment starts making sense, if unknown parameters are mod-

eled and deterministic disturbances are matched, in other

words, belong to a controllable subspace. Taking into account

the stochastic Gaussian specifics of the optimal quadratic-

Gaussian problem, the unknown parameters are represented

as stochastic Wiener processes. The extended state vector

consists of the real unmeasured states and unknown param-

eters, and the obtained extended state equations are polyno-

mial with respect to the extended state vector. The integral

sliding mode algorithm for unmeasured states (see [25] for

the original version and [26] for a modification) is used

for compensating the matched deterministic disturbances
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optimally with respect to the observations. Other recent

developments in the sliding mode theory and applications

can be found in [27]–[32].

This paper presents solution to the optimal quadratic-

Gaussian controller problem for uncertain stochastic polyno-

mial systems with unknown coefficients and matched deter-

ministic disturbances over linear observations and a quadratic

criterion. First, the paper recalls the optimal solution to

the quadratic-Gaussian controller problem for incompletely

measured stochastic polynomial states with linear control

input and a quadratic criterion [33]. Next, the paper provides

the optimal solution to the quadratic-Gaussian controller

problem with unknown parameters, which is based on the

preceding result. Finally, the integral sliding mode algorithm

yields a solution to the original quadratic-Gaussian controller

problem for uncertain stochastic polynomial systems with

deterministic disturbances, that is conditionally optimal with

respect to the observations.

II. OPTIMAL CONTROLLER PROBLEM

A. Problem statement

Let (Ω,F,P) be a complete probability space with an

increasing right-continuous family of σ -algebras Ft , t ≥ t0,

and let (W1(t),Ft , t ≥ t0) and (W2(t),Ft , t ≥ t0) be indepen-

dent Wiener processes. The Ft -measurable random process

(x(t),y(t)) is described by a nonlinear differential equation

with a polynomial drift term including an unknown vector

parameter θ(t) for the system state

dx(t) = f (x,θ , t)dt +B(t)u(t)dt +h(t)dt +b(t)dW1(t),

x(t0) = x0, (1)

and a linear differential equation for the observation process

dy(t) = (A0(t)+A(t)x(t))dt +G(t)dW2(t). (2)

Here, x(t) ∈ Rn is the state vector, u(t) ∈ Rl is the control

input, and y(t) ∈ Rm is the linear observation vector, m ≤ n,

and θ(t) ∈ Rp is the vector of unknown parameters. The

initial condition x0 ∈ Rn is a Gaussian vector such that x0,

W1(t)∈ Rr, and W2(t)∈ Rq are independent. The observation

matrix A(t) ∈ Rm×n is not supposed to be invertible or

even square. It is assumed that G(t)GT (t) is a positive

definite matrix, therefore, m ≤ q. All coefficients in (1)–

(2) are deterministic functions of appropriate dimensions.

The system (1),(2) is assumed to be uniformly controllable

and observable; the definitions of uniform controllability

and observability for nonlinear systems can be found in

[34]. The plant operates under deterministic disturbances
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h(t) and stochastic noises dW1(t) and dW2(t) represented

as weak mean square derivatives (see [24]) of the Wiener

processes, that is, white Gaussian noises. The function h(t)∈
Rn represents matched disturbances such that h(t) = B(t)γ(t),
γ ∈ Rl , and the norm ‖γ(t)‖ is bounded by

‖γ(t)‖ ≤ qa(t), qa(t) > 0, (3)

where qa(t) is a finite time-dependent function; ‖x‖ =
√

(xT x) denotes the Euclidean 2-norm of a vector x ∈ Rl .

The nonlinear function f (x,θ , t) is considered polynomial

of n variables, components of the state vector x(t)∈ Rn, with

time-dependent coefficients. Since x(t) ∈ Rn is a vector, this

requires a special definition of the polynomial for n > 1.

In accordance with [19], a p-degree polynomial of a vector

x(t) ∈ Rn is regarded as a p-linear form of n components of

x(t)

f (x, t) = a0(θ , t)+a1(θ , t)x+a2(θ , t)xxT +

. . .+as(θ , t)x . . .s times . . .x,

where a0 is a vector of dimension n, a1 is a matrix of

dimension n× n, a2 is a 3D tensor of dimension n× n× n,

as is an (s+1)D tensor of dimension n× . . .(s+1) times . . .×n,

and x × . . .s times . . .× x is a pD tensor of dimension n ×
. . .s times . . .× n obtained by p times spatial multiplication

of the vector x(t) by itself. Such a polynomial can also be

expressed in the summation form

fk(x, t) = a0 k(θ , t)+∑
i

a1 ki(θ , t)xi(t)

+∑
i j

a2 ki j(θ , t)xi(t)x j(t)+ . . .

+ ∑
i1...is

as ki1...is(θ , t)xi1(t) . . .xis(t), k, i, j, i1 . . . is = 1, . . . ,n.

The dependence of a0(θ , t), a1(θ , t), . . . ,as(θ , t) on θ
means that those structures contain unknown compo-

nents a0i
= θk(t), k = 1, . . . , p1 ≤ n, a1 ki = θk(t), k =

p1 + 1, . . . , p2 ≤ n × n + n, . . . ,as ki1...is = θk(t), k = ps +
1, . . . , p ≤ n + n2+, . . . ,+ns, as well as known components

a0i
(t),a1 ki(t), . . . ,as ki1...is(t), whose values are known func-

tions of time.

It is considered that there is no useful information on

values of the unknown parameters θk(t), k = 1, . . . , p. In

other words, the unknown parameters can be modeled as

Ft -measurable Wiener processes

dθ(t) = β (t)dW3(t), (4)

with unknown initial conditions θ(t0) = θ0 ∈ Rp, where

(W3(t),Ft , t ≥ t0) is a Wiener process independent of x0,

W1(t), and W2(t), and β (t) ∈ Rp×p is an intensity function.

The quadratic cost function J to be minimized is defined

as follows

J =
1

2
E[xT (T )Φx(T )+

∫ T

t0

uT (s)R(s)u(s)ds+
∫ T

t0

xT (s)L(s)x(s)ds], (5)

where R is positive definite and Φ, L are nonnegative definite

symmetric matrices, T > t0 is a certain time moment, the

symbol E[ f (x)] means the expectation (mean) of a function

f of a random variable x, and aT denotes transpose to a

vector (matrix) a.

The optimal controller problem is to find the control

u∗(t), t ∈ [t0,T ], that minimizes the criterion J along with

the unobserved trajectory x∗(t), t ∈ [t0,T ], generated upon

substituting u∗(t) into the state equation (1).

B. Problem Reduction

To deal with the stated controller problem, the equations

(1) and (4) should be rearranged. For this purpose, a vector

α0(t) ∈ R(n+p), matrix α1(t) ∈ R(n+p)×(n+p), cubic tensor

α2(t) ∈ R(n+p)×(n+p)×(n+p), and other k+1-dimensional ten-

sors αk(t) ∈ R
(n+p)×...(k+1) times...×(n+p), k = 0, . . . ,s + 1, are

introduced as follows.

The equation for the i-th component of the state vector is

given by

dxi(t) = (a0 i(θ , t)+∑
k

a1 ik(θ , t)xk(t)

+∑
jk

a2 i jk(θ , t)x j(t)xk(t)+ . . .

+ ∑
k1...ks

as ik1...ks
(θ , t)xk1

(t) . . .xks
(t))dt +∑

j

Bi j(t)u j(t)dt

+∑
j

Bi j(t)γ j(t)dt +∑
j

bi j(t)dW1 j
(t),

i, j,k1 . . . ks = 1, . . . ,n, xi(t0) = x0i
. Then:

1. If the variable a0i
(t) is a known function, then the i-

th component of the vector α0(t) is set to this function,

α0i
(t) = a0i

(t); otherwise, if the variable a0i
(t) is an unknown

function, then the (i,n+ i)-th entry of the matrix α1(t) is set

to 1.

2. If the variable a1i j
(t) is a known function, then the (i, j)-

th component of the matrix α1(t) is set to this function,

α1i j
(t) = a1i j

(t); otherwise, if the variable a1i j
(t) is an

unknown function, then the (i,n + p1 + k, j)-th entry of the

cubic tensor α2(t) is set to 1, where k is the number of

this current unknown entry in the matrix a1(t), counting the

unknown entries consequently by rows from the first to n-th

entry in each row.

. . .

3. If the variable as ik1...ks
(t) is a known function, then

the (i,k1, . . . ,ks)-th component of the sD tensor αs(t) is set

to this function, αsi,k1 ,...,ks
(t) = as ik1...ks

(t); otherwise, if the

variable as ik1...ks
(t) is an unknown function, then the (i,n+

ps + k, . . . ,ks)-th entry of the (s + 1)D tensor αs+1(t) is set

to 1, where k is the number of this current unknown entry in

the tensor as(t), counting the unknown entries consequently

by rows from the first to s-th dimension and from the first

to n-th entry in each row.

4. All other unassigned entries of the tensors αk(t) ∈

R
(n+p)×...(k+1) times...×(n+p), k = 0, . . . ,s+1, are set to 0.
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Using the introduced notation, the state equations (1),(4)

for the vector z(t) = [x(t),θ(t)] ∈ Rn+p can be rewritten as

dz(t) = g(z, t)dt +[B(t) | 0p×l ]u(t)dt +[B(t)γ(t) | 0p×l ]dt+

diag[b(t),β (t)]d[W T
1 (t),W T

3 (t)]T , z(t0) = [x0,θ0], (6)

where the polynomial function g(z, t) is defined as

g(z, t) = α0(t)+α1(t)z+α2(t)zzT +

. . .+αs+1(t)z . . .(s+1) times . . .z.

Thus, the equation (6) is polynomial with respect to the

extended state vector z(t) = [x(t),θ(t)].

C. Optimal Estimate Design

Let us replace the unmeasured bilinear state z(t) =
[x(t),θ(t)], satisfying (6), with its optimal estimate m(t) =
[x̂(t), θ̂(t)] over linear observations y(t) (2), which is ob-

tained using the following optimal filter for polynomial states

over linear observations (see [19] for the corresponding

filtering problem statement and solution)

dm(t) = E(g(z, t) | FY
t )dt +[B(t) | 0p×l ]u(t)dt+

[B(t)γ(t) | 0p×l ]dt +P(t)[A(t),0m×p]
T× (7)

(G(t)GT (t))−1(dy(t)− (A0(t)+A(t)x̂(t))dt).

m(t0) = [E(x(t0) | FY
t ),E(θ(t0) | FY

t )],

dP(t) = (E((z(t)−m(t))(g(z, t))T | FY
t )+

E(g(z, t)(z(t)−m(t))T ) | FY
t )+ (8)

diag[b(t),β (t)]diag[b(t),β (t)]T −P(t)[A(t),0m×p]
T×

(G(t)GT (t))−1[A(t),0m×p]P(t))dt,

P(t0) = E((z(t0)−m(t0))(z(t0)−m(t0))
T | FY

t ),

where 0m×p is the m× p - dimensional zero matrix; P(t) is

the conditional variance of the estimation error z(t)−m(t)
with respect to the observations Y (t).

Recall that ẑ(t) = m(t) = [x̂(t), θ̂(t)] is the optimal esti-

mate for the state vector z(t) = [x(t),θ(t)], based on the

observation process Y (t) = {y(s), t0 ≤ s ≤ t}, that minimizes

the Euclidean 2-norm H = E[(z(t)− ẑ(t))T (z(t)− ẑ(t)) | FY
t ]

at every time moment t. Here, E[ξ (t) | FY
t ] means the

conditional expectation of a stochastic process ξ (t) = (z(t)−
ẑ(t))T (z(t)− ẑ(t)) with respect to the σ - algebra FY

t gener-

ated by the observation process Y (t) in the interval [t0, t]. As

known [24], this optimal estimate is given by the conditional

expectation ẑ(t) = m(t) = E(z(t) | FY
t ) of the system state

z(t) with respect to the σ - algebra FY
t generated by the

observation process Y (t) in the interval [t0, t]. As usual, the

matrix function P(t) = E[(z(t)−m(t))(z(t)−m(t))T | FY
t ] is

the estimation error variance.

Remark 1. The equations (7) and (8) do not form a

closed system of equations due to the presence of polynomial

terms depending on x, such as E(g(z, t) | FY
t ), and E((z(t)−

m(t))gT (z, t)) | FY
t ), which are not expressed yet as functions

of the system variables, m(t) and P(t). However, as shown in

[17]-[20], the closed system of the filtering equations can be

obtained for any polynomial state (6) over linear observations

(2), using the technique of representing of superior moments

of the conditionally Gaussian random variable z(t)−m(t) as

functions of only two its lower conditional moments, m(t)
and P(t) (see [17]-[20] for more details of this technique).

Apparently, the polynomial dependence of g(z, t) and (z(t)−
m(t))gT (x, t) on z is the key point making this representation

possible.

D. Optimal control problem solution: Measured state

To handle the optimal control problem for the designed

optimal estimate (8), let us first give the solution to the

general optimal control problem for a polynomial system

with linear control input and a quadratic cost function.

Consider a polynomial system with linear control input

dx(t) = f (x, t)dt +B(t)u(t)dt +b(t)dW1(t), x(t0) = x0,
(11)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rl is the control

input, the polynomial drift function f (x, t) is defined by

f (x, t) = a0(t)+a1(t)x+a2(t)xxT + . . .+as(t)x . . .s times . . .x,

and the assumptions made for the system (1) hold. The

quadratic cost function J to be minimized is defined by (5).

The optimal control problem is to find the control u∗(t), t ∈
[t0,T ], that minimizes the criterion J along with the trajectory

x∗(t), t ∈ [t0,T ], generated upon substituting u∗(t) into the

state equation (11). The solution to the stated optimal control

problem is given by the following theorem [33].

Theorem 1. The optimal regulator for the polynomial

system (11) with linear control input with respect to the

quadratic criterion (5) is given by the control law

u∗(t) = R−1(t)BT (t)[Q(t)x(t)+ p(t)], (12)

where the matrix function Q(t) is the solution of the Riccati

equation

Q̇(t) = L(t)− [a1(t)+2a2(t)x(t)+3a3(t)x(t)x
T (t)+ . . .

(13)
+sas(t)x(t) . . .s−1 times . . .x(t)]

T Q(t)−

Q(t)[a1(t)+a2(t)x(t)+a3(t)x(t)x
T (t)+ . . .

+as(t)x(t) . . .s−1 times . . .x(t)]−Q(t)B(t)R−1(t)BT (t)Q(t),

with the terminal condition Q(T ) = −ψ , and the vector

function p(t) is the solution of the linear equation

ṗ(t)=−Q(t)a0(t)−[a1(t)+2a2(t)x(t)+3a3(t)x(t)x
T (t)+. . .

+sas(t)x(t) . . .s−1 times . . .x(t)]
T p(t)− (14)

Q(t)B(t)R−1(t)BT (t)p(t),

with the terminal condition p(T ) = 0. The optimally con-

trolled state of the polynomial system (11) is governed by

the equation

dx(t) = f (x, t)dt +B(t)R−1(t)BT (t)[Q(t)x(t)+ p(t)]dt+

+b(t)dW1(t), x(t0) = x0. (15)
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E. Optimal controller problem solution: Unmeasured state

Based on the result of Theorem 1, the solution of the

optimal controller problem for the polynomial state (11) over

linear observations (2) with a quadratic criterion (5) is given

as follows [33]. The corresponding optimal control law takes

the form

u∗(t) = R−1(t)BT (t)[Q(t)x̂(t)+ p(t)], (16)

where x̂(t) = E(x(t) | FY
t ), the matrix function Q(t) is the

solution of the Riccati equation

Q̇(t) = L(t)− [c1(t)+2c2(t)x̂(t)+3c3(t)x̂(t)x̂
T (t)+ . . . (17)

+scs(t)x̂(t) . . .s−1 times . . . x̂(t)]
T Q(t)−

Q(t)[c1(t)+ c2(t)x̂(t)+ c3(t)x̂(t)x̂
T (t)+ . . .

+cs(t)x̂(t) . . .s−1 times . . . x̂(t)]−Q(t)B(t)R−1(t)BT (t)Q(t),

with the terminal condition Q(T ) = −ψ , and the vector

function p(t) is the solution of the linear equation

ṗ(t) =−Q(t)c0(t)− [c1(t)+2c2(t)x̂(t)+3c3(t)x̂(t)x̂
T (t)+ . . .

+scs(t)x̂(t) . . .s−1 times . . . x̂(t)]
T p(t)− (18)

Q(t)B(t)R−1(t)BT (t)p(t),

with the terminal condition p(T ) = 0, where

c0(t),c1(t), . . . ,cs(t) are the coefficients in the representation

of the term E( f (x, t) | FY
t ) as a polynomial of x̂, that is,

E( f (x, t) | FY
t ) = c0(t)+ c1(t)x̂+ c2(t)x̂x̂T +

. . .+ cs(t)x̂ . . .s times . . . x̂.

Upon writing down the optimal estimate equation for the

polynomial state (11) over the linear observations (2) (see

[20] and also the equations (7),(8)) and substituting the

optimal control (16) into its right-hand side, the following

optimally controlled state estimate equation is obtained

dx̂(t)= E( f (x, t) |FY
t )dt +B(t)R−1(t)BT (t)[Q(t)x̂(t)+ p(t)]dt

(19)

+P(t)AT (t)(G(t)GT (t))−1(dy(t)− (A0(t)+A(t)x̂(t))dt).

with the initial condition x̂(t0) = E(x(t0) | FY
t ).

Thus, the optimally controlled state estimate equation (19),

the gain matrix constituent equations (17) and (18), the

optimal control law (16), and the corresponding variance

equation give the complete solution to the optimal controller

problem for polynomial systems with linear control input and

a quadratic cost function. This solution is not yet written in

a closed form due to non-closeness of the filtering equations

in the general situation; however, as noted in Remark 1, the

closed-form solution can be obtained for any specific form

of the polynomial drift f (x, t) in the equation (11).

F. Solution of optimal controller problem with deterministic

disturbances

The next step is to give the solution to the optimal con-

troller problem for a polynomial stochastic system with linear

control input and a quadratic cost function, that operates

under influence of matched deterministic disturbances (3).

Consider a polynomial system (11) with deterministic

disturbances

dx(t) = f (x, t)dt +B(t)u(t)dt +B(t)γ(t)dt +b(t)dW1(t),

x(t0) = x0, (20)

where the assumptions made for the system (11) hold, and

the quadratic cost function J to be minimized is defined by

(5). The deterministic disturbance γ(t) satisfies the condition

(3). The optimal control problem is to find the control u∗(t),
t ∈ [t0,T ], that minimizes the criterion J along with the

trajectory x∗(t), t ∈ [t0,T ], generated upon substituting u∗(t)
into the state equation (11).

If the realization of the Wiener process W1(t), affecting

the state (20), and the initial condition x0 are exactly known,

the optimal control u∗(t) is represented as [25]

u∗(t) = u∗0(t)+u∗1(t).

Here, u∗0(t) is the optimal control for the nominal system

(11), which is given by (12), and u∗1(t) is the integral sliding

mode control u∗1(t) = −Ksign[s(t)], where the sliding mode

manifold is defined as

s(t) = (BT (t)B(t))−1BT (t)(x(t)−

[x0 +
∫ t

t0

( f (x,s)+B(s)u∗0(s))ds+
∫ t

t0

b(s)dW1(s)]).

Note that s(t)∈Rl ; therefore, sign[s(t)] is defined as a vector:

{sign[s1(t)], . . . ,sign[sl(t)]}.

The key idea is as follows: the sliding mode control u∗1(t)
leads the state trajectory to the sliding manifold s(t), where

the deterministic disturbances h(t) = B(t)γ(t) are absent and

the state is therefore regulated optimally by the control

u∗0(t). If the current realization of the Wiener process W1(t)
and the initial condition x0 are exactly known, then there

is no reaching phase and the sliding mode motion on the

manifold s(t) starts from the initial moment t0 (see [25] for

substantiation of the integral sliding mode technique).

If the current realization of the Wiener process W1(t) and

the initial condition x0 are unknown and the state x(t) is not

measurable directly but only through the observations (2), the

best estimate of the sliding mode manifold s(t) is given (see

[24]) by its conditional estimate with respect to observations

(2), i.e.,

ŝ(t) = E[s(t) | FY
t ] = (BT (t)B(t))−1BT (t)(x̂(t)− (21)

[x̂(t0)+
∫ t

t0

(E( f (x,s) | FY
s )+B(s)u∗00(s))ds]),
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where x̂(t) = E[x(t) | FY
t ], and u∗00(s) is the optimal control

corresponding to the case of a directly unmeasurable state

(20). Therefore, the optimal control is given by

u∗(t) = u∗00(t)+u∗11(t), (22)

where u∗00(t) is the optimal control for the nominal unmea-

surable system (20), which is given by (16), and u∗11(t) =
−Ksign[ŝ(t)]. More discussion of the integral sliding mode

technique for unmeasurable systems can be found in [26].

Taking into account the preceding considerations, the

following optimally controlled state estimate equation is

obtained

dx̂(t) = E( f (x, t) | FY
t )dt +B(t)(R(t))−1BT (t)×

[Q(t)x̂(t)+ p(t)]dt −Bsign[ŝ(t)]dt− (23)

P(t)AT (t)(G(t)GT (t))−1(dy(t)− (A0(t)+A(t)x̂(t))dt).

with the initial condition x̂(t0) = E(x(t0) | FY
t ), where ŝ(t) is

given by (21).

G. Solution of optimal controller problem with deterministic

disturbances and uncertain parameters

Based on the result of the preceding subsections, the

solution of the original optimal controller problem for the

polynomial state (1) with deterministic disturbances (3) and

uncertain parameters θ over linear observations (2) with a

quadratic criterion (5) is given as follows. The corresponding

optimal control law takes the form (22), where the matrix

function Q(t) is the upper left corner of the matrix Q̄(t) =
diag[Q(t),0p×p], which is the solution of the Riccati equation

˙̄Q(t) = diag[L(t),0p×p]− [γ1(t)+2γ2(t)m(t)+3γ3(t)×

m(t)mT (t)+ . . .+(s+1)γs+1(t)m(t) . . .s times . . .m(t)]T Q̄(t)−
(24)

Q̄(t)[γ1(t)+ γ2(t)m(t)+ γ3(t)m(t)mT (t)+ . . .

+γs+1(t)m(t) . . .s times . . .m(t)]−

Q̄(t)[B(t) | 0p×l ]R
−1(t)[B(t) | 0p×l ]

T Q̄(t),

with the terminal condition Q̄(T ) = diag[−Φ | 0p×p], and

the vector function p(t) is the upper subvector of the vector

p̄(t) = [p(t) | 0p], which is the solution of the linear equation

˙̄p(t) = −Q̄(t)γ0(t)− [γ1(t)+2γ2(t)m(t)+3γ3(t)×

m(t)mT (t)+ . . .+(s+1)γs+1(t)m(t) . . .s times . . .m(t)]T p̄(t)−
(25)

Q̄(t)[B(t) | 0p×l ]R
−1(t)[B(t) | 0p×l ]

T (t)p̄(t),

with the terminal condition p̄(T ) = 0n+p, where

γ0(t),γ1(t), . . . ,γs+1(t) are the coefficients in the

representation of the term E(g(z, t) | FY
t ) in the right-

hand side of (6) as a polynomial of m, that is,

E(g(z, t) | FY
t ) = γ0(t)+ γ1(t)m+ γ2(t)mmT +

. . .+ γs+1(t)m . . .s+1 times . . .m.

Upon substituting the optimal control (22) into the equa-

tion (7), the following optimally controlled state estimate

equation is obtained

dm(t) = E(g(z, t) | FY
t )dt +[B(t) | 0p×l ]R

−1(t)BT (t)× (26)

[Q(t)x̂(t)+ p(t)]dt − [B(t) | 0p×l ]sign[ŝ(t)]dt +P(t)×

[A(t),0m×p]
T (G(t)GT (t))−1(dy(t)− (A0(t)+A(t)x̂(t))dt).

with the initial condition m(t0) = E(x(t0) | FY
t ), where ŝ(t)

is given by (21).

Thus, the optimally controlled state estimate equation

(26), the gain matrix constituent equations (24) and (25),

the optimal control law (22), and the variance equation (8)

give the complete solution to the optimal controller problem

for an uncertain polynomial system (1) with deterministic

disturbances (3) over linear observations (2) and a quadratic

cost function (5). This solution is not yet written in a closed

form due to non-closeness of the filtering equations (7),(8)

in the general situation. In the next subsection, the closed-

form optimal solution is obtained for the particular case of

a third degree polynomial drift g(z, t), which corresponds to

a second degree polynomial function f (x, t).
1) Optimal controller problem solution for third degree

polynomial state: Let the function

g(z, t) = α0(t)+α1(t)z+α2(t)zzT +α3(t)zzzT (27)

be a third degree polynomial, where z is an (n + p)-
dimensional vector, a0(t) is an (n + p)-dimensional vector,

a1(t) is a (n + p)× (n + p)-dimensional matrix, a2(t) is a

3D tensor of dimension (n + p)× (n + p)× (n + p), a3(t)
is a 4D tensor of dimension (n + p)× (n + p)× (n + p)×
(n+ p). In this case, taking into account the representations

for E(g(z, t) | FY
t ) and E((z(t) − m(t))(g(z, t))T | FY

t ) as

functions of m(t) and P(t) (see the results obtained in [17]-

[19] for third degree polynomial functions), the following

filtering equations for the optimal estimate m(t) and the error

variance P(t) are obtained

dm(t) = (α0(t)+α1(t)m(t)+α2(t)m(t)mT (t)+α2(t)P(t)+
(28)

3α3(t)P(t)m(t)+α3(t)m(t)m(t)mT (t)+[B(t) | 0p×l ]u(t))dt+

P(t)[A(t),0m×p]
T (G(t)GT (t))−1(dy(t)−(A0(t)+A(t)x̂(t))dt),

dP(t) = (α1(t)P(t)+P(t)αT
1 (t)+2α2(t)m(t)P(t)+

2(α2(t)m(t)P(t))T +3(α3[P(t)P(t)+P(t)m(t)mT (t)])+

3(α3[P(t)P(t)+P(t)m(t)mT (t)])T + (29)

diag[b(t),β (t)]diag[b(t),β (t)]T−

P(t)[A(t),0m×p]
T (G(t)GT (t))−1[A(t),0m×p]P(t))dt,

with the same initial conditions as in (7),(8).

Taking into account the representation (24): γ0(t) =
α0(t)+α2(t)P(t), γ1(t) = α1 +3α3(t)P(t)(t), γ2(t) = α2(t),
γ3(t) = α3(t), the equations (24) and (25) take the following

particular forms in the case of a third degree polynomial (27)

˙̄Q(t) = diag[L(t),0p×p]− [α1(t)+3α3(t)P(t)+
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2α2(t)m(t)+3α3(t)m(t)mT (t)]T Q̄(t)− (30)

Q̄(t)[α1(t)+3α3(t)P(t)+α2(t)m(t)+α3(t)m(t)mT (t)]−

Q̄(t)[B(t) | 0p×l ]R
−1(t)[B(t) | 0p×l ]

T (t)Q̄(t),

with the terminal condition Q̄(T ) = diag[−Φ | 0p×p], and the

vector function p̄(t) is the solution of the linear equation

˙̄p(t) = −Q̄(t)(α0(t)+α2(t)P(t))− (31)

[α1 +3α3(t)P(t)(t)+2α2(t)m(t)+3α3(t)m(t)mT (t)]T p̄(t)−

Q̄(t)[B(t) | 0p×l ]R
−1(t)[B(t) | 0p×l ]

T (t)p̄(t),

with the terminal condition p̄(T ) = 0n+p.

The optimally controlled state estimate equation (26) takes

the the following particular form

dm(t) = (α0(t)+α1(t)m(t)+α2(t)m(t)mT (t)+α2(t)P(t)+
(32)

3α3(t)P(t)m(t)+α3(t)m(t)m(t)mT (t)+ [B(t) | 0p×l ]×

R−1(t)BT (t)[Q(t)x̂(t)+ p(t)]dt − [B(t) | 0p×l ]sign[ŝ(t)]dt−

P(t)[A(t),0m×p]
T (G(t)GT (t))−1(dy(t)−(A0(t)+A(t)x̂(t))dt).

with the initial condition m(t0) = E(x(t0) | FY
t ), where ŝ(t)

is given by (21).

III. CONCLUSIONS

The optimal quadratic-Gaussian controller has been de-

signed for uncertain stochastic polynomial systems with

unknown parameters and deterministic disturbances over

linear observations and a quadratic criterion, using the in-

tegral sliding mode algorithm for unmeasured states. The

optimality of the obtained controller has been proved using

the previous results in the optimal filtering for polynomial,

in particular, third degree, states over linear observations

and the optimal control theory for polynomial systems with

linear control input and a quadratic criterion. The separation

principle for polynomial systems with unknown parameters

has been introduced and substantiated.
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