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Abstract— This paper studies self-triggering in sampled-data
systems, where the next task release time and finishing time
are predicted based on the sampled states. We propose a
new self-triggering scheme that ensures finite-gain L2 stability
of the resulting self-triggered feedback systems. This scheme
relaxes the assumptions in [1] that the magnitude of the process
noise is bounded by a linear function of the norm of the
system state. We show that the sample periods generated by
this scheme are always greater than a positive constant. We
also provide dynamic deadlines for delays and propose a way
that may enlarge predicted deadlines without breaking L2

stability, especially when the predicted deadlines are very short.
Simulations show that the sample periods generated by this
scheme are longer than those generated by the schemes in [1].
We also show that the predicted deadlines can be extended by
our scheme. Moreover, this scheme appears to be robust to the
external disturbances.

I. INTRODUCTION

Sampled-data systems are such systems that sample con-

tinuous signals and make control decisions based the sampled

data. Traditional approaches to implement such systems

are based on periodic task models, in which consecutive

invocations of a task are released in a periodic manner.

Early work [2] is based on Nyquist sampling that ensures

perfect reconstruction of the signals. Noticing that perfect

reconstruction is much more than we require in a feedback

control system, Lyapunov techniques were used to identify

the sample period [3]. Further work was done in [4], [5] to

bound the inter-sample behavior of nonlinear systems using

input-to-state stability techniques. For networked control

systems, the maximum admissible time interval (MATI) was

introduced by Walsh et al. [6], where a task can be postponed

while still maintaining closed-loop system stability. Tighter

bounds on MATI were obtained in [7], [8].

As we mentioned above, the preceding approaches are

all based on periodic task models. Such models may be

undesirable in many situations due to their conservativeness.

Under periodic task models, the selection of sample periods

is done before the system is deployed. One therefore has to

ensure adequate behavior over a wide range of uncertainties.

As a result, these selected periods may be shorter than

necessary, which results in significant over-provisioning of

the real-time system hardware. This over-provisioning may

negatively impact the scheduling of other tasks on the same

processing system. In these applications it may be better to

consider alternatives to periodic task models that can more
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effectively balance the real-time system’s computational cost

against the control system’s performance.

In recent years, sporadic task models have been considered

for real-time control. A hardware realization of such models

is called event-triggering. Under event-triggering the system

states are sampled when some error signal exceeds a given

threshold [9]. Event-triggering has the ability to dynamically

adjust the task periods to variations in the system state.

This “on-line” property enables event-triggering to generate

longer task periods than periodic task models [1]. One thing

worth mentioning is that event-triggering requires a hard-

ware event detector that may be implemented using custom

analog integrated circuits (ASIC’s) or floating point gate

array (FPGA) processors. In some applications, however, it

may be unreasonable or impractical to retrofit an existing

system with such “event detectors”. In these cases, a software

approach such as the self-triggered scheme may be more

appropriate. Under self-triggering the next task release time

and finishing time are predicted by the processing computer

based on the sampled data.

A self-triggered task model was introduced by Velasco

et al. [10] in which a heuristic rule was used to adjust task

periods. Further work was done by Lemmon et al. [11] which

chose task periods based on a Lyapunov-based technique. But

the authors did not provide analytic bounds for task periods.

Most recently, Wang et al. [1] provided the first rigorous

examination of what might be required to implement self-

triggered feedback control systems for L2 stability. A scaling

law for the execution times of control tasks was derived in

[12] for homogeneous systems with asymptotic stability.

A critical assumption in [1] is that the magnitude of the

process noise is bounded by a linear function of the norm of

the system state. It means that the disturbance should vanish

as the state is close to the equilibrium. Such disturbances

may arise in uncertain systems when there are unmodeled

dynamics caused by fluctuations in plant parameters. In

practice, however, the disturbances usually do not depend on

the state. With those “independent” disturbances, the self-

triggering scheme in [1] cannot theoretically guarantee L2

stability of the sampled-data system any more. Therefore, it

is really important to relax this assumption so that the self-

triggering scheme can apply to a wider class of systems.

This paper extends the work in [1]. We present a new

self-triggering scheme that ensures finite-gain L2 stability of

the resulting self-triggered feedback systems. This scheme

pertains to linear time-invariant systems. The task release

time and finishing time are predicted as functions of sampled

states. It relaxes the assumptions in [1] that the magnitude

of the process noise is bounded by a linear function of the
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norm of the system state. We show that the sample periods

generated by this scheme are always greater than a positive

constant. We also provide dynamic deadlines for delays and

propose a way that may enlarge predicted deadlines without

breaking L2 stability, especially when the predicted deadlines

are very short. Simulations show that the sample periods

generated by this scheme are longer than those generated by

the scheme in [1]. We also show that our scheme can extend

the predicted deadlines. Moreover, this scheme appears to be

robust to the external disturbances.

This paper is organized as follows. In section II the prob-

lem is formulated. Section III and IV present self-triggering

schemes for the sampled-data systems without/with delays,

respectively. Simulation results are presented in section V.

Finally, conclusions are stated in section VI.

II. SYSTEM MODEL

Consider a linear time-invariant system whose state x :
[0,∞) → ℜn satisfies the initial value problem,

ẋt = Axt + B1ut + B2wt

where u : [0,∞) → ℜm is a control input and w : [0,∞) →
ℜl is an exogenous disturbance function in L2 space.

Assume the unforced system is asymptotically stabilized

by the controller ut = −BT
1 Pxt, where P ∈ R

n×n is a

symmetric positive semi-definite matrix satisfying

0 = PA + AT P − Q + I +
1

γ2
PB2B

T
2 P (1)

Q = PB1B
T
1 P (2)

with some real constant γ > 0. Let Acl = A − B1B
T
1 P .

This paper considers a sampled-data implementation of the

closed-loop system. This means that the plant’s control, u,

is computed by a computer task. This task is characterized

by two monotone increasing sequences of time instants;

the release time sequence {rk}∞k=0 and the finishing time

sequence {fk}∞k=0. The time rk denotes the time when

the kth invocation of a control task (also called a job) is

released for execution on the computer’s central processing

unit (CPU). The time fk denotes the time when then kth job

has finished executing. Each job of the control task computes

the control u based on the last sampled state. Upon finishing,

the control job outputs this control to the plant. The control

signal used by the plant is held constant by a zero-order hold

(ZOH) until the next finishing time fk+1. This means that

the sampled-data system under study satisfies,

ẋt = Axt + B1ut + B2wt (3)

ut = −BT
1 Pxrk

for t ∈ [fk, fk+1) and all k = 0, . . . ,∞. We define the error

ek
t : R → R

n as ek
t = xt − xrk

for all t ∈ [rk, fk+1).
Definition 2.1: The system (3) is said to be finite-gain L2

stable from w to x with an induced gain less than γ if there

exist non-negative constants γ and δ such that

(
∫ ∞

0

‖xt‖2
2dt

)
1
2

≤ γ

(
∫ ∞

0

‖wt‖2
2dt

)
1
2

+ δ (4)

for any w satisfying
(∫∞

0
‖wt‖2

2dt
)

1
2 < ∞.

In [1], a self-triggering scheme was proposed to ensure

finite-gain L2 stability of the sampled-data system in equa-

tion (3) from w to x. But it is not applicable for all w in L2

space. The scheme is based on the assumption that ‖wt‖2 ≤
W‖xt‖2 holds for some W > 0. In practice, however,

the disturbances usually do not depend on the state, with

which the self-triggering scheme in [1] cannot theoretically

guarantee L2 stability of the sampled-data system any more.

In this paper, we try to find a self-triggering scheme that

can relax the assumptions in [1] with the guarantee of finite-

gain L2 stability of the sampled-data system from w to x.

In other words, we try to find a self-triggering scheme such

that L2 stability can be preserved for any w in L2 space.

Let Tk = rk+1 − rk denote the kth inter-release time and

Dk = fk −rk denote the time interval between the kth job’s

release and finishing time.

III. SELF-TRIGGERED SYSTEMS WITHOUT DELAYS

In this section, we consider the sample-data systems where

task delays are zero (Dk = 0). We try to find a self-triggering

scheme that ensures finite-gain L2 stability of such systems.

The main idea is that: we first seek some inequality constraint

on rk (= fk) such that L2 stability can be guaranteed; then

we derive the self-triggering scheme that can ensure the

satisfaction of this constraint.

Before we show the desired inequality constraint, we need

a lemma to help the proof, which provide an upper bound

for the derivative of the storage function. To make the paper

easy to read, we put all of the proofs in the appendix.

Lemma 3.1: Consider the sampled-data system in equa-

tion (3). Let V (x) = xT Px with the matrix P given in

equation (1). For any real constant β ∈ (0, 1], the directional

derivative of V satisfies

V̇ ≤ −β2 ‖xt‖2
2 + γ2 ‖wt‖2

2 +
(

ek
t

)T
Mek

t − xT
rk

Nxrk
(5)

for all t ∈ [fk, fk+1) and any k ∈ N, where M , N satisfy

M = (1 − β2)I + Q, N = 1
2 (1 − β2)I + Q, (6)

respectively with the matrix Q defined in equation (2).

The inequality constraint on the task release time (it is also

task finishing time since we assume the task delay is zero) is

presented in the following lemma. We define ρ : R
n → R as

ρ(x) =
√

xT Nx, µ : R
n → R as µ(xrk

) = ‖
√

MAclxrk
‖2,

and α = ‖
√

MA
√

M
−1‖.

Lemma 3.2: Consider the sampled-data system in equa-

tion (3). Assume r0 = 0 and rk = fk for all k ∈ Z
+. Let

β be any positive constant in the interval (0, 1] such that

the matrix M defined in equation (6) has full rank. Given a

positive constant τ ∈ R
+, if

rk ≤ rk+1 ≤ rk + τ, and (7)

2
∫ fk+1

fk

µ(xrk
)2

α2

(

eα(t−fk) − 1
)2

dt ≤
∫ fk+1

fk
ρ(xrk

)2dt (8)

hold for all k ∈ Z
+, then the sampled-data system is finite-

gain L2 stable from w to x with L2 gain less than η, where

η =

√

γ2α2+2‖√MB2‖2
(eατ−1)2

αβ
. (9)
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Remark 3.3: Lemma 3.2 actually implies an event-

triggering scheme for zero-delay systems. The system can

use the violation of the inequality

2
∫ t

fk

µ(xrk
)2

α2

(

eα(s−fk) − 1
)2

ds ≤
∫ t

fk
ρ(xrk

)2ds (10)

to trigger the next task’s release with the guarantee of

stability of the systems. Notice that equation (10) can be

rewritten as

µ(xrk
)2

α2

(

e2α(t−fk)

α
− 4eα(t−fk)

α
+ 3

α
+ 2(t − fk)

)

≤ ρ(xrk
)2(t − fk)

(11)

by taking the integration.

The inequality constraint proposed in [1] is (ek
t )T Mek

t ≤
ρ(xrk

)2 for all t ∈ [rk, fk+1). The self-triggering scheme in

[1] enforces this inequality constraint, thereby assuring the

overall system’s L2 stability. This inequality, however, can

be relaxed. It is easy to see that the preceding inequality

implies the integral inequality constraint

∫ fk+1

fk
(ek

t )T Mek
t dt ≤

∫ fk+1

fk
ρ(xrk

)2dt (12)

and the proof of lemma 3.2 shows that the constraint in

equation (12) is sufficient to assure L2 stability. Nevertheless,

the constraint in equation (12) is still unsuitable for a

practical self-triggering scheme. This is because it makes

use of ek
t which also contains the disturbance wt. Since the

exact value of the disturbance is unknown, we cannot use

(12) to predict the future time when (12) is to be violated.

There are several ways of handling this issue. One ap-

proach (that was used in [1]) is to force ‖wt‖2 ≤ W‖xt‖2,

thereby forcing the noise strength to decrease as the system

approaches its equilibrium point. This assumption may be

justified if the noise term is generated by state-dependent

modeling uncertainty, but in general if the disturbance is

independent of the process model, this assumption will be

overly restrictive.

We were interested in remove the earlier assumption in

[1] so that wt can be any signal in L2 space. We were able

to do this about splitting up the effect that the sampled state

xrk
and the noise wt has on the local error ek

t . This allows

us to isolate those term containing wt so we can bound
∫ fk+1

fk
(ek

t )T Mek
t dt as a function of wt plus another term

that is only dependent of the sampled state xrk
. The second

term leads to the inequality in equation (8) and the term

related to wt contributes to the induced gain η.

Lemma 3.2 provides a constraint on the task release time.

It is easy to see that if we can find some t ≥ fk that

makes the equality in equation (11) hold, the next task release

time can be predicted. However, it is difficult to obtain such

solutions in an explicit form. An alternative way is to get

an estimate of the solution that can ensure the satisfaction of

equation (8). In this way, L2 stability can still be maintained.

This is formally stated in theorem 3.4, where a self-triggering

scheme is presented.

Theorem 3.4: Consider the sampled-data system in equa-

tion (3). Assume r0 = 0 and rk = fk for all k ∈ Z
+.

Let β be any positive constant in (0, 1] such that the matrix

M defined in equation (6) has full rank. Given a positive

constant τ ∈ R
+, if the next task release time rk+1 satisfies

rk ≤ rk+1 ≤ rk + min{τ, L1(xrk
)}, (13)

for all k ∈ Z
+, where L1 : R

n → R is given by

L1(xrk
) =







1
α

ln

(

1 +
αρ(xrk

)√
2‖√MAclxrk‖2

)

xrk
6= 0

∞ xrk
= 0

(14)

then there exists a positive constant ξ such that L1(xrk
) ≥ ξ

for all k ∈ Z
+ and the sampled-data system is finite-gain L2

stable from w to x with an induced gain less than η, where

η is defined in equation (9).

Remark 3.5: The introduction of τ is the safety require-

ment of systems. It requires the system updates at least every

τ unit-time so that some accidents can be detected. Notice

that τ also affects the induced gain.

Remark 3.6: The self-triggering scheme can be rk+1 =
rk + min{τ, L1(xrk

)} for all k ∈ Z. Then L1(xrk
) ≥ ξ

actually implies Tk ≥ min{τ, ξ} > 0.

IV. SELF-TRIGGERED SYSTEMS WITH DELAYS

This section introduces a self-triggering scheme for the

sampled-data systems where the task delays are not zero.

In this case, the differential equations associated with two

intervals [rk, fk) and [fk, fk+1) are

ẋt = Axt − B1B
T
1 Pxrk−1

+ B2wt and

ẋt = Axt − B1B
T
1 Pxrk

+ B2wt,

respectively. We derive bounds on the sample period and

task delays to ensure L2 stability of the systems. Based

on these bounds, a self-triggering scheme is proposed. The

analysis is similar to that used in theorem 3.4 except that the

behavior of the error, ek
t , needs to be characterized differently

over the intervals [rk, fk) and [fk, fk+1). Due to the space

limitation, we will not show the bounds on errors over these

two intervals. The self-triggering scheme is formally stated

in the following theorem. To simplify the notation, we let

ν(xrk+1
, xrk

) =
∥

∥

∥

√
M
(

Axrk+1
− B1B

T
1 Pxrk

)

∥

∥

∥

2
.

Theorem 4.1: Consider the sampled-data system in equa-

tion (3). Let β be any positive constant in the interval (0, 1]
such that the matrix M defined in equation (6) has full rank.

Given three positive constant ǫ, τ1, τ2 ∈ R
+ and a positive

sequence {δk}∞k=0 satisfying
∑∞

k=0 δk ≤ ∞, if

• the initial condition is r0 = f0 = 0,

• the k + 1th task release time rk+1 satisfies

rk+1 = fk + min{τ1, ǫL2(xrk
)}, (15)

for all k ∈ Z
+, where L2 : R

n → R is defined by

L2(xrk
) =







1
α

ln

(

1 +
αρ(xrk

)√
8‖√MAclxrk‖2

)

xrk
6= 0

∞ xrk
= 0

• the k + 1th task finishing time fk+1 satisfies

min
{

τ2, (1 − ǫ)L2(xrk
), L3(xrk+1

, xrk
; δk+1)

}

≥ fk+1 − rk+1 ≥ 0, (16)
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where L3 : R
n × R

n × R → R is defined by

L3(xrk+1
, xrk

; δk+1) = 1
α

ln

(

1 +
α
√

ρ2(xrk+1
)+2δk+1√

8eα(τ1+τ2)ν(xrk+1
,xrk

)

)

,

then the sampled-data system is finite-gain L2 stable from

w to x with an induced gain less than a positive constant η̂ =
[

γ2α2+‖√MB2‖2
(

(e2α(τ1+τ2)−1)(e2ατ2−1)+4(eα(τ1+τ2)−1)
2
)] 1

2

αβ
.

Remark 4.2: By the self-triggering scheme proposed in

theorem 4.1, the k + 1th task release time is determined

when t = fk and the deadline for the k + 1th task delay is

determined when t = rk+1. τ1 and τ2 are used to bound the

time intervals [fk, rk+1) and [rk+1, fk+1), respectively, for

the consideration of the system security.

Remark 4.3: By the definition of L2, it is easy to see that

there exists a positive constant ξ̂ ∈ R
+ such that L2(xrk

) ≥
ξ̂ > 0. This implies the sample periods generated by this self-

triggering scheme are always greater than a positive constant.

Remark 4.4: The introduction of δk can increase the value

of L3(xrk
, xrk−1

; δk). This suggests that by appropriate

selecting δk, we can to some extent enlarge the deadlines. It

may be useful when the predicted deadlines are very short.

In that case, some large δk is desirable. How to efficiently

identify δk might be an interesting topic in the future.

V. SIMULATIONS

In this section, we used the inverted pendulum problem in

[1] to demonstrate the proposed self-triggered scheme. The

plant’s linearized state equations were

ẋ =









0 1 0 0
0 0 −mg

M
0

0 0 0 1
0 0 g

ℓ
0









x +









0
1
M

0
−1
Mℓ









u +









1
1
1
1









w

= Ax + Bu

where M was the cart mass, m was the mass of the pendulum

bob, ℓ was the length of the pendulum arm, and g was

gravitational acceleration. For these simulations, we let M =
10, m = 1, ℓ = 3, and g = 10. The system state was

the vector x =
[

y ẏ θ θ̇
]T

where y was the cart’s

position and θ was the pendulum bob’s angle with respect

to the vertical. The system’s initial state was the vector

x0 =
[

0.98 0 0.2 0
]T

. The controller is u = Kx,

where K =
[

2 12 378 210
]

. We set γ = 200.

We first used the self-triggered feedback scheme, associ-

ated with equation (15) and (16) in theorem 4.1, to trigger

the sampling. The parameters are τ1 = 0.15, τ2 = 0.05,

ǫ = 0.8, and δk = 0. We assume the delays are equal to

the deadlines. The simulation results show that the system

is asymptotically stable and there is a wide rang of variation

in periods and deadlines, of which the averages are 0.1057
and 0.0056, respectively. It shows that self-triggering can ef-

ficiently adjust the sample periods and deadlines in response

to changes in the control system.

We then set δk = 105

k2 and re-run the simulation. Notice

that
∑∞

k=1 δk ≤ ∞. The resulting self-triggered feedback

system is still stable. However, the predicted deadlines in this
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5
/k
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deadlines for δ
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Fig. 1. A comparison between the deadlines generated by the systems with

δk =
10

5

k2 (circle) and δk = 0 (dot)

system are much longer than those in the system with δk = 0.

This is shown in Figure 1 that plots the deadlines in the

systems with δk = 105

k2 (circle) and δk = 0 (dot). It suggests

that appropriate selection of δk can result in longer deadlines.

It provides the possibility of avoiding very short deadlines.

Then, how to efficiently allocate the resource (selecting δk)

would be an interesting research topic.

We also examined the robustness of our self-triggered

feedback system to the external disturbance with τ1 = 0.15,

τ2 = 0.05, ǫ = 0.8, and δk = 0. The disturbance, wt,

was assumed to be a random variable uniformly distributed

over [−0.2, 0.2]. The simulation results show that the system

converges to a small neighborhood of the equilibrium point.

Although the periods and deadlines still vary a lot, they are in

general much smaller than those in the non-disturbance case.

The average period and deadline are 0.0535 and 0.0021, re-

spectively. This verifies the ability of self-triggered feedback

systems in adjusting sample periods in response to changes

in the control system’s external inputs. Based on the results

of this simulation, our self-triggering scheme appears to be

robust to the external disturbance.

Finally, we compared our self-triggering scheme (τ1 =
0.5, ǫ = 1, δk = 0) and the self-triggering scheme in [1] with

a noise process satisfying ‖wt‖2 ≤ W‖xt‖2 (W = 0.01). In

both of the cases, we assume the delays are zero. Recall that

the self-triggering scheme in [1] requires ‖wt‖2 ≤ W‖xt‖2

holds for some W > 0 and the k + 1th task release, rk+1,

is triggered in the following way:

rk+1 = rk + 1
ᾱ

ln
(

1 +
ᾱ‖

√
Nxrk

‖2

‖
√

MAclxrk
‖2

)

where M,N are defined in equation (6) and ᾱ =

‖
√

MA
√

M
−1‖ + W‖

√
MB2‖‖

√
M

−1‖. We set β = 0.5
(the value of β did not significantly affect the results).

The simulation results show the minimal/average/maximal

periods generated by our self-triggering scheme and the

scheme proposed in [1] are 0.0220/0.1574/0.2290 and
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0.0210/0.0626/0.1030, respectively. It is obvious that our

self-triggered scheme generates much longer sample periods.

VI. CONCLUSIONS

This paper proposes a new self-triggering scheme that

ensures finite-gain L2 stability of the resulting self-triggered

feedback systems. This scheme relaxes the assumptions in [1]

that the magnitude of the process noise is bounded by a linear

function of the norm of the system state. We show that the

sample periods generated by this scheme are always greater

than a positive constant. We also provide dynamic deadlines

for delays and propose a way that may enlarge predicted

deadlines without breaking L2 stability, especially when the

predicted deadlines are very short. Simulations show that

the sample periods generated by this scheme are longer than

those generated by the scheme in [1]. We also show that our

scheme can extend the predicted deadlines. Moreover, this

scheme appears to be robust to the external disturbances.

APPENDIX

Proof: [Proof of Lemma 3.1] Consider the directional

derivative of V for t ∈ [fk, fk+1):

V̇ = ∂V
∂x

(

Axt − B1B
T
1 Pxrk

+ B2wt

)

≤ −xT
t (I − Q)xt + γ2 ‖wt‖2

2 − 2xT
t Qxrk

= −β2 ‖xt‖2
2 − (1 − β2) ‖xt‖2

2 +
(

ek
t

)T
Qek

t

−xT
rk

Qxrk
+ γ2 ‖wt‖2

2

≤ −β2 ‖xt‖2
2 + γ2 ‖wt‖2

2 +
(

ek
t

)T
Mek

t − xT
rk

Nxrk
,

where M and N are defined by (6).

Proof: [Proof of Lemma 3.2] By lemma 3.1, we know

V̇ ≤ −β2 ‖xt‖2
2 + γ2 ‖wt‖2

2 +
(

ek
t

)T
Mek

t − xT
rk

Nxrk

for all t ∈ [fk, fk+1). Integrating both sides of the inequality

above on t over the interval [fk, fk+1), we obtain:

∫ fk+1

fk
V̇ dt ≤ −β2

∫ fk+1

fk
‖xt‖2

2 dt + γ2
∫ fk+1

fk
‖wt‖2

2 dt

+
∫ fk+1

fk

(

ek
t

)T
Mek

t − xT
rk

Nxrk
dt.

(17)

Let us consider the term,
∫ fk+1

fk

(

ek
t

)T
Mek

t dt, in equation

(17). We will show an upper bound on this term. Let Φ =
{

t ∈ [fk, fk+1) :
∥

∥

∥

√
Mek

t

∥

∥

∥

2
= 0
}

. The time derivative of

‖
√

Mek
t ‖2 for t ∈ [fk, fk+1)\Φ satisfies

d

dt

∥

∥

∥

√
Mek

t

∥

∥

∥

2
≤ α

∥

∥

∥

√
Mek

t

∥

∥

∥

2
+µ(xrk

)+
∥

∥

∥

√
MB2

∥

∥

∥
‖wt‖2 ,

where the righthand sided derivative is used when t = fk.

Using standard comparison principle on the preceding

equation over the interval t ∈ [fk, fk+1) with the initial

condition

∥

∥

∥

√
Mek

fk

∥

∥

∥

2
=
∥

∥

∥

√
Mek

rk

∥

∥

∥

2
= 0, we have

∥

∥

∥

√
Mek

t

∥

∥

∥

2
≤ µ(xrk

)

α

(

eα(t−fk) − 1
)

+
∫ t

fk
eα(t−s)

∥

∥

∥

√
MB2

∥

∥

∥
‖ws‖2 ds

(18)

for all t ∈ [fk, fk+1) since

∥

∥

∥

√
Mek

t

∥

∥

∥

2
= 0 for all t ∈ Φ.

Therefore, we have

∫ fk+1

fk

∥

∥

∥

√
Mek

t

∥

∥

∥

2

2
dt ≤ 2

∫ fk+1

fk

µ(xrk
)2

α2

(

eα(t−fk) − 1
)2

dt

+2
∫ fk+1

fk

(

∫ t

fk
eα(t−s)

∥

∥

∥

√
MB2

∥

∥

∥
‖ws‖2 ds

)2

dt.

(19)

We now take a look at the second term in the right side of

the inequality above. For notational convenience, we define

Wk = 2
∫ fk+1

fk

(

∫ t

fk
eα(t−s)

∥

∥

∥

√
MB2

∥

∥

∥
‖ws‖2 ds

)2

dt.

Using Cauchy-Schwarz inequality, we have

Wk ≤ 2
∫ fk+1

fk

(

∫ t

fk
eα(t−s)ds

)

·
(

∫ t

fk
eα(t−s)

∥

∥

∥

√
MB2

∥

∥

∥

2

‖ws‖2
2 ds

)

dt.
(20)

Equation (7) implies 0 ≤ rk+1 − rk ≤ τ . By the

assumption that rk = fk holds for all k ∈ Z
+, we have

0 ≤ fk+1 − fk ≤ τ . So equation (20) can be reduced as

Wk ≤ 2(eατ−1)
α

∫ fk+1

fk

∫ t

fk
eα(t−s)

∥

∥

∥

√
MB2

∥

∥

∥

2

‖ws‖2
2 dsdt

= 2(eατ−1)
α2

∫ fk+1

fk

(

eα(fk+1−s) − 1
)

∥

∥

∥

√
MB2

∥

∥

∥

2

‖ws‖2
2 ds,

(21)

where the equality is obtained by reversing the order of

integration. Applying fk+1 − fk ≤ τ in equation (21) yields

Wk ≤ 2‖√MB2‖2

α2 (eατ − 1)
2 ∫ fk+1

fk
‖ws‖2

2 ds. (22)

Combining equation (19) and (22), we obtain

∫ fk+1

fk

∥

∥

∥

√
Mek

t

∥

∥

∥

2

2
dt ≤ 2

∫ fk+1

fk

µ(xrk
)2

α2

(

eα(t−fk) − 1
)2

dt

+
2‖√MB2‖2

α2 (eατ − 1)
2 ∫ fk+1

fk
‖ws‖2

2 ds.
(23)

Therefore, equation (17) can be further reduced as

∫ fk+1

fk
V̇ dt ≤ 2

∫ fk+1

fk

µ(xrk
)2

α2

(

eα(t−fk) − 1
)2

dt

+

(

γ2 +
2‖√MB2‖2

α2 (eατ − 1)
2

)

∫ fk+1

fk
‖wt‖2

2 dt

−β2
∫ fk+1

fk
‖xt‖2

2 dt −
∫ fk+1

fk
xT

rk
Nxrk

dt.

(24)

Applying equation (8) in equation (24), we obtain
∫ fk+1

fk
V̇ dt ≤ −β2

∫ fk+1

fk
‖xt‖2

2 dt

+

(

γ2 +
2‖√MB2‖2

α2 (eατ − 1)
2

)

∫ fk+1

fk
‖wt‖2

2 dt.
(25)

Summarizing k in both sides of the inequality above from

0 to ∞ , we obtain
∫∞
0

V̇ dt ≤ −β2
∫∞
0

‖xt‖2
2 dt

+

(

γ2 +
2‖√MB2‖2

α2 (eατ − 1)
2

)

∫∞
0

‖wt‖2
2 dt,

which is sufficient to show that the sampled-data system is

finite-gain L2 stable from w to x with a gain less than η.

Proof: [Proof of Theorem 3.4] By the assumption, M
defined in equation (6) has full rank. As a result, N also has

full rank and M ≥ N > 0. Therefore, by the definition of

L1 in equation (14), we have

L1(xrk
) ≥ 1

α
ln

(

1 +
α
√

λmin(N)
√

2λmax(AT
clMAcl)

)

> 0,
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which guarantees that equation (13) is well-posed.

Notice that equation (13) implies

2µ(xrk
)2

α2

(

eα(rk+1−rk) − 1
)2 − xT

rk
Nxrk

≤ 0, (26)

which, with rk = fk, implies

0 ≥ 2µ(xrk
)2

α2

(

eα(s−fk) − 1
)2 − xT

rk
Nxrk

(27)

for all s ∈ [fk, fk+1). Therefore, integrating both sides of

this inequality on s over [fk, fk+1) implies that satisfaction

of equation (8). Since the hypotheses in lemma 3.2 are

satisfied, we can conclude that the sampled-data system is

finite-gain L2 stable from w to x with a gain less than η.

Proof: [Proof of Theorem 4.1] Let Φ1 =
{

t ∈ [rk, fk)|
∥

∥

∥

√
Mek

t

∥

∥

∥

2
= 0
}

. The time derivative of
∥

∥

∥

√
Mek

t

∥

∥

∥

2
for t ∈ [rk, fk)\Φ1 satisfies

d
dt

∥

∥

∥

√
Mek

t

∥

∥

∥

2
≤ α

∥

∥

∥

√
Mek

t

∥

∥

∥

2
+ ν(xrk

, xrk−1
)

+
∥

∥

∥

√
MB2

∥

∥

∥
‖wt‖2 ,

where the righthand sided derivative is used when t = rk.

Using standard comparison principle on the preceding

equation over the interval t ∈ [rk, fk) with the initial

condition

∥

∥

∥

√
Mek

rk

∥

∥

∥

2
= 0, we have

∥

∥

∥

√
Mek

t

∥

∥

∥

2
≤ ν(xrk

,xrk−1
)

α

(

eα(t−rk) − 1
)

+
∫ t

rk
eα(t−s)

∥

∥

∥

√
MB2

∥

∥

∥
‖ws‖2 ds

(28)

for all t ∈ [rk, fk) because

∥

∥

∥

√
Mek

t

∥

∥

∥

2
= 0 for all t ∈ Φ1.

Following the similar analysis in the proof lemma 3.2 with

the initial condition at t = fk given in (28), we have
∥

∥

∥

√
Mek

t

∥

∥

∥

2
≤ eα(t−fk) ν(xrk

,xrk−1
)

α

(

eαDk − 1
)

+eα(t−fk)
∫ fk

rk
eα(fk−s)

∥

∥

∥

√
MB2

∥

∥

∥
‖ws‖2 ds+

µ(xrk
)(eα(t−fk)−1)

α
+
∫ t

fk
eα(t−s)

∥

∥

∥

√
MB2

∥

∥

∥
‖ws‖2 ds

holds for all t ∈ [fk, fk+1) since

∥

∥

∥

√
Mek

t

∥

∥

∥

2
= 0 for all

t ∈ Φ2. By squaring both sides of the preceding equation,

we obtain
∥

∥

∥

√
Mek

t

∥

∥

∥

2

2
≤ 4e2α(t−fk) ν(xrk

,xrk−1
)2

α2

(

eαDk − 1
)2

+4e2α(t−fk)
(

∫ fk

rk
eα(fk−s)

∥

∥

∥

√
MB2

∥

∥

∥
‖ws‖2 ds

)2

+4
µ(xrk

)

α2

(

eα(t−fk) − 1
)2

+4
(

∫ t

fk
eα(t−s)

∥

∥

∥

√
MB2

∥

∥

∥
‖ws‖2 ds

)2

(29)

holds for all t ∈ [fk, fk+1). By equation (15) and (16), we

have fk+1 − fk ≤ τ1 + τ2. Therefore, equation (16) implies

4e2α(t−fk) ν(xrk
,xrk−1

)2

α2

(

eαDk − 1
)2 ≤ 1

2xT
rk

Nxrk
+ δk

(30)

holds for all t ∈ [fk, fk+1). Again, by equation (15) and

(16), we have fk+1 − fk ≤ L2(xrk
), which implies

4
µ(xrk

)2

α2

(

eα(t−fk) − 1
)2 ≤ 1

2xT
rk

Nxrk
(31)

for t ∈ [fk, fk+1). Applying (30) and (31) into (29) yields
∥

∥

∥

√
Mek

t

∥

∥

∥

2

2
≤ xT

rk
Nxrk

+ δk

+4
(

∫ t

fk
eα(t−s)

∥

∥

∥

√
MB2

∥

∥

∥
‖ws‖2 ds

)2

+4e2α(t−fk)
(

∫ fk

rk
eα(fk−s)

∥

∥

∥

√
MB2

∥

∥

∥
‖ws‖2 ds

)2

(32)

for all t ∈ [fk, fk+1). By lemma 3.1, we know

V̇ ≤ −β2 ‖xt‖2
2 + γ2 ‖wt‖2

2 +
(

ek
t

)T
Mek

t − xT
rk

Nxrk
(33)

holds for all t ∈ [fk, fk+1) with V (x) = xT Px. Applying

equation (32) into the preceding inequality and integrating

both sides of the inequality on t over [fk, fk+1) yields
∫ fk+1

fk
V̇ dt ≤

∫ fk+1

fk
4(
∫ t

fk
eα(t−s)

∥

∥

∥

√
MB2

∥

∥

∥
‖ws‖2 ds)2dt

+
∫ fk+1

fk
4e2α(t−fk)(

∫ fk

rk
eα(fk−s)

∥

∥

∥

√
MB2

∥

∥

∥
‖ws‖2 ds)2dt

−β2
∫ fk+1

fk
‖xt‖2

2 dt + γ2
∫ fk+1

fk
‖wt‖2

2 dt +
∫ fk+1

fk
δkdt

≤ 4‖√MB2‖2

α2

(

eα(τ1+τ2) − 1
)2 ∫ fk+1

fk
‖ws‖2

2 ds

+
(e2α(τ1+τ2)−1)(e2ατ2−1)‖√MB2‖2

α2

∫ fk

fk−1
‖ws‖2

2 ds

−β2
∫ fk+1

fk
‖xt‖2

2 dt + γ2
∫ fk+1

fk
‖wt‖2

2 dt +
∫ fk+1

fk
δkdt.

Summarizing k in the inequality above from 0 to ∞ yields
∫∞
0

V̇ dt ≤ −β2
∫∞
0

‖xt‖2
2 dt + (τ1 + τ2)

∑∞
k=0 δk

+β2η̂2
∫∞
0

‖ws‖2
2 ds.

(34)

Since
∑∞

k=0 δk ≤ ∞, the inequality above is sufficient to

show the sampled-data system is finite-gain L2 stable from

w to x with an induced gain less than η̂.
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