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Abstract— Miniature Air Vehicles (MAVs) are often used
for low altitude flights where unknown obstacles might be
encountered. Path planning and obstacle avoidance for MAVs
involve planning a feasible path from an initial state to a
goal state while avoiding obstacles in the environment. This
paper presents a vision-based local multi-resolution mapping
and path planning technique for MAVs using a forward-looking
onboard camera. A depth map, which represents the time-
to-collision (TTC) and bearing information of the obstacles,
is obtained by computer vision algorithms. To account for
measurement uncertainties introduced by the camera, a multi-
resolution map in the body frame of the MAV is created in
polar coordinates. Using the depth map, the locations of the
obstacles are determined in the multi-resolution map. Dijkstra’s
algorithm is employed to find a collision-free path in the body
frame. The simulation and flight test results show that the
proposed technique is successful in solving path planning and
multiple obstacles avoidance problems for MAVs.

I. INTRODUCTION

Miniature Air Vehicles (MAVs) have the potential to

perform tasks that are too difficult or dangerous for human

pilots. For example, they can monitor critical infrastructure

and real-time disasters, perform search and rescue, and

perform in-storm weather measurements [1]. For many of

these applications, MAVs are required to navigate in urban or

unknown terrains where obstacles of various types and sizes

may hinder the success of the mission. MAVs must have

the capability to autonomously plan paths that do not collide

with buildings, trees or other obstacles. Therefore, the path

planning and obstacle avoidance problems for MAVs have

received significant attention [1][2].

The general framework for the MAV path planning prob-

lem can be described as follows: given a description of the

environment, find a feasible path between two configurations

in the environment that does not result in a collision with

any obstacles. The path planning problem can be grouped

into global path planning and local path planning. Global

path planning requires complete knowledge about the envi-

ronment and a static terrain. In that setting a feasible path

from the start to the destination configuration is generated

before the agent starts its motion [3]. Therefore, global path

planning is pre-mission planning and can be formulated as

an optimization problem. The global path planning problem

has been addressed by many researchers with the two most

Huili Yu is a Ph.D. student in Department of Electrical and Computer
Engineering, BYU, Provo, Utah, huiliyu.yhl@gmail.com

Randy W. Beard is a professor in Department of Electrical and Computer
Engineering, BYU, Provo, Utah, beard@byu.edu

Jeffrey Byrne is jointly appointed with Scientific Systems Company
(jbyrne@ssci.com) and with GRASP Lab, Department of Computer and
Information Sciences, University of Pennsylvania (jebyrne@cis.upenn.edu)

common solutions being roadmap methods and cell decom-

position methods [4]. On the other hand, local path planning

is executed in real-time during the flight. The basic idea

is to first sense the obstacles in the environment and then

determine a collision-free path [1]. This paper focuses on

solving the local path planning problem for an unknown

environment.

Local path planning and obstacle avoidance problems

have been studied in the robotics and Unmanned Air Ve-

hicle (UAV) communities. Reference [3] develops a genetic

algorithm based path planning scheme for local obstacle

avoidance of a mobile robot. However, this method was

only studied and implemented for known environments.

Reference [5] develops a ladar designed for path planning

and obstacle avoidance. Reference [6] develops a forward-

looking ladar to assist a helicopter pilot in obstacle detection

and path planning. A laser range finder is used in [7] to

detect unknown obstacles. Sonar is utilized primarily for

underwater autonomous systems [8]. Many of these sensors

are too heavy to be used on a small UAV.

Alternatively, video cameras are lightweight and inexpen-

sive and fit the physical requirements of small UAVs [1].

Reference [9] presents an obstacle detection methodology

using feature tracking in a forward-looking onboard camera

and develops a path planning algorithm for a small UAV.

However, [9] did not consider the measurement uncertainties

produced by the camera, which increase as the distance from

the UAV increases. Therefore, information about the region

close to the UAV is more reliable than information about

the areas that are far away, thus motivating the use of multi-

resolution mapping and path planning.

There is some work on multi-resolution path planning

schemes for robots and UAVs. To reduce the computational

cost, Reference [10] uses a quadtree decomposition of the

environment to give finer resolution to the areas close to the

boundaries of the obstacles and coarser resolution to the areas

far from the obstacles. Even though it is efficient in many

cases, this quadtree-based decomposition still tends to waste

computational resources because the finer resolution is used

to map the boundaries of all obstacles, regardless of their

distance from the robot. It also fails to take full advantage

of the local information around the robot. Reference [11]

uses high resolution to represent the configuration space that

is in close proximity to the robot and low resolution for

regions far from the robot. This approach concentrates the

planning resource at the beginning part of the path, where

the information about the obstacles is more reliable. Both

[12] and [13] describe path planning algorithms for UAVs
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based on the multi-resolution cell decomposition of the envi-

ronment using wavelets. These algorithms are applicable for

solving the path planning problem for an agent operating in a

partially known environment and the computational cost can

be managed. These algorithms assume that the knowledge of

the environment at the finest level of resolution is available.

Based on that knowledge, the wavelet transform can be

applied to decompose the environment at different levels

of resolution. However, the UAV only has the knowledge

obtained by its sensors and does not likely have knowledge

of the environment at the desired levels of resolution. In

addition, the algorithms in [11]-[13] were only implemented

for the agents operating in known environments.

Based on the suitability of cameras for MAV platforms

and the computational advantage of the multi-resolution path

planning scheme, this paper explores a vision-based local

multi-resolution mapping and path planning algorithm for

MAVs. A single strap-down camera is employed to estimate

the time-to-collision (TTC) and bearing information of the

obstacles. Using computer vision algorithms, we obtain a

depth map at each time step. Based on the depth map, the

locations of the obstacles in the body frame are obtained and

used to create a multi-resolution map in the body frame using

polar coordinates. In the multi-resolution map, we use finer

resolution to represent areas close to the MAV and coarser

resolution to represent areas far from the MAV. We then

apply Dijkstra’s algorithm to the multi-resolution map and

plan collision-free paths in the body frame.

The proposed algorithm can solve the path planning

problem for a MAV operating in an unknown environment.

Instead of building a map in the global frame, we build a

map in the body frame without transforming the camera data

from the body frame to the global frame. The sweet spot

measurement model with Gaussian distribution is utilized to

address the measurement uncertainties produced by a camera

and the multi-resolution mapping scheme is introduced to

reduce the computational cost. We create a multi-resolution

map in polar coordinates that are more compatible with on-

board camera information, thereby allowing the data to be

processed more efficiently. Based on the multi-resolution

map, a path is planned directly in the body frame. We also

solve the data association problem in the body frame.

This paper is organized as follows. Section II describes

the vision-based local multi-resolution mapping in polar

coordinates. In Section III, Dijkstra’s algorithm is applied

to the multi-resolution map for finding a collision-free path.

Section IV provides the simulation and flight test results for

the proposed algorithm.

II. VISION-BASED LOCAL MULTI-RESOLUTION MAPPING

FOR MAVS

In this section, we first describe the localization of the

obstacles in the body frame using their TTC and bearing

measurements. Since camera resolution decreases as range

increases, we present a vision-based local multi-resolution

mapping scheme to reduce the computational complexity. We
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Fig. 1. A 20×20 (in units of pixels) depth map. The gray pixels give the
time-to-collision (TTC) to the obstacle and their positions give the bearing
to the obstacle.

will use polar coordinates in the body frame because this

representation is ideally matched to camera information.

A. Localization of the obstacles in the body frame

Using computer vision algorithms like time-to-collision

methods, a depth map of the obstacles can be obtained [14].

Figure 1 shows a 20×20 (in units of pixels) depth map of a

simulated obstacle. In the depth map, the gray pixels provide

the TTC information, which gives the range information by

multiplying it by the airspeed of the MAV. The positions

of the pixels provide bearing information. For instance, the

pixel at the jth row and the ith column provides the bearing

to the obstacle

η = tan−1

(

i− rx+1
2

f

)

, (1)

θ = tan−1

(

j−
ry+1

2

f

)

,

where η and θ are the azimuth and elevation of the pixel,

rx and ry represent the number of pixels along the horizontal

and vertical directions in the image plane, and f is the

focal length in units of pixels. Note that Eq. (1) is valid

for strap-down cameras. If the camera is gimballed, the

transformation between the gimbal and body frames must

also be considered.

Equation (1) maps all of the gray pixels in the depth map

to the points in the body frame, which are represented by the

spherical coordinates (r,η ,θ ). These points form a region in

the body frame. Therefore, the locations and sizes of the

obstacles can be determined and a map in the body frame

can be created in spherical coordinates. When the MAV rolls,

the obstacles in the image plane rotate by the negative of the

roll angle. Therefore, it is necessary to transform the data

about the locations of the obstacles in the body frame to the

unrolled body frame to create a more accurate map.
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B. Measurement uncertainties

The measurement uncertainties produced by the camera

increase as the distance from the MAV increases. This obser-

vation motivates the use of a cell decomposition of variable

resolution. In the map, the resolution is high in regions

adjacent to the MAV and becomes lower with increasing

distance. The result is significant savings in computational

cost for path planning. The resulting path has high accuracy

in the near term, but loses accuracy toward the end of

the path. We utilize the sweet spot measurement model

with Gaussian distribution described in [15] to represent

the measurement uncertainties. The observation made by the

camera is given by the linear measurement model

z = x + v, (2)

where the measurement noise v is a continuous-time Gaus-

sian random variable with zero mean. We assume that the

covariance matrix R of v has a diagonal structure

R =

[

σr
2 0

0 σb
2

]

. (3)

The variance of the range measurement σr
2 is a function

fr(r) of the range r from the obstacle to the camera. The

variance of the bearing measurement σb
2 is also a function

fb(r) of the range. Accordingly, we use the sweet spot model

σr
2 = fr(r) = a1(r−a2)

2 + a0 (4)

σb
2 = fb(r) = α fr(r),

where a0, a1, a2 and α are model parameters. In this paper,

we let a2 = 0, which implies that the noise is at its minimum

value at the origin of the body frame.

C. Local multi-resolution mapping in polar coordinates

For the vision-based mapping and path planning problem,

the information about the environment is obtained by on-

board cameras. Rectangle cell approximation is not the

most efficient method of representing the information. We

develop a local multi-resolution mapping scheme using polar

coordinates, which are more compatible to the range and

bearing information obtained by the camera and allow the

data to be processed more efficiently. The scheme is based

on the fact that a disk in the (x,y) plane can be mapped

to a rectangle in the (η ,r) plane using the polar transform

x = r cosη and y = r sin η . Using this scheme, we make the

cell decomposition in the bearing-range plane and obtain the

corresponding map in the body frame represented by Fig. 2.

In Fig. 2, three levels of resolution are utilized to describe

the regions at the given distances from the current location

of the MAV. The highest level of resolution is given to the

region close to the origin and the lower levels of resolution

are given to the region far away. For two adjacent resolution

levels, the incremental angles and radii of the sectors at

the higher level of resolution are twice as small as the

incremental angles and radii of the sectors at the lower

level of resolution. The circles represent the obstacles and

the ellipses around them represent the range and bearing
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Fig. 2. The local multi-resolution map in the body frame of the MAV
using polar coordinates. Three levels of resolution are used to describe the
regions at the given ranges from the current location of the MAV. For two
adjacent resolution levels, the incremental angles and radii of the sectors at
the higher level of resolution are twice as small as the incremental angles
and radii of the sectors at the lower level of resolution. The circles represent
the obstacles and the ellipses around them represent the range and bearing
uncertainties.

uncertainties, which decrease as the distances between the

MAV and the obstacles decrease.

D. Data association

When the obstacles leave the field of view of the camera,

their locations cannot be updated by the vision sensor.

Therefore, the locations of these obstacles must be updated

using a propagation model since the camera may observe

them again during the flight. Instead of addressing the data

association problem in the inertial frame, we directly solve

the data association problem in the body frame, which saves

the computational cost of transforming the data in the body

frame to the inertial frame. Figure 3 shows the geometry of

the locations of the MAV and the obstacles at two consecu-

tive time steps in a two dimensional plane, where the vehicle

and body frames at the two time steps are represented by F v
1

(specified by (îv1, ĵv
1, k̂

v
1)), F b

1 (specified by (îb1, ĵb
1 , k̂

b
1)), F v

2

(specified by (îv2, ĵv
2, k̂

v
2)) and F b

2 (specified by (îb2, ĵb
2 , k̂

b
2))

respectively, ψ1 and ψ2 are the heading angles, r1 and r2 are

the ranges to the obstacle, η1 and η2 are the bearings to the

obstacle, dn and de are the distances traveled in the North

and East directions between the two time steps, and B is the

location of the obstacle.

Based on Fig. 3, the locations of the origin of the F v
2

frame and the obstacle with respect to the F v
1 frame are

given by (dn,de,0) and (r1 cos(η1 + ψ1),r1 sin(η1 + ψ1),0)
respectively. Hence, the range and bearing to the obstacle at

the current time step are given by

r2 =

√

(r1 cos(η1 + ψ1)−dn)
2 +(r1 sin(η1 + ψ1)−de)

2

η2 = tan−1

(

r1 sin(η1 + ψ1)−de

r1 cos(η1 + ψ1)−dn

)

−ψ2. (5)
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Fig. 3. The geometry of the locations of the MAV and the obstacle at
two consecutive time steps in a two dimensional plane. The vehicle and
body frames at the two time steps are represented by F v

1 (specified by

(îv1, ĵv
1 , k̂v

1)), F b
1 (specified by (îb1, ĵb

1 , k̂b
1)), F v

2 (specified by (îv2, ĵv
2 , k̂v

2)) and

F b
2 (specified by (îb2, ĵb

2 , k̂b
2)) respectively. The heading angles are given by

ψ1 and ψ2. The ranges to the obstacle are given by r1 and r2 and the
bearings to the obstacle are given by η1 and η2 . The distances traveled in
the North and East directions between the two time steps are given by dn

and de. The location of the obstacle is represented by B.

Using this method, the locations of the obstacles can

be retained in memory and updated as more knowledge

is obtained from the camera data. The data association

algorithm in the body frame is described as Algorithm 1.

Algorithm 1: Data association algorithm

Localize the obstacles retained in memory in the body1

frame at current time step;

for i← 1 to the number of the new obstacles do2

f lag← 0;3

for j← 1 to the number of the obstacles retained4

in memory do

if the distance between the ith new obstacle and5

the jth obstacle retained in memory is less than

a threshold then

Update the information of the jth obstacle6

retained in memory by combining the

information of the ith new obstacle;

f lag← 1;7

break;8

end9

end10

if flag = 0 then11

Store the ith new obstacle to the memory;12

end13

end14

III. PATH PLANNING FOR MAVS

Given the multi-resolution map, a path can be planned for

the MAV to achieve its goal while avoiding the obstacles. In

this section, we use Dijkstra’s algorithm to plan a collision-

free path.

Dijkstra’s algorithm is a graph search algorithm that solves

the shortest path problem for the graph. Based on the cell

decomposition, we consider cells as nodes for the graph and

create the node connectivity to form edges. The connectivity

within the cells at the same level of the resolution is set to

an 8-way neighborhood. Special care must be taken at the

borders between different resolution levels to connect the

neighboring cells.

Dijkstra’s algorithm needs a cost for each edge in the

graph to find an optimal path. We assign the cost function

for each edge based on both the length of the edge and the

risk measure of the ending node of that edge.

Let F and O be the free and occupied spaces in the

environment and let C = {x1,x2, · · · ,xn}, where n is the

number of cells in the environment and xi = (xi,yi), i =
1,2, · · · ,n is the center location of the ith cell. Suppose that

x ∈ C and y ∈ O . The risk measure of the ith cell can be

computed as

rm(xi) =

{

(dmax−miny∈O‖xi−y‖2)/dmax xi ∈F

1 xi ∈ O
, (6)

where dmax , maxx∈C miny∈O‖x−y‖2.

The cost function J(u,v) = rm(v) + wdist(u,v), which

combines the risk measure and the Euclidean distance be-

tween the neighboring nodes, is assigned to the edge from

node u to v , where the term rm(v) penalizes the risk measure

of node v and the term dist(u,v) penalizes the distance

between the nodes u and v. The parameter w≥ 0 is a positive

weight. Using the cost function J(u,v), Dijkstra’s algorithm

is employed to find a collision-free path. The path is optimal

from the current location of the MAV to the goal based on

the current map in the body frame.

The path generated by Dijkstra’s algorithm includes a

series of waypoints and may not be feasible due to the

kinematic constraints of the MAV. Algorithm 2 generates a

smoothed path for the MAV to track.

Algorithm 2: Path smoothing algorithm

Obtain the input waypoint list Win = {win
1 ,win

2 , · · · ,win
n }1

from Dijkstra’s algorithm;

Allocate memory for the output waypoint list Wout to2

store the waypoints for the smoothed path;

Set win
1 in Win as the current waypoint;3

Insert the current waypoint to Wout ;4

i← n;5

while i≥ the index of current waypoint + 1 do6

if there do not exist collisions between the current7

waypoint and the ith waypoint then

Set the ith waypoint as the current waypoint;8

Insert the current waypoint to Wout ;9

i← n;10

end11

else12

i← i−1;13

end14

end15
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IV. RESULTS

A. Simulation results

The feasibility of the method was tested using a simulation

environment developed in MATLAB/SIMULINK. This sim-

ulator uses a six degree-of-freedom model for the aircraft.

The coordinate system is represented by NED (North-East-

Down) system. The MAV was commanded to continuously

maneuver through sixteen 16m× 10m× 100m obstacles be-

tween the waypoint S (0,100,-40) and the waypoint E

(700,500,-40), which are represented by the square and the

plus sign in Fig. 5 respectively. A 20x20 pixel depth map was

used with the weight constant w = 0.005. The parameters for

the sweet spot measurement model were set at a0 = 0.1528,

a1 = 0.001, a2 = 0 and α = 0.00002.

Using the proposed algorithm, the three levels of reso-

lution map in the body frame using polar coordinates is

shown in Fig. 4. At the three levels of resolution, the

incremental angles of cells are 11.25◦, 22.5◦, and 45◦, and

the incremental radii are 8m, 16m and 32m respectively. The

ellipses represent the estimated locations and sizes of the

obstacles. Figure 4 also shows the update of the map and

the evolution of the corresponding optimal path as more and

more obstacles are observed. Figure 4(a) shows the map and

the corresponding path at time step t = 18s and the location

of the MAV in the inertial frame at that time. Figure 4(b)

shows the map and the path at time step t = 22s. In Fig.

4(b), the predicted path is very close to an obstacle. This

is due to the fact that the MAV does not have complete

information about that obstacle at that time. As the MAV

gets closer to the obstacle, new information is observed and

the path is replanned, which is shown in Fig. 4(c). Figure

4(d) and (e) show the map and the path to the waypoint E

in the body frame at time step t = 42s and t = 62s, which is

represented by the plus sign. The final path followed by the

MAV between the two waypoints is shown in Fig. 5.

B. Flight test results

We conducted flight test using a MAV with a wing span of

48 inches. The Kestrel autopilot from Procerus Technologies

navigated the MAV with control of roll, pitch and yaw

[16][17]. The guidance law was processed in MATLAB

on the ground station and roll commands transmitted to

the autopilot. Three obstacles were simulated in MATLAB

on the ground station and their locations were set as (-

80,10), (-150,10) and (-100,80) respectively. The MAV was

commanded to maneuver through the three obstacles from

West to East at an altitude of 25 meters. The MAV had no

a priori information about the locations of the obstacles. A

GPS telemetry plot of the results is shown in Fig. 6. As

the MAV approached the obstacles, the proposed algorithm

generated a path around the obstacles and the MAV began to

track the generated path. As the MAV passed the obstacles,

it once again began to track the original waypoint path.

The MAV successfully avoided the obstacles without human

intervention.
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Fig. 4. The update of the multi-resolution map and the evolution of the
path. Figures on the left show the predicted path based on the available
information about the obstacles at different time steps. The ellipses represent
the estimated locations and sizes of the obstacles and the plus signs in both
subfigures (d) and (e) represent the waypoint E in the body frame. Figures
on the right show the inertial path followed by the MAV.
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Fig. 5. The final path followed by the MAV between the waypoints S

(square) and E (plus sign).

Fig. 6. Flight test results plot of a MAV avoiding three obstacles with a
planned path through the obstacles. The three squares represent the three
obstacles.

V. CONCLUSIONS

In this paper we present a vision-based local multi-

resolution mapping and path planning technique for MAVs

operating in unknown environments. The multi-resolution

representation of the environment is used. The higher res-

olution is given to areas close to the MAV and the lower

resolution is given to areas which are far away. This tech-

nique is motivated by the observation that the measurement

uncertainties produced by the camera increase as the distance

from the MAV increases. The local multi-resolution map

is created in polar coordinates, which are more compatible

to on-board camera data. The measurement uncertainties

are addressed using the sweet spot measurement model

with Gaussian distribution. The data association problem is

directly solved in the body frame without transforming the

data between the body and inertial frames. Using Dijkstra’s

algorithm, the path is planned in the body frame.

In this work, we use polar coordinates to create the

multi-resolution map for addressing the two dimensional

path planning problem. In the future, we will use spherical

coordinates to create multi-resolution maps that address the

three dimensional path planning problem.
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