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Abstract— The collaboration between a human operator and a

robotic manipulator for performing a joint task is the main topic

of this article. One of the most common tasks involves transporting

and positioning a load. The proposed control strategy allows the co-

manipulation of loads with unknown, time-varying mass. The control

algorithm is of a cyclic nature, where each cycle is subdivided into

two stages. The first phase is the estimation of the human force, since

the only connection between the robot and the human is via the load.

In the second phase, a scaled version of the estimated human force is

applied to the load. The proposed approach is illustrated by means of

simulation results for a two-link robot manipulator.

I. INTRODUCTION

In some human activities, such as those at building sites, in

logistics, medical care and agriculture, human workers have to move

a load between two points. In many cases, this load is too heavy

for a human to transport; therefore the use of a robotic manipulator

to aid the human operator seems natural. On the other hand, the

human intelligence is essential in performing the positioning task

(path planning and control) and the direct interaction with the

environment; therefore the human operator is a desirable factor in

the loop.

The use of a crane-like robot which is teleoperated from a cockpit

is a possible solution, but this kind of setup has disadvantages

concerning the costs and the space such a robot will occupy. A

more elegant solution is to let the human and the robot manipulate

the load together in order to achieve the common positioning goal.

For this reason the robot must, firstly, determine the force that

the human applies to the load and, secondly, amplify it. Note

that mounting force sensors on the end effector of the robot is

not feasible since the human operator will typically interact with

the load directly (and not with the robot end-effector). Various

strategies have been considered for such force-sensor-less control

schemes which estimate the human force. [1] proposes an adaptive

disturbance observer scheme, while [2] uses a set of tests for

model identification to tune the disturbance observer. [3] and [4]

propose a H∞ estimation algorithm. The problem of cooperative

motion control by a human and a robot is tackled in [5] using the

”interactive virtual impedance”. In [6], a discussion on the state of

the art in force-sensor-less power assist control is presented with an

emphasis on the estimation of the human force using linear models

for the robot with the load. All the control strategies discussed

above assume more or less a perfect knowledge of the dynamics

of the robot with the load, i.e. the mass of the load is considered

known, or with very small uncertainty, and constant.

The current study, which extends a result presented in [7], intro-

duces a control strategy for a robotic device that amplifies the

human force. As mentioned before, the robot does not have any
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direct coupling with the human operator except via the load, i.e. the

robot is supposed to help the human operator by scaling the force

the human applies to the load. Here we face two problems: Firstly,

the robot should amplify the human force, which is unknown.

Namely, the force of the human operator can not be measured

because the robot is in contact only with the load, while the human

also acts only on the load. This means that the human force has to

be estimated. Secondly, in many cases the human deals with loads

of different mass, which are also generally unknown and could

also be time-varying. We emphasize here that the estimation of

the human force using an inverse dynamics model together with

measurements of the encoders in the robot joints (see [2], [6]) is

not feasible in our problem setting since the mass of the load is

unknown. This study focuses on designing a control strategy which

can solve both problems simultaneously without using an adaptive

control algorithm which present high computational complexity and

many parameters to be chosen and tuned. Moreover, our algorithm

is robust for large uncertainties in mass of the load.

This paper is structured as follows: The problem statement is

discussed in Section III. The controller design dealing with the

issues of unknown operator force and unknown time-varying loads

is proposed in Section IV. In Section V, the effectiveness of this

method is illustrated by application to a two-link robot manipu-

lator. In the final section of this paper, the conclusions and some

perspectives on future research are discussed.

II. PRELIMINARIES

In this section, we recall some definitions and results concerning

the property of input-to-state stability as introduced by Sontag in

[8], see also [9]. The input-to-state stability property of nonlinear

systems is exploited in the proof of the main result of this article.

Consider the general nonlinear system:

ẋ(t) = f (x(t),u(t)), x(0) = x0, (1)

with solutions ϕ(t,x0,u), where f : R
n × R

m → R
n is continu-

ously differentiable. The set of all the measurable locally bounded

functions u : R
+ → R

m, endowed with the supremum norm

sup{|u(t)|, t ≥ 0} ≤ ∞ is denoted as Lm
∞. A function γ : R

+ → R
+

is called a class K -function, i.e. γ ∈K , if it is continuous, strictly

increasing and γ(0) = 0. A function γ : R
+ → R

+ is called a

class K∞-function if γ ∈ K and γ(s) → ∞ as s → ∞. A function

β : R
+×R

+ →R
+ is a class K L -function if for each fixed t ≥ 0,

β (·, t) ∈ K and for each fixed s ≥ 0, β (s, t) is decreasing to zero

as t → ∞. The concept of input-to-state stability introduced in [8]

states that system (1) is input-to-state stable (ISS) if there exist a

function β ∈K L and a function γ ∈K∞ such that, for each input

u ∈ Lm
∞, all the initial values x0 and for any t ≥ 0 the inequality

|ϕ(t,x0,u)| ≤ β (|x0|, t)+ γ(sup0≤τ≤t |u(τ)|) holds.

Definition 1: [8] A smooth function V : R
n → R is called an

ISS Lyapunov function for system (1) if there exist the functions

α1,α2 ∈ K∞, α3,χ ∈ K such that

α1(|x|) ≤V (x) ≤ α2(|x|) (2)
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and

|x| ≥ χ(|u|) ⇒ V̇ (t) ≤−α3(|x|) (3)

hold for any x ∈ R
n and u ∈ R

m.

The quantitative aspects regarding the existence of an ISS Lyapunov

function have been developed in [8] and [10]. These results are

synthesized by the following theorem:

Theorem 1: If an ISS Lyapunov function exists for system (1),

then the system (1) is input-to-state stable with β (·, t) = α−1
1 ◦

µ(α2(·), t) (where ◦ is the function composition operator) and

γ = α−1
1 ◦α2◦χ , where µ is the solution of the differential equation:

d

dt
µ(r, t) = −α3 ◦α−1

2 (µ(r, t)) (4)

with the initial condition µ(r,0) = r.

III. PROBLEM FORMULATION

The problem tackled here is robot-assisted load carrying by

human operators. The main goal of the robot is to scale the force

that the human operator applies to the mass. In that way, the human

will ’feel’ a load with lower mass but will still be in charge of the

position control of the load. When designing a robot control scheme

for this purpose we face the following problems:

• The mass of the load is unknown and possibly time-varying.

Applications with time-varying mass can be encountered in

the case of dispersing liquids from a container (e.g. painting

or concrete pouring on building sites);

• The force that the human operator applies is unknown, since

there are no force sensors on the load; the human operator is

in direct contact with the load to be transported. The only

measurements available are the position coordinates of the

robot links.
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Fig. 1. Problem Setup.

In Figure 1, we present the problem setup in more detail. The human

operator has a desired trajectory xd (in Cartesian coordinates of the

load) in mind and establishes a position control strategy H so that,

using the (visual) feedback loop, he can achieve the positioning

goal. Using this strategy, the human operator will apply the force

FH to the load with the time-varying mass m(t). The problem is

that in many applications the mass is too heavy for the human to

transport or the speed achieved is too low. The assisting robotic

device with the load m(t) is represented by the dynamic block

ΣRm. The controller C, which will be developed in the next section,

estimates the human force, FH , by F̂H , using the measurements of

the motor encoders from the joints of the robot. This estimated force

is amplified by a factor Φ and the resulting force is applied to the

load, thereby amplifying the human operator power. The block FK

represents a forward kinematics block from the joint coordinates to

Cartesian coordinates.

IV. MAIN RESULT

The unknown variables in the problem discussed in the previous

section are the mass of the load and the human operator’s force.

The only measurements available are the joint coordinates of the

robotic device. Using this partial information, we have to estimate

the human force and the robot should apply an additive force which

scales the human force. As the available measurements do not allow

a direct control strategy due to unknown parameters and signals (a

force control is dependent on the mass of the load), we propose to

tackle the problem in two temporal steps:

1) Estimate the human operator force;

2) Apply the scaled force.

time

Robot 
Force

TT0

F

ΨFH

estimation
phase

amplification
phase

Fig. 2. Temporal division of the control strategy.

The question which arises is how to obtain this temporal division

in the algorithm (see Figure 2). In this respect, it is important to

note the difference between the frequencies with which a human

operator and the robot can perform their tasks. Studies [11] and [12]

have shown that a human can perform a task with a frequency of up

to 6Hz, which is much slower than the typical sampling frequency

used in a robotic control scheme. This means that if the frequency

with which the two steps of our procedure are implemented is

significantly higher than 6Hz, then the robotic device can correctly

track the force of the human operator and apply the scaled force to

achieve its goal.

The force generated by the robot is a signal similar to a Pulse Width

Modulation (PWM) signal. Such an input signal generates a series

of accelerations and decelerations with a frequency of 1
T , with T the

length of a cycle. This frequency should be set above the maximal

frequency that a human can perceive to avoid that the operator

feels a possibly disturbing vibration induced by the algorithm. In

[11], it has been shown that a human subject can feel a vibrating

object with frequencies up to 300Hz. Unfortunately, no research has

been done for the perception of signals other than sinusoidal ones.

Moreover, human perception greatly depends on the amplitude of

the vibration since for higher amplitudes the perception limit is

300Hz, while for lower amplitudes the sensitivity limit decreases

to 40Hz. This information should also be taken into consideration

when choosing the cycle period T .

The second issue of this design is to determine the real amplifica-

tion coefficient, Ψ (see Figure 2). Since the desired amplification

coefficient is Φ, which relates to the entire period of the cycle

T , we must determine a new scaling coefficient Ψ because the

amplification period lasts only for T −T0. Assuming that the effect

of the robot action should be the same in both cases, i.e. the average

robot force is the same during one cycle period, one can determine

the scaling factor Ψ.

Next, the algorithm for the estimation of the human force is

discussed in Section IV-A, whereas the algorithm effectuating the

amplification of the human force is presented in Section IV-B.

A. Human Force Estimation

Consider the nonlinear system dynamics of a robot with an

additional load of unknown, and possibly time-varying, mass m(t)
at its end-effector, which are described by:

M(q, t)q̈+D(q, q̇, t) = τ + JT (q)FH , (5)

where q ∈ R
n is the vector of generalized joint displacements, q̇ ∈

R
n is the generalized joint velocity vector, q̈∈R

n is the generalized

joint acceleration vector, τ ∈R
n is the robot torque vector, FH ∈R

d

is the human operator’s force vector (d is the space dimension,

d = 2 for 2D or d = 3 for 3D), M ∈R
n×n is the symmetric, positive
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definite inertia matrix, D ∈ R
n is the vector containing the sum of

centripetal, Coriolis, friction and gravitational forces/torques and

J ∈ R
n×d is the Jacobian matrix relating the end-effector velocity

ẋ ∈ R
d to the generalized joint velocity q̇ by ẋ = J(q)q̇.

For the sake of simplicity, we adopt the following assumption:

Assumption 1: The Jacobian matrix J is nonsingular at all times

of operation.

Remark 1: The above assumption implies that we do not con-

sider redundant robots, i.e. d = n, and no kinematic singularities

are encountered.

ΣRm
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Fig. 3. Human Force Estimation Scheme.

The objective of this phase is to determine an estimate of the

human force, F̂H ∈ R
n. Hereto, we design an estimation controller

strategy as schematically depicted in Figure 3, where the controller

Clin compensates for the robot dynamics without the load and the

controller C estimates the human force F̂H , with τ = τlin + τ̃ , where

τlin and τ̃ are the outputs of the controllers Clin and C, respectively.

Assuming the system can be linearly parameterized with respect

to the time-varying mass m(t) of the load (the inertial, the grav-

itational, the centripetal, the Coriolis and the friction forces are

typically linear with respect to the mass m(t)), then (5) can typically

be written as:

MR(q)q̈+DR(q, q̇)+m(t)PM(q̈, q̇,q) = τ + JT (q)FH , (6)

where MR and DR contain the information concerning the robot

dynamics without the end-effector load, m(t) is the unknown mass

of the load and PM represents the remaining terms which depend

on the mass of the load.

The controller Clin is designed based on the idea of partial feedback

linearization:

τlin = MR(q)q̈+DR(q, q̇). (7)

Introducing relation (7) in (5) leads to:

m(t)PM(q̈, q̇,q) = τ̃ + JT (q)FH , (8)

where PM and J are known and we have to design τ̃ , the output

of controller C, such that, independent of the magnitude of the

unknown mass of the load, estimation of the human force FH can

be achieved. Here, we assume that m(t) ∈ [Mmin,Mmax], ∀t ∈ R
+.

By defining F̂ := J−T τ̃ , relation (8) can be written as:

m(t)J−T (q)PM(q̈, q̇,q) = F̂ +FH . (9)

If we define η(p) := J−T (q)PM(q̈, q̇,q), with p > 1 a constant integer

and η(p) denoting the pth time-derivative of η , then equation (9)

is equivalent to the linear differential equation:

m(t)η(p) = F̂ +FH . (10)

If we consider the controller strategy:

F̂ = −
p

∑
i=0

Kiη
(i)

, (11)

with Ki = diag
(

Ki,1, . . . ,Ki, j, . . . ,Ki,n

)

∈ R
n×n, i = 0, . . . , p, then

the output F̂H = K0η represents the estimated human force. The

choice of parameters Ki should be made such that Ki ≥ 0, for

i = 0,1, . . . , p−1 and m(t)In +Kp > 0 for all m(t) ∈ [Mmin,Mmax],
where In is the n×n identity matrix. The control strategy is depicted

in Figure 4 using a chain of p integrators. Due to the diagonal

structure of the matrices Ki, i = 0, . . . , p, relation (10) can be written

as a juxtaposition of equations:

m(t)η
(p)
j = −

p

∑
i=0

Ki, jη
(i)
j +FH, j, (12)

where η j and FH, j , j = 1, . . . ,n, are the jth components of the

vector η and the human force vector FH , respectively. This means

that system (10) can be seen as a decoupled system where the input

FH, j only affects η j and its time-derivatives.

In Figure 4, a block diagram of the estimation controller is

FH J-TPM

K0 K1 Kp-1 Kp

-

+

JT

F

ΣRm

q,q,q

FH

+ Clin

C

τlin

τ~

JT

+

+

τ
Σ

η(p)

-

--

. ..

x1x1xp-1xp

.

Fig. 4. Human Force Estimation Controller.

presented. For each of the decoupled differential equation in (12),

we can write the state-space representation of the single input-single

output system as:


































































































ẋ j(t) =



















− Kp−1, j

m(t)+Kp, j
. . . . . . . . . − K0, j

m(t)+Kp, j

1 0 . . . 0 0

0
. . .

. . .
...

...

...
. . .

. . . 0
...

0 . . . 0 1 0



















x j(t)

+



















1
m(t)+Kp, j

0

...

...

0



















u j(t)

y j(t) = K0, jx
j
p(t),

(13)
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where u j = FH, j is the jth component of the human force vector,

FH , the input of the system, x j = (η
(p−1)
j , . . . ,η j)

T is the state

vector and y j = F̂H, j is the jth component of the estimated force,

the output of the system. Note that the desired behavior for system

(13) is y j(t) → u j(t) as t → ∞.

Let us now define the estimation error e j := u j − y j and the new

state vector ε j := (ε
j

1 , . . . ,ε
j
p)

T := (e j, ė j, . . . ,e
(p−1)
j )T containing

the estimation error and its derivatives. Rewriting system (13) in

terms of this new state variable ε j , leads to:

ε̇ j = A j(t)ε j +B j(t)v j(t), j = 1, . . . ,n, (14)

where

A j(t) :=



















0 1 0 . . . 0

...
. . .

. . .
. . .

...

...
. . .

. . .
. . . 0

0 . . . . . . 0 1

− K0, j

m(t)+Kp, j
. . . . . . . . . − Kp−1, j

m(t)+Kp, j



















, B j(t) :=



















0 . . . . . . 0

... . . . . . .
...

... . . . . . .
...

0 . . . . . . 0
K1, j

m(t)+Kp, j
. . .

Kp−1, j

m(t)+Kp, j
1



















and v j(t) := (u̇ j, . . . ,u
(p)
j )T .

The following technical result shows that the error dynamics (14)

are input-to-state stable (ISS) with respect to v j(t), which also

implies the global uniform asymptotic stability (GUAS) of ε j = 0

for constant u j(t), i.e. v j(t) = 0, for m(t) ∈ [Mmin,Mmax], ∀t.

Theorem 2: Consider systems (14). If there exist matrices Pj =
PT

j > 0 and scalars ρ j > 0, j = 1, . . . ,n, such that the following

linear matrix inequalities (LMIs) are satisfied:

PjA
j
i +

(

A
j
i

)T
Pj ≤−ρ jPj, i ∈ {1,2} and j ∈ {1, . . . ,n} , (15)

with

A
j
1 =

(

0 I

−K0, jα
j . . . −Kp−1, jα

j

)

, (16)

A
j
2 =

(

0 I

−K0, jα j . . . −Kp−1, jα j

)

(17)

and α j = 1
Mmax+Kp, j

, α j = 1
Mmin+Kp, j

, then the systems (14) are ISS

with respect to the input v j(t) for each j ∈ {1, . . . ,n}. In particular,

functions β j and γ j (see Theorem 1) are respectively given by:

β j(r, t) =

√

√

√

√

λ
j

max

λ
j

min

re−
ρ j

4
t (18)

and

γ j(r) =
4

ρ j

λ
j

max

λ
j

min

r, (19)

where λ
j

min = min(eig(Pj)) and λ
j

max = max(eig(Pj)).

Proof: Let α j(t) = 1
m(t)+Kp, j

∈ [α j,α j], j = 1, . . . ,n. Then

α j(t) = λ j(t)α j + (1− λ j(t))α j , j = 1, . . . ,n, with 0 ≤ λ j(t) ≤
1,∀t ≥ 0. Hence the time-varying matrix A j(t) can be written as a

convex combination of two matrices A
j
1 and A

j
2:

A j(t) = λ j(t)A
j
1 +(1−λ j(t))A

j
2,∀t ∈ R

+, j = 1, . . . ,n, (20)

with A
j
1 and A

j
2 as in (16) and (17), respectively, and λ j(t) ∈ [0,1].

Since ∃Pj = PT
j > 0 and ρ j > 0 such that (15) is satisfied, it

holds that PjA
j(t) +

(

A j
)T

(t)Pj = Pj(λ
j(t)A

j
1 + (1− λ j(t))A

j
2) +

(λ j(t)
(

A
j
1

)T
+(1−λ j(t))

(

A
j
2

)T
)Pj = λ j(t)(PjA

j
1 +

(

A
j
1

)T
Pj)+

(1 − λ j(t))(PjA
j
2 +

(

A
j
2

)T
Pj) ≤ −λ j(t)ρ jPj − (1 − λ j(t))ρ jPj =

−ρ jPj .

Let us define |x|P :=
√

xT Px and consider the candidate ISS

Lyapunov functions V j = 1
2 |ε j|2Pj

. The time-derivative of V j along

the solutions of (14) satisfies:

V̇ j =
1

2

(

ε j
)T

(PjA
j(t)+

(

A j(t)
)T

Pj)ε
j +

(

ε j
)T

PjB
j(t)v j(t).

(21)

Let v j(t) := B j(t)v j(t). Then using the LMIs (15), (21) can be

written as:

V̇ j ≤−1

2
ρ j|ε j|2Pj

+ |ε j|Pj
sup

t∈R+

|v j(t)|Pj
(22)

⇒ V̇ j ≤−1

4
ρ j|ε j|2Pj

+ |ε j|Pj
(−1

4
ρ j|ε j|Pj

+ sup
t∈R+

|v j(t)|Pj
), (23)

which means that:

|ε j|Pj
≥ 4

ρ j
sup

t∈R+

|v j(t)|Pj
⇒ V̇ j ≤−1

4
ρ j|ε j|2P. (24)

After straightforward computations, we ultimately arrive at the

following implications:

|ε j| ≥ 4

ρ j

√

√

√

√

λ
j

max

λ
j

min

sup
t∈R

(v j(t)) ⇒ V̇ j ≤−ρ j

4
λ

j
max|ε j|2. (25)

Define the functions:

α
j

1(r) =
λ j

min

2 r2, α
j

2(r) = λ j
max

2 r2,

α
j

3(r) =
ρ j

4 λ
j

maxr2, χ j(r) = 4
ρ j

√

λ j
max

λ j
min

r.
(26)

Then, the solution of the differential equation (4) is: µ(r, t) = re−
γ
2

t .

Using these definitions, Definition 1 and Theorem 1, we can

conclude that system (14) is ISS with the functions β j and γ j

defined as in (18) and (19) respectively.

Corollary 1: Consider system (13) with a constant input u j(t) =
U j . Under the conditions of Theorem 2, the equilibrium point x j =

(0, . . . ,0,
U j

K0, j
)T is global uniformly asymptotically stable (GUAS).

Using Corollary 1, we prove that the system output y(t) → u(t)
when t → ∞, for a constant input signal u(t) and time-varying

parameter m(t) ∈ [Mmin,Mmax], ∀t.

Remark 2: The estimation algorithm provides exact tracking of a

constant human force (see Corollary 1). As the estimation is much

faster than the variation of the human force, we can assume that

the human force is approximately constant during one cycle, which

means that this algorithm can provide a very good approximation

of the input signal.

Theorem 2 shows that for a non-constant human force the esti-

mation error remains bounded and that this bound can be related

to the time-derivatives of the human force via a linear ISS gain

relation (see (19)). Moreover, the function β j(r, t) as in (18) reflects

a bound on the transient convergence of the estimation algorithm.

This knowledge is instrumental in choosing T0 (i.e. the length of

the estimation interval) as the estimation algorithm should reach

sufficient accuracy within this time-slot of the cyclic algorithm, see

Figure 2.
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B. Scaling the human force

Based on the maximal human operation frequency, we can

determine the period T of one cycle of the algorithm, which

includes the estimation stage and amplification stage, see Figure

2. Using the analysis in Theorem 2, one can obtain an upper bound

for the settling time for the estimator (from the expression of the

function β j in (18)). If we consider that the output has settled if the

error has dropped below 5% of the initial value, then the settling

time for function β j as in (18) is given by T
j

s ≥ − 4
ρ j

ln(0.05) =

− 4
ρ j

(−2.9957) ≃ 3 4
ρ j

. The duration of the estimation phase T0 is

chosen to be longer than the maximum settling time for each input-

output channels, i.e. max j=1,...,n

{

3 4
ρ j

}

< T0 < T . This means that

the scaled force is applied for T −T0 during one cycle. The strategy

we proposed in Section III has set a required scaling factor Φ, but

during one cycle the scaled force is applied for only a fraction of

time (T − T0). Therefore, we have to determine the new scaling

factor Ψ, which leads to an overall scaling factor Φ. The human

applies the average force 1
T

∫ (k+1)T
kT

FHdt, over the cycle k. For the

sake of simplicity, we consider the following assumption:

Assumption 2: FH is constant during each cycle, i.e. FH(t) =
FH(kT ), ∀t ∈ [kT,(k +1)T ).

Since 1
T is chosen to be significantly larger than the maximum

frequency of human operator, this is a reasonable assumption. Under

this assumption, the human applies the force FH(kT ) and the robot

should apply the force ΦFH(kT ), presumably with Φ > 0. The robot

applies the force FR, with:

FR(t) =

{

F̂(t), kT ≤ t < kT +T0

ΨF̂H(kT +T0), kT +T0 ≤ t < (k +1)T
. (27)

Under the Assumption 2, systems (13) reach the equilibrium

point (η
(p−1)
j , . . . ,η j)

T = (0, . . . ,0,
FH, j

K0, j
)T . This means that F̂ =

−∑
p
i=0 Kiη

(i) = K0η = −F̂H . Consequently, the average force sup-

plied by the robot is approximately given by:

FR = 1
T (

∫ kT+T0

kT
(−1)F̂H(t)dt +

∫ (k+1)T
kT+T0

ΨF̂H(kT +T0)dt). (28)

where Ψ is the scaling factor we have to determine and we have

ignored the torque corresponding to the controller Clin since the

human force is supposed to move only the load and not the robot

links. Let us suppose that F̂H(kT + T0) = FH(kT + T0), i.e. the

estimation is working, then the right-hand side of relation (28) is

equivalent to:

1

T
(Ψ(T −T0)FH(kT )−

∫ kT+T0

kT
F̂H(t)dt), (29)

where the second term is approximately equal to T0

T FH(kT ). Note

that the lower the settling time for the estimation procedure, the

better the approximation. Using this approximation and the re-

quirement that 1
T

∫ (k+1)T
kT

FRdt = ΦFH(kT ), we obtain the following

equation from which we can determine the scaling factor Ψ:

ΦFH(kT ) =
1

T
(Ψ(T −T0)FH(kT )−T0FH(kT )), (30)

or

Ψ =
ΦT +T0

T −T0
. (31)

The estimation/force scaling algorithm is now fully defined and the

design goals have been reached.

l1,m1,J1

x

y

m(t)

θ1

θ2

τ1

τ2

τHl2,m2,J2

Fig. 5. A two-link robot.

V. ILLUSTRATIVE EXAMPLE

In this section, we will apply the estimation and control design

proposed in the previous section to a two-link robot in the horizontal

plane, see Figure 5. We assume that the links are rigid and the

joints are frictionless. The dynamics of the robot can be described

by equation (6), where

MR =

(

J1 +
m1l2

1

4 +m2l2
1

m2l1l2
2 cos(θ2 −θ1)

m2l1l2
2 cos(θ2 −θ1) J2 +

m2l2
2

4

)

(32)

DR =

(

−m2l1l2
2 θ̇ 2

2 sin(θ2 −θ1)
m2l1l2

2 θ̇ 2
1 sin(θ2 −θ1)

)

(33)

PM =

(

l2
1 θ̈1 + l1l2θ̈2cos(θ2 −θ1)− l1l2θ̇ 2

2 sin(θ2 −θ1)

l1l2θ̈1cos(θ2 −θ1)+ l2
2 θ̈2 + l1l2θ̇ 2

1 sin(θ2 −θ1)

)

(34)

J =

(

−l1sinθ1 −l2sinθ2

l1cosθ1 l2cosθ2

)

. (35)

Herein li, mi and Ji are the length, mass and moment of inertia

about the center of mass of link i, i = 1,2, respectively. Moreover,

m(t) represents the mass of the load.

For simulation purposes, we consider the following parametric

settings: l1 = l2 = 0.6 m, m1 = m2 = 2 kg, J1 = J2 =
m1l2

1

12 = 0.06

kgm2 for the robot links. We assume that the mass of the load

varies between Mmin = 10 kg and Mmax = 50kg by the law m(t) =
40e−

t
2 + 10. Knowing that a human operator can not generate

signals with a frequency greater that 6Hz, the cycle period for our

design is T = 0.01s ( 1
T = 100 ≫ 6).

For the estimation phase, we have chosen only one integrator

(p = 1) per input-output channel with K1 = −5I2 and K0 = 105I2.

We have solved the LMIs (15) for ρ j = 4000 yielding Pj = 1,

j = 1,2. Consequently, the estimation error dynamics (14) is ISS

with respect to v j(t), j = 1,2. Now the ISS result in Theorem 2 pro-

vides an ultimate bound on the estimation error of 4
ρ j

sup(v j(t)) =

0.001sup(u̇ j(t)), j = 1,2. The ISS property also provides some

important insights for the design of the global controller because

it allows to determine the period of the estimation cycle T0. The

function β j , j = 1,2, as in (18), is providing a bound on the

convergence rate for the system: β (r, t) = re−1000t and the settling

time is Ts = max j=1,2

{

3 4
ρ j

}

= 0.003 s. As a consequence we have

chosen T0 = 0.005 s > Ts.

We assume that the desired value for the scaling parameter Φ is 3.

Hence, according to relation (31), Ψ = 7.

We have emulated the human behavior by a Proportional-Derivative

(PD) controller on each input-output channel with a first-order

filter for the frequencies higher than 6Hz and saturation bounds on

the human force level. The ”human” controller on each Cartesian

direction has been emulated by a linear transfer function: H(s) =
Kd(Td s+1)

TPLs+1 =
500(1+s)
0.1s+1 , with saturation at ±100N.

1489



The simulation of the estimation algorithm is presented in Figure

6 for a short time-frame. In this figure, during the amplification

phase we consider that the estimated force is zero (in reality no

estimation is taking place during this interval). One can observe

that the algorithm is tracking accurately the human force for 0.005

seconds, followed by the scaling stage.

The results obtained by the estimation/control algorithm (Human
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Fig. 6. Human Force Estimation.
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force (H), compensation for the robot links dynamics (LC) and

estimation/scaling algorithm (E/S)) are compared with the use of

human force and compensation for the robot links dynamics (H and

LC) only.

This simulation focusses on two important issues of this com-

parison: the end-effector displacement (Figure 7) and the applied

human force (Figure 8). In both cases, the desired set point is

achieved in the same amount of time because we have used the

same PD controller to emulate the human behavior. Concerning

the human force applied, we observe that the only case in which

the PD controller does not saturate is when the estimation/scaling

controller is used. This means that the human does not need to use

the maximal force, i.e. there is a reserve of force which can be used

to achieve the desired set point faster.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we have proposed a control strategy for robots

aiding humans to lift/move heavy loads of unknown, time-varying

mass. We consider situations in which human intelligence is taking

care of both the path planning and position control. Therefore, the

robot should merely amplify the human force, thereby, firstly, aiding

the human speed up its tasks and, secondly, alleviating the human

efforts.

The key issues in tackling this problem are, firstly, the fact that

the mass of the load is unknown and time-varying and, secondly,

the force applied by the human is unknown. Here, we provide a

control /estimation algorithm, which, in a cyclic fashion, firstly,

estimates the currently applied human force and, secondly, applies

an amplified version of this force. The algorithm can provide a

preset amplification of the human force for a range of unknown

masses. The proposed strategy is illustrated by application to a two-

link robotic example.
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