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Abstract— This paper studies consensus problems of multiple
second-order agents with time-varying topology. It is assumed
that each possible interaction topology is strongly connected and
balanced and each agent can only obtain the measurements
of its position relative to its neighbors. A feasible protocol
is proposed, and by applying the linear matrix inequality
technique and the common Lyapunov function approach, some
sufficient conditions for consensus are established. Simulations
are provided to illustrate the effectiveness of the theoretical
results.

I. INTRODUCTION

In many practical situations, all agents are required to

reach an agreement on certain quantities of interest, which

may be the formation center in formation control, the ex-

pected attitude in attitude alignment, and the destination

in rendezvous problem. The estimations of the interest are

often represented by agents’ states. Such a problem is called

consensus problem, which is one of fundamental research

topics in the field of distributed control of multiple agents.

Consensus problems have received considerable attention

recently. In [1], a discrete-time model of n agents was pro-

posed, where each agent’s heading is updated based on the

average of its own heading and its neighbors’ headings. By

simulation, it was shown that all the agents tend to move in

the same heading although the set of each agent’s neighbors

is time-varying. A theoretical explanation for the above phe-

nomenon was provided in [2] by introducing an undirected

graph to model the interaction topology among agents. In

[3], a directed graph was introduced and consensus problems

for three cases, i.e., directed networks with fixed topology,

directed networks with switching topology, and undirected

networks with time-invariant communication delays, were

investigated, respectively. In [4], an improved sufficient

condition was obtained for consensus in directed networks

with switching topology. Note that all the aforementioned

work is concerned with agents with first-order or single-

integrator dynamics. In [5] and [6], two kinds of consensus

problems of multiple second-order agents were discussed,

respectively. In addition, with the fast development of the

research on consensus problems, many new contents, such

as finite-time consensus [10], agreement on random networks
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[11], consensus filter [12], and asynchronous consensus [13],

have emerged. Interested readers can refer to the survey paper

[14] and the references therein.

In the study of consensus problems, the design of proto-

cols/algorithms is important. A protocol specifies that how

each agent uses the information obtained by it to coordinate

its behavior so that the states of all agents can reach

a common value eventually. In most of the literature on

consensus problems, such as [5] and [6], it is assumed that

each agent can obtain the measurement of its full state.

However, in practical situations, some information is unmea-

surable because of technology limitations or environment

disturbances. For example, in some cases, agents can not

obtain any velocity information, and thus, the protocols

proposed in [5] and [6] can not be implemented. Hence, it

is realistic and favorable to consider the problem of design

protocols in the case when each agent can only obtain the

measurement of its partial state. However, there is only a

little literature on this problem, such as [15], [16], [17]. In

[16], tracking control of multiple agents with a leader was

considered, while the leader’s velocity is unmeasurable. In

[17], consensus problems of multiple second-order agents

were investigated in undirected networks with fixed topology,

where each agent can only measure its positions relative

to its neighbors. Note that all information is transmitted in

real time in [15], [16], and [17]. Because of the physical

properties of transmission medium and the capability of

transmission bandwidth of networks, some information may

not be transmitted among agents in real time, which results in

the emergence of delays. Based on the above considerations,

we investigate consensus problems of multiple second-order

agents, where agents can only obtain the measurements of

relative positions and the measurements may be with time-

delays. Although our work is partly motivated by that in

[17], they are different in the following three aspects. First,

directed networks with switching topology are considered in

our work, while just undirected networks with fixed topology

are considered in [17]. Second, measurement delays, which

is not studied in [17], is further investigated in our work.

Third, our protocol is not a special case of that in [17].

An outline of this paper is shown as follows. In Section

2, we present some concepts in graph theory and formulate

the model to be studied. In Section 3, we derive the main

results. In Section 4, simulations are provided to illustrate

the effectiveness of the theoretical results. Finally, conclusion

remarks are made in Section 5.

Throughout this paper, In ∈ R
n×n is an identity matrix

and 1n = [1 1 · · · 1]T ∈ R
n; ⊗ denotes Kronecker product;
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for symmetric matrix A, A > 0 (resp., A < 0) means A is

a positive definite (resp., negative definite) matrix; λmin(B)
represents the minimum eigenvalue of B.

II. PRELIMINARIES

A. Graph theory

Graph plays a key role in modeling the interaction topol-

ogy among agents. We first introduce some basic definitions

in graph [18].

A directed graph G consists of a vertex set V(G) and an

edge set E(G), where V (G) = {v1, · · · , vn} and E(G) ⊂
{(vj , vi) : vj , vi ∈ V(G)}. For edge (vj , vi), vj is called

the parent vertex of vi and vi is called the child vertex of

vj . If two ends of an edge is the same vertex, then such

an edge is called loop. The set of neighbors of vertex vi

is defined by N(G, vi) = {vj : (vj , vi) ∈ E(G) and j 6=
i}, and the associated index set is denoted by N(G, i) =
{j : vj ∈ N(G, vi)}. A (directed) path from vi1 to vik

is a sequence, vi1 , · · · , vik
, of distinct vertices such that

(vij
, vij+1

) ∈ E(G) for any j = 1, · · · , k − 1. A directed

graph G is strongly connected if there is a path between

each pair of distinct vertices. A directed tree is a directed

graph, where every vertex has exactly one parent except for

one vertex, called root vertex, which has no parent and can

be connected to any other vertices via pathes. A subgraph Gs

of G is a graph such that V(Gs) ⊂ V(G) and E(Gs) ⊂ E(G).
Gs is said to be a spanning subgraph if V(Gs) = V(G). For

any vi, vj ∈ V(Gs), if (vi, vj) ∈ E(Gs) ⇔ (vi, vj) ∈ E(G),
then Gs is said to be an induced subgraph of G, and we

also say Gs is induced by V(Gs). A spanning tree of G is a

directed tree which is a spanning subgraph of G. G is said

to have a spanning tree if some edges of G form a spanning

tree of G.

A matrix is called nonnegative if each of its elements is

nonnegative. A weighted directed graph G(A) is a directed

graph G plus a nonnegative matrix A = [aij ] ∈ R
n×n,

where aij > 0 ⇔ (vj , vi) ∈ E(G), and aij is called

the weight of edge (vj , vi). G(A) is called balanced if
n∑

j=1

aij =
n∑

j=1

aji, i = 1, · · · , n. In this paper, we do not

consider graphs with loops, namely, aii = 0, i = 1, · · · , n.

The Laplacian matrix L = [lij ] ∈ R
n×n of G(A) is defined

as

lij =






−aij , i 6= j
n∑

k=1

aik, i = j
,

and it has some properties as follows.

Lemma 1: ([3], [4]) Consider directed graph G(A).

(i) Zero is an eigenvalue of L, and 1n is the associated

right eigenvector. Moreover, 1n is also the associated

left eigenvector if G(A) is balanced.

(ii) Zero is an algebraically simple eigenvalue of L and all

the other eigenvalues are with positive real parts if and

only if G(A) has a spanning tree.

B. Protocol

Consider n agents with the following dynamics:

ẋi(t) = vi(t), v̇i(t) = ui(t), i = 1, · · · , n, (1)

where xi ∈ R
m and vi ∈ R

m is the position and velocity

vectors of agent i, respectively, and ui is the control input,

called the protocol, to be designed based on the information

obtained by agent i. Note that xi and vi can also represent

other physical quantities. To facilitate the following analysis,

we will consider the one-dimensional case, i.e., m = 1.

However, similar analysis can also be done for the higher

dimensional case by means of Kronecker product.

Given ui, i = 1, · · · , n, ui or multi-agent system (1) solves

a consensus problem asymptotically if for any initial states,

limt→∞(xr(t) − xs(t)) = 0 and limt→∞(vr(t) − vs(t)) =
0, r, s = 1, · · · , n. Such a consensus problem can find

application in formation control of multiple vehicles/robots

(see, e.g., [19]).

In most of the literature on consensus problems of multi-

agent system (1), the protocols are implemented based on

measurements of relative positions and velocities. For exam-

ple, the protocol presented in [6] is

ui(t) = −
∑

j∈N(G,i)

aij(xi(t) − xj(t))

− k
∑

j∈N(G,i)

aij(vi(t) − vj(t)), k > 0.
(2)

Hence, in the case that agents can only obtain measurements

of relative positions, protocol (2) is infeasible. Here we will

solve this problem and provide a feasible protocol.

In this paper, it is assumed that the interaction topology

is time-varying and ti+1 − ti ≥ τ∗ > 0, i = 0, 1, · · · , where

t0(= 0), t1, · · · denote the times when the interaction

topology changes. It is also assumed that the weight of

each edge is chosen from a finite set S1, which consists

of finite positive numbers. Accordingly, the number of

all possible interaction topologies among n agents is

finite. Let S2 = {G(A1), · · · ,G(AN )} be a set of all

possible topologies, where Ap = [a
(p)
ij ], p = 1, · · · , N . For

convenience, introduce a switching signal σ : [0,∞) → P ,

where P = {1, · · · , N}. Let Lσ(t) and Ni(t) denote the

Laplacian matrix of G(Aσ(t)) and the index set of neighbors

of agent i at time t, respectively. In addition, we make the

following assumption,

(A1) G(Ai), i = 1, · · · , N, are all strongly connected and

balanced.

By the above description, the dynamics of agent i is

rewritten as

ẋi(t) = vi(t), v̇i(t) = ui(t),

yij(t) = xi(t − τij(t)) − xj(t − τij(t)), j ∈ Ni(t),

i = 1, · · · , n,

(3)

where τij(t) ≥ 0. Let yi(t) =
∑

j∈Ni(t)

a
(σ(t))
ij yij(t). Partly

motivated by the theory of dynamic output feedback control,
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we provide the following protocol:

żi(t) = azi(t) + byi(t) + cui(t),
wi(t) = dzi(t) + fyi(t),
ui(t) = −yi(t) − kwi(t),

(4)

where parameters a, b, c, d, f, k satisfy

fcd > 0, (bd − af)cd > 0, fk > 0, (5)

which implies that f, cd, bd − af , and k are with the same

sign.

Obviously, protocol (4) is implemented based on only the

measurements of relative positions. In the following section,

by applying the common Lyapunov function approach and

the linear matrix inequality technique, we will present some

sufficient conditions for protocol (4) to solve a consensus

problem under arbitrary switching signals.

III. MAIN RESULTS

A. Networks without time-delays

We first consider the case without measurement delays,

i.e., τij(t) = 0. To facilitate the following analysis, let θ(t) =
[θT

1 (t θT
2 (t) · · · θT

n (t)]T , θi(t) = [xi(t) vi(t) wi(t)]
T , i =

1, · · · , n, then

θ̇(t) = (In ⊗ B1 − Lσ ⊗ B2)θ(t),

where

B1 =




0 1 0
0 0 −k
0 0 a − kcd



 ,

B2 =




0 0 0
1 0 0

af + cd − bd −f 0



 .

In order to apply the Lyapunov function approach, we

make a state transformation for θ. Let U = [ 1√
n
1n U1] be an

orthogonal matrix, then U1 is full column rank, and under

(A1), U = diag{0,Hσ}, where Hσ ∈ R
(n−1)×(n−1). Let

δ(t) = (U−1⊗I3)θ(t), where δ(t) = [δT
1 (t) δ̂T (t)]T , δ̂(t) =

[δT
2 (t) · · · δT

n (t)]T , δi(t) = [δi1(t) δi2(t) δi3(t)]
T , i =

1, · · · , n, then

δ̇1(t) = B1δ1(t), (6)

˙̂
δ(t) = (In−1 ⊗ B1 − Hσ ⊗ B2)δ̂(t). (7)

Obviously,

δ1(t) =
1√
n

n∑

i=1

θi(t), θ(t) =
1√
n
1n⊗δ1(t)+(U1⊗I3)δ̂(t).

(8)

Let δ(t) = [δ21(t) · · · δn1(t) δ22(t) · · · δn2(t) δ23(t) · · ·
δn3(t)]

T . Then

δ̇(t) = Φσδ(t), (9)

where

Φσ =




0 In−1 0

−Hσ 0 −kIn−1

(bd − af − cd)Hσ fHσ (a − kcd)In−1



 .

Remark 1: By (8), protocol (4) solves a consensus prob-

lem if system (9) is asymptotically stable. Hence, we focus

on the stability of system (9).

To derive a main result, we need the following lemma.

Lemma 2: If G(Aσ) is strongly connected and balanced,

then Hσ + Hσ
T is positive definite.

Proof: Because G(Aσ) is strongly connected and bal-

anced, Lσ + Lσ
T can be viewed as the Laplacian matrix of

a connected graph. By Lemma 1 and U−1(Lσ + Lσ
T )U =

diag{0,Hσ+Hσ
T }, all eigenvalues of Hσ+Hσ

T are positive

real numbers. Thus, Hσ + Hσ
T is positive definite.

By applying the common Lyapunov function approach to

study the stability of system (9), we can derive the following

main result.

Theorem 1: Assume (A1) and (5) hold. If

| f |> max{| bcd2 |, (1 +
1

2β
+ | acd |)2}, (10)

and

| k |> 2a

| cd | −
| bd − af |

2 | f | γ, (11)

where

β = minσ=1,··· ,N λmin(Γσ),Γσ = Hσ + HT
σ ,

γ = minσ=1,··· ,N λmin(qT
σ Q−1

1σ qσ),

Q1σ =

[
− | bd − af | Γσ

√
| f |In−1− | f | Γσ

∗ 2 | cd | In−1 − f |f |
bd−af

Γσ

]
,

qσ =

[
−a sign(f)In−1+ | f | ( 2

cd
− 1

bd−af
)HT

σ

−(sign(f) + a|f |
bd−af

)In−1 + 2f |f |
(bd−af)cd

HT
σ

]
,

then protocol (4) solves a consensus problem under arbitrary

switching signals. Furthermore, limt→∞[xi(t)− 1
n

n∑
i=1

(x∗
i +

tv∗i )] = 0, limt→∞ vi(t) = 1
n

n∑
i=1

v∗i , where x∗
i = xi(0) +

k
(a−kcd)2 ωi(0), v∗

i = vi(0) + k
a−kcd

ωi(0), i = 1, · · · , n.
Proof: For system (9), consider the following Lyapunov

function candidate: V (t) = δ
T
(t)Pδ(t), where

P =





√
| f | | cd | − sign(f)

∗ cd|f |
bd−af

−|f |
bd−af

∗ ∗ 2|f |
(bd−af)cd



 ⊗ In−1.

By (10), P is positive definite, which will be explained later.

By calculation,

V̇ (t) = δ
T
(t)(PΦσ + ΦT

σ P )δ(t) = δ
T
(t)Qσδ(t),

where

Qσ =

[
Q1σ qσ

∗ 2|f |(2a−kcd)
(bd−af)cd

In−1

]
.

By Schur complement (see [20]), Qσ < 0 if and only if

Q1σ < 0 and

2 | f | (2a − kcd)

(bd − af)cd
In−1 − qT

σ Q1
−1
σ qσ < 0. (12)

By Lemma 2, − | bd − af | Γσ < 0. Thus, Q1σ < 0 if and

only if 1
|bd−af | (

√
| f |In−1− | f | Γσ)Γ−1

σ (
√
| f |In−1− |
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f | Γσ) + 2 | cd | In−1 − f |f |
bd−af

Γσ < 0, which is equivalent

to

2 | cd | In−1 +
| f |

| bd − af |Γ
−1
σ − 2 | f |

√
| f |

| bd − af | In−1 < 0.

(13)

Clearly,

2 | cd | In−1 + |f |
|bd−af |Γ

−1
σ − 2|f |

√
|f |

|bd−af | In−1

≤ 2|bcd2|+2|acd||f |+ 1
λmin(Γσ)

|f |−2|f |
√

|f |
|bd−af | In−1

= − |f |(2
√

|f |− 1
λmin(Γσ)

−2|acd|)−2|bcd2|
|bd−af | In−1.

From (10), we have 2
√

| f | − 1
β
− 2 | acd |> 2 and | f |>|

bcd2 |. Hence, | f | (2
√

| f |− 1
β
−2 | acd |)−2 | bcd2 |> 0,

which means | f | (2
√
| f | − 1

λmin(Γσ) − 2 | acd |) − 2 |
bcd2 |> 0, and (13) holds. Then Q1σ < 0 for any σ. From (5)

and (11), it follows that (12) holds for any σ. Thus, Qσ < 0
for any σ, namely, system (9) is asymptotically stable under

arbitrary switching signals. From (8), we have

lim
t→∞

(θi(t) −
1√
n

δ1(t)) = 0, i = 1, · · · , n. (14)

Therefore, protocol (4) solves a consensus problem under

arbitrary switching signals.

Now we prove the second part of Theorem 1. Let

M = [mr1 mr2 mr3] =




1 1 1
0 1 a − kcd

0 0 − (a−kcd)2

k



 ,

then

M−1 = [ml1 ml2 ml3]
T =




1 −1 k(kcd−a+1)

(a−kcd)2

0 1 k
a−kcd

0 0 − k
(a−kcd)2



 ,

M−1B1M = J =




0 1 0
0 0 0
0 0 a − kcd



 .

In the case of a ≤ 0, it is obvious that a−kcd = a− | kcd |<
0. In the case of a > 0, from Qσ < 0, we have 2a−kcd < 0,

which implies a − kcd < 0. By (6), δ1(t) = eB1tδ1(0) =
MeJtM−1δ1(0), and limt→∞[δ1(t)− (mr1m

T
l1 +mr2m

T
l2 +

tmr1m
T
l2)δ1(0)] = 0, where

δ1(0) =
1√
n

[
n∑

i=1

xi(0)
n∑

i=1

vi(0)
n∑

i=1

ωi(0)]T ,

mr1m
T
l1 + mr2m

T
l2 =




1 0 k

(a−kcd)2

0 1 k
a−kcd

0 0 0



 ,

mr1m
T
l2 =




0 1 k

a−kcd

0 0 0
0 0 0



 .

From (14), we have

limt→∞(xi(t) − 1√
n
δ11(t))

= limt→∞{xi(t) − 1
n

n∑
i=1

[xi(0) + k
(a−kcd)2 ωi(0)

+t(vi(0) + k
a−kcd

ωi(0))]}
= 0

and limt→∞ vi(t) = 1
n

∑n

i=1(vi(0) + k
a−kcd

ωi(0)).

Finally, we prove P > 0. By (5),
2|f |

(bd−af)cd
> 0. Let

P1 =

[ √
| f | | cd

∗ cd|f |
bd−af

]
, p =

[
− sign(f)

−|f |
bd−af

]
.

Then P > 0 if and only if

P1 > 0 and
2 | f |

(bd − af)cd
− pT P−1

1 p > 0. (15)

By calculation, (15) is equivalent to
|f |
√

|f |
|bd−af |− | cd |> 0,

which is satisfied if (13) is satisfied. Hence, we can derive

P > 0 from (10).
Remark 2: Actually, there exist a, b, c, d, f, k such that

(5), (10), and (11) are all satisfied. For example, in the

case of a < 0, c > 0, and d > 0, the three conditions

are all satisfied if f and k are sufficiently large. To seek

a, b, c, d, f, k satisfying (5), (10), and (11), we can assume

some of them are known, and then calculate the others.

B. Networks with time-delays

In this subsection, we take measurement delays into ac-

count, and assume that the delays are time-invariant, i.e.,

τij(t) = τij > 0.

Let {τij : i = 1, · · · , n, ∀j ∈ Ni(t)} = {d1, · · · , dl},

where l ≤ n(n − 1). Notations U, θ, δ1, δ̂, δ, and Φσ in the

above subsection are still be used here. Then

θ̇(t) = (In ⊗ B1)θ(t) −
l∑

j=1

(Lσj
⊗ B2)θ(t − dj),

where Lσj
= [l

(σj)
rs ] ∈ R

n×n and

l(σj)
rs =






−a
(σ)
rs , s ∈ Nr(t) and τrs = dj

0, s ∈ Nr(t) and τrs 6= dj

0, s /∈ Nr(t) and s 6= r

−
n∑

k=1,k 6=r

l
(σj)
rk , s = r

.

Clearly, Lσ =
l∑

j=1

Lσj
, Lσj

1n = 0, j = 1, · · · , l. Under

(A1), we have

U−1LσU =

[
0 0
0 Hσ

]
, U−1Lσj

U =

[
0 hσj

0 Hσj

]
.

Following the manipulation described in the above subsec-

tion, we have

δ̇1(t) = B1δ1(t) −
l∑

j=1

(hσj
⊗ B2)δ̂(t − dj),

˙̂
δ(t) = (In−1 ⊗ B1)δ̂(t) −

l∑
j=1

(Hσj
⊗ B2)δ̂(t − dj),
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and

δ̇(t) = Φσδ(t) +
l∑

j=1

Φσj
ηj(t), (16)

where ηj(t) = δ(t) − δ(t − dj) and

Φσj
=




0 0 0

Hσj
0 0

(af + cd − bd)Hσj
−fHσj

0



 .

Similarly, we focus on the stability of system (16). By

means of the linear matrix inequalities technique, we can

obtain the following main result.

Theorem 2: Assume (A1) and (5) hold. If (10) and (11)

are both satisfied and there exist positive definite matrices

S,Qj , Rj , j = 1, · · · , l, such that



Q11 Q12 Q13

∗ Q22 Q23

∗ ∗ Q33



 < 0,∀σ ∈ {1, 2, · · · , N}, (17)

where

Q11 = SΦσ + ΦT
σ S,Q12 = [SΦσ1

+ Q1 · · · SΦσl
+ Ql],

Q13 = [ΦT
σ R1 · · · ΦT

σ Rl],
Q22 = diag{−Q1 − 1

d1
R1, · · · ,−Ql − 1

dl
Rl},

Q23 =




ΦT

σ1
R1 · · · ΦT

σ1
Rl

...
. . .

...

ΦT
σl

R1 · · · ΦT
σl

Rl



 ,

Q33 = diag{− 1
d1

R1, · · · ,− 1
dl

Rl},
then protocol (4) solves a consensus problem under arbitrary

switching signals.

Proof: Consider the following Lyapunov functional

candidate for system (16):

V (t) = δ(t)T Sδ(t) +
l∑

j=1

∫ t

t−dj
δ(z)T Qjδ(z)dz

+
l∑

j=1

∫ t

t−dj
(z − t + dj)δ̇(z)T Rj δ̇(z)dz,

where S,Qj and Rj are positive definite matrices satisfying

(17). By Lemma 4 in [21],

V̇ (t) = 2δ
T
(t)Sδ̇(t) +

l∑
j=1

[δ
T
(t)Qjδ(t)

−δ(t − dj)
T Qjδ(t − dj)]

+
l∑

j=1

[−
∫ t

t−dj
δ̇(z)T Rj δ̇(z)dz + dj δ̇

T

(t)Rj δ̇(t)]

≤ 2δ
T
(t)S[Φσδ(t) +

l∑
j=1

Φσj
ηj(t)]

+
l∑

j=1

[δ
T
(t)Qjδ(t)

−(δ(t) − ηj(t))
T Qj(δ(t) − ηj(t))]

−
l∑

j=1

1
dj

ηT
j (t)Rjηj(t)

+
l∑

j=1

dj(Φσδ(t) +
l∑

j=1

Φσj
ηj(t))

T

×Rj(Φσδ(t) +
l∑

j=1

Φσj
ηj(t)),

= ξT (t)Qξ(t),

where ξ(t) = [δ
T
(t) ηT

1 (t) · · · ηT
l (t)]T and

Q

=





SΦσ + ΦT
σ S SΦσ1

+ Q1 · · · SΦσl
+ Ql

∗ −Q1 − 1
d1

R1 · · · 0
...

...
. . .

...

∗ ∗ · · · −Ql − 1
dl

Rl





+
l∑

j=1

dj





ΦT
σ

ΦT
σ1

...

ΦT
σl




Rj

[
Φσ Φσ1

· · · Φσl

]
.

(18)

By Schur complement, Q < 0,∀σ ∈ {1, · · · , N} if and

only if (17) holds. Thus, system (16) is asymptotically stable

under arbitrary switching signals. From (8), we conclude

that protocol (4) solves a consensus problem under arbitrary

switching signals.

Remark 3: By the proof of Theorem 1, if (5), (10), and

(11) are all satisfied, then there exists P > 0 such that PΦσ+
ΦT

σ P < 0, ∀σ ∈ {1, · · · , N}. For S = P , there exist positive

definite matrices Rj , Qj such that Q < 0,∀σ ∈ {1, · · · , N}
if d1, · · · , dl are all sufficiently small. Hence, under the

condition of Theorem 2, (17) is feasible if d1, · · · , dl are

all sufficiently small.

Theorem 2 is applicable to the case that the exact values

of measurement delays are known in advance. In the case

that we only know the upper bound of measurement delays,

Theorem 2 can not be applied directly, while we can obtain

the following corollary from Theorem 2. Let d̂ denote the

upper bound of all measurement delays.

Corollary 1: Assume (A1), (5), (10), and (11) all holds.

Protocol (4) solves a consensus problem under arbitrary

switching signals if d̂ < d∗, where

d∗ = maximum d
s.t. S > 0, Qj > 0, Rj > 0, j = 1, · · · , l, and (17)′,

(19)

where (17)′ is obtained by replacing dj , j = 1, · · · , l, in (17)

with d.

It should be mentioned that d∗ is dependent on parameters

of protocol (4).

IV. SIMULATIONS

Consider the interaction topologies shown in Fig. 1, where

the weight of each edge is 1. Thus, each graph in Fig.

1 is strongly connected and balanced. To find parameters

satisfying (5), (10), and (11), we assume some of parameters

are known. For example, let a = −1, b = 1, c = 0.5, and

d = 2, then we obtain f > 7.6368 and k > 36.6880. Choose

f = 8 and k = 38.

Example 1: (Networks without time-delays) By Theorem

1, protocol (4) solves a consensus problem under arbitrary

switching signals. For example, for any given initial states,

the state trajectories of agents are depicted in Fig. 2, where

the interaction topology is randomly chosen from those

shown in Fig.1.
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Fig. 1. Topologies.
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Fig. 2. Networks without time-delays.

Example 2: (Networks with time-delays) For conve-

nience, assume all measurement delays are equal, i.e., τij =
τ . In this case, l = 1. By solving optimization problem

(19), we obtain d∗ = 0.0169. Hence, for any τ < 0.0169,

consensus can be reached under arbitrary switching signals

by Theorem 2. For example, for any given initial states and

τ = 0.01, the evolution of all agents’ positions and velocities

is shown in Fig.3, where the interaction topology is randomly

chosen from those shown in Fig.1.

V. CONCLUSION

Consensus problems have been studied for multiple

second-order agents with time-varying topology, where each

agent can only obtain the measurements of its positions

relative to its neighbors and each possible interaction topol-

ogy is strongly connected and balanced. A feasible protocol

with some parameters has been presented. Moreover, in the

case without measurements delays, it has been shown that
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Fig. 3. Networks with time-delays.

consensus can be reached if the parameters of the protocol

satisfy some conditions; in the case with measurements

delays, for the protocol with given parameters, it has been

proved that consensus can be reached if the measurements

delays are small enough, and an allowable upper bound of

measurement delays has been obtained.
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