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Abstract— In this paper, stochastic H∞ state feedback con-
trol with state-dependent noise for multimodeling systems is
addressed. After establishing the asymptotic structure of the
stochastic multi-modeling algebraic Riccati equation (SMARE),
an iterative algorithm that is based on Newton’s method is
established. A high-order state feedback controller by means
of the obtained iterative solution is given and the degradation of
the H∞ performance is investigated for the stochastic case for
the first time. Finally, in order to demonstrate the efficiency
of the proposed algorithm, numerical example is given for
practical megawatt-frequency control problem.

I. INTRODUCTION

When several small singular perturbation parameters of

the same order of magnitude are present in the dynamic

model of a physical system, the control problem is usually

approached as multimodeling systems. The control problem

of the multimodeling systems has been widely studied during

the past few decades (see e.g., [8], [9], [10]).

Recently, stochastic H∞ control problem with state- and

control dependent noise were considered in [1], [2], [15],

[16]. It has attracted much attention and has been widely

applied to various fields. For example, the stochastic H2/H∞

control with state-dependent noise has been addressed [5].

However, to the best of our knowledge, no results have been

obtained for the H∞ control problem of the multimodeling

systems with stochastic uncertainty such as standard Wiener

process even though the asymptotic properties of input-

output operations norm for singularly stochastic perturbed

systems have been treated in [6].

In order to design the stochastic H∞ controller, the

stochastic algebraic Riccati equation (SARE) needs to be

solved. The reliable approach for solving the SARE has

been well documented in [4]. This algorithm is based on the

revised Kleinman algorithm and it is easy to show that this

algorithm is equivalent to the Newton’s method. Hence, the

quadratic convergence is attained if the initial guess is close

to the required solution. However, the considered SARE has

the positive definite quadratic term. Therefore, we cannot

apply the existing result to the SARE that has the sign indef-

inite quadratic term directly, where it arise in stochastic H∞

control. More recently, in [11], [12], the Newton’s method for

solving the sign-indefinite multimodeling algebraic Riccati

equation (MARE) has been developed. Although this result is
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very elegant in theory, the stochastic multimodeling systems

(SMS) situation is an issue that remains to be considered.

In this paper, the numerical solution to the stochastic

multimodeling algebraic Riccati equation (SMARE) with

sign-indefinite quadratic term related to the stochastic H∞

control problem with state-dependent noise is investigated.

The main objective of this paper is to obtain numerically

controllers and to prove that the high-order approximate

controller can be used reliably on the original SMS. The

difficulty in extending the results is that since the stochastic

uncertainty exists, the derivation of asymptotic structure

of SMARE cannot be determined by using the existing

assumption. Therefore, in order to avoid the complication

for the derivation, the appropriate assumption is made for the

coefficient matrix related to the stochastic uncertainty. The

contributions of this paper are as follows. In order to obtain

the initial guess of the algorithm, the asymptotic structure of

the sign indefinite SMARE is established for the first time.

Then, our new concept is to set the initial condition to the

solutions of the reduced-order SARE. Because of such a

choice, it can be proved that the proposed algorithm con-

verges to a required solution by using Newton-Kantorovich

theorem [13]. As another important feature, a high-order state

feedback H∞ controller on the basis of the obtained iterative

solution is given. Moreover, the degradation of the H∞

performance is investigated for the stochastic systems for the

first time. Finally, in order to demonstrate the efficiency of

the proposed algorithm, a numerical example for a two-area

electric energy system is solved.

Notation: The notations used in this paper are fairly standard.

In denotes the n× n identity matrix. Superscript T denotes

the matrix transpose. || · || denotes its Euclidean norm for

a matrix. The space of the ℜk-valued functions that are

quadratically integrable on (0, ∞) are denoted by Lk
2(0, ∞).

||ω||22 := E
∫ t

s
||ω(t)||2dt, ω(t) ∈ Lk

2(s, t) denotes L2 norm

in a Hilbert space. block diag denotes the block diagonal

matrix. E[·] denotes the expection operator.

II. PRELIMINARY RESULT

We consider the following SMS that consist of N -fast sub-

systems with specific structure of lower level interconnected

through the dynamics of a higher level slow subsystem.

dx(t) = [Aex(t) + Beu(t) + Dev(t)]dt

+
M
∑

p=1

Apex(t)dwp(t), (1a)

z(t) = Cx(t) + Hu(t), (1b)
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where n̄ :=
∑N

j=0 nj , m̄ :=
∑N

j=1 mj , l̄ :=
∑N

j=1 lj ,

x(t) :=
[

xT
0 (t) xT

1 (t) · · · xT
N(t)

]T ∈ ℜn̄,

u(t) :=
[

uT
1 (t) · · · uT

N(t)
]T ∈ ℜm̄,

v(t) :=
[

vT
1 (t) · · · vT

N (t)
]T ∈ ℜl̄,

Πe := block diag
(

ε1In1 · · · εN InN

)

,

Ae :=

[

A00 A0f

Π−1
e Af0 Π−1

e Af

]

,

A0f :=
[

A01 · · · A0N

]

,

Af0 :=
[

AT
10 · · · AT

N0

]T
,

Af := block diag
(

A11 · · · ANN

)

,

Ape :=

[

Ap00 µAp0f

Π−1
e ε̄δApf0 Π−1

e ε̄δApf

]

,

Ap0f :=
[

Ap01 · · · Ap0N

]

,

Apf0 :=
[

AT
p10 · · · AT

pN0

]T
,

Apf := block diag
(

Ap11 · · · ApNN

)

,

Be :=

[

B0

Π−1
e Bf

]

, B0 :=
[

B01 · · · B0N

]

,

Bf := block diag
(

B11 · · · BNN

)

,

De :=

[

D0

Π−1
e Df

]

, D0 :=
[

D01 · · · D0N

]

,

Df := block diag
(

D11 · · · DNN

)

,

C :=
[

C0 Cf

]

,

C0 :=











C00

C10

...

CN0











, Cf :=











0 · · · 0
C11 · · · 0

...
. . .

...

0 · · · CNN











,

H := block diag
(

H11 · · · HNN

)

.

xj(t) ∈ ℜnj , j = 0, 1, ... , N are the state vectors,

uj(t) ∈ ℜmj , j = 1, ... , N are the control inputs,

vj(t) ∈ L
lj
2 (0, ∞), j = 1, ... , N is considered to be

an unknown finite-energy deterministic disturbance [1], [5].

z(t) ∈ ℜp is the controlled output. εj > 0, j = 1, ... , N and

µ ≥ 0 are small parameters and δ > 1/2 is independent of

ε̄ := min{ε1, ... , εN}. It should be noted that the parameters

µ and δ have been introduced in [6], [7] for the first time.

Moreover, the considered SMS consists of N -fast subsystems

as compared to [6]. wp(t) ∈ ℜ, p = 1, ... , M is a one-

dimensional standard Wiener process defined in the filtered

probability space [1], [2], [3], [5].

We assume that the ratios of the small positive parameters

εj , j = 1, ... , N and µ are bounded by some positive

constants kij , k̄ij , l and l̄ and only these bounds are assumed

to be known [8], [9]. In other words, they have the same order

of magnitude.

0 < kij ≤ αij ≡
εj

εi

≤ k̄ij < ∞, 0 ≤ l ≤ µ

ε̄
≤ l̄ < ∞. (2)

Note that one of the fast state matrices Ajj , j = 1, ... , N
may be singular.

Without loss of generality, the stochastic H∞ control

problem for the SMS is investigated under the following

basic assumption [1], [5].

Assumption 1: CT H = 0 and HT H = Im̄.

It should be noted that the matrix pair (E, G) is deemed

stable, if dx(t) = Ex(t)dt+Gx(t)dw is asymptotically mean

square stable [5].

The stochastic H∞ control problem for SMS is given

below [1], [5].

Given a constant γ > 0, find a matrix K satisfying the

following conditions:

i) The system

dx(t) = [Ae + BeK]x(t)dt +

M
∑

p=1

Apex(t)dwp(t) (3)

is exponentially mean-square stable internally, i.e. it

satisfies the following equation.

E||x(t)||2 ≤ ρe−ψ(t−s)E||x(s)||2, ∃ρ, ψ > 0. (4)

ii) The closed-loop system

dx(t) = [(Ae + BeK)x(t) + Dev(t)]dt

+

M
∑

p=1

Apex(t)dwp(t), (5a)

z(t) = (C + HK)x(t), (5b)

corresponding to the system in equation (1) with

feedback control u(t) = Kx(t), satisfies following

condition.

sup
v ∈ Ll̄

2
(0, ∞),

v �= 0, x(0) = 0

||z||22
||v||22

:= sup
v ∈ Ll̄

2
(0, ∞),

v �= 0, x(0) = 0

E
∫ +∞

0
[xT (t)CT Cx(t)+uT (t)u(t)]dt

E
∫ +∞

0
vT (t)v(t)dt

< γ2 . (6)

The following result is well known [1], [5].

Lemma 1: Suppose that Assumption 1 is satisfied. The

stochastic H∞ state-feedback control problem has a solution

if and only if there exists a symmetric non-negative definite

solution Pe to the following SMARE

G(Pe) := AT
e Pe + PeAe +

M
∑

p=1

AT
pePeApe

−Pe(BeB
T
e − γ−2DeD

T
e )Pe + CT C = 0 (7)

such that the stochastic system

dx(t) = [Ae − BeB
T
e Pe + γ−2DeD

T
e Pe]x(t)dt

+

M
∑

p=1

Apex(t)dwp(t) (8)

is exponentially mean-square stable.

The controller solving this H∞ problem is given by

equation (9).

u(t) = Kx(t) = −BT
e Pex(t). (9)
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III. ASYMPTOTIC STRUCTURE OF SMARE

In this section, we need to first analyze the asymptotic

structure of SMARE (7) to obtain the controller. In order to

simplify the presentation, the following matrices are defined.

Se := BeB
T
e −γ−2DeD

T
e =

[

S00 S0fΠ−1
e

Π−1
e ST

0f Π−1
e SfΠ−1

e

]

,

S0f :=
[

S01 · · · S0N

]

,

Sf := block diag
(

S11 · · · SNN

)

,

Q := CT C =

[

Q00 Q0f

QT
0f Qf

]

,

Q0f :=
[

Q01 · · · Q0N

]

,

Qf := block diag
(

Q11 · · · QNN

)

.

Since the matrices Ae, Ape, Be and De contain the term

of ε−1
j , a solution Pe of the SMARE (7), if it exists, must

contain terms of εj . Taking this fact into consideration, we

look for a solution Pe of the SMARE (7) with the structure

Pe :=

[

P00 P T
f0Πe

ΠePf0 ΠePf

]

, P00 = P T
00,

Pf0 :=
[

P T
10 · · · P T

N0

]T
,

Pf

:=















P11 α12P
T
21 α13P

T
31 · · · α1NP T

N1

P21 P22 α23P
T
32 · · · α2NP T

N2
...

...
...

. . .
...

P(N−1)1 P(N−1)2 P(N−1)3 · · · α(N−1)NP T
N(N−1)

PN1 PN2 PN3 · · · PNN















,

ΠePf = P T
f Πe.

Before investigating the optimal control problem, we investi-

gate the asymptotic structure of the SMARE (7). Substituting

the matrices Ae, Ape, Se, Q and Pe into SMARE (7) results

in the following partitioned equation (10).

f1 = P00A00 + AT
00P00 + P T

f0Af0 + AT
f0Pf0

+

M
∑

p=1

AT
p00P00Ap00 + ε̄δ

M
∑

p=1

AT
pf0Pf0Ap00

+ε̄δ

M
∑

p=1

AT
p00P

T
f0Apf0 + ε̄2δ

M
∑

p=1

AT
pf0PfΠ−1

e Apf0

−P00S00P00 − P T
f0SfPf0

−P00S0f Pf0 − P T
f0S

T
0fP00 + Q00 = 0, (10a)

f2 = AT
00P

T
f0Πe + AT

f0Pf + P00A0f + P T
f0Af

+µ

M
∑

p=1

AT
p00P00Ap0f + ε̄δµ

M
∑

p=1

AT
pf0Pf0Ap0f

+ε̄δ

M
∑

p=1

AT
p00P

T
f0Apf + ε̄2δ

M
∑

p=1

AT
pf0PfΠ−1

e Apf

−P00S00P
T
f0Πe − P T

f0S
T
0f P T

f0Πe

−P00S0f Pf − P T
f0SfPf + Q0f = 0, (10b)

f3 = P T
f Af + AT

f Pf + ΠePf0A0f + AT
0fP T

f0Πe

+µ2
M
∑

p=1

AT
p0fP00Ap0f + ε̄δµ

M
∑

p=1

AT
pfPf0Ap0f

+ε̄δµ

M
∑

p=1

AT
p0fP T

f0Apf + ε̄2δ

M
∑

p=1

AT
pfPfΠ−1

e Apf

−P T
f SfPf − P T

f ST
0f P T

f0Πe − ΠePf0S0f Pf

−ΠePf0S00P
T
f0Πe + Qf = 0. (10c)

It is assumed that the limit of αij exists as εi and εj tend

to zero [8], [9], that is

ᾱij = lim
εj→+0
εi→+0

αij . (11)

Let P̄00, P̄f0 and P̄f be the limiting solutions of the above

equation (10) as µ → +0, εj → +0, j = 1, ... , N , then

we obtain the following reduced-order equations (12).

P̄00A00 + AT
00P̄00 + P̄ T

f0Af0 + AT
f0P̄f0 +

M
∑

p=1

AT
p00P̄00Ap00

−P̄00S00P̄00 − P̄ T
f0Sf P̄f0

−P̄00S0f P̄f0 − P̄ T
f0S

T
0f P̄00 + Q00 = 0, (12a)

AT
f0P̄f + P̄00A0f + P̄ T

f0Af

−P̄00S0f P̄f − P̄ T
f0Sf P̄f + Q0f = 0, (12b)

P̄ T
f Af + AT

f P̄f − P̄ T
f Sf P̄f + Qf = 0, (12c)

where

P̄f

:=















P̄11 ᾱ12P̄
T
21 ᾱ13P̄

T
31 · · · ᾱ1N P̄ T

N1

P̄21 P̄22 ᾱ23P̄
T
32 · · · ᾱ2N P̄ T

N2
...

...
...

. . .
...

P̄(N−1)1 P̄(N−1)2 P̄(N−1)3 · · · ᾱ(N−1)N P̄ T
N(N−1)

P̄N1 P̄N2 P̄N3 · · · P̄NN















,

P̄jj = P̄ T
jj , j = 0, 1, ... , N.

It should be noted that the algebraic Riccati equation (ARE)

(12c) admits an asymmetric solution. However, it can be veri-

fied that there exists at least a symmetric positive semidefinite

stabilizing solution of ARE (12c) because of the following

reasons [11], [12].

First, the following AREs are introduced.

P̄ ∗
jjAjj + AT

jjP̄
∗
jj − P̄ ∗

jjSjjP̄
∗
jj + Qjj = 0. (13)

Moreover, let us define the following sets.

Γfj
= {γ > 0| the ARE (13) with Sjj = BjjB

T
jj −

γ−2DjjD
T
jj has a positive semidefinite and stabilizing solu-

tion P̄ ∗
jj}, j = 1, ... , N .

Assumption 2: The sets Γfj
are not empty.

Lemma 2: Under Assumption 2, the ARE (12c) admits a

unique symmetric positive semidefinite stabilizing solution

P̄f which can be written as

P̄ ∗
f := block diag

(

P̄ ∗
11 · · · P̄ ∗

NN

)

. (14)

Assumption 2 ensures that Ajj − SjjP̄
∗
jj , j = 1, ... , N

are nonsingular. Substituting the solution of (12c) into (12b)
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and substituting P̄ ∗
f0 into (12a) and making some lengthy

calculations (the detail is omitted for brevity), we obtain the

following 0-order equations (15).

P̄ ∗
00A + AT P̄ ∗

00 +

M
∑

p=1

AT
p00P̄

∗
00Ap00

−P̄ ∗
00SP̄ ∗

00 + Q = 0, (15a)

P̄ ∗T
j0 :=

[

P̄ ∗
jj −Inj

]

T−1
jj Tj0

[

In0

P̄ ∗
00

]

, (15b)

P̄ ∗
jjAjj + AT

jj P̄
∗
jj − P̄ ∗

jjSjj P̄
∗
jj + Qjj = 0, (15c)

where P̄ ∗
f0 :=

[

P̄ ∗T
10 · · · P̄ ∗T

N0

]T
,

[

A −S

−Q −AT

]

:= T00 −
N

∑

j=1

T0jT
−1
jj Tj0,

T00 :=

[

A00 −S00

−Q00 −AT
00

]

, T0j :=

[

A0j −S0j

−Q0j −AT
j0

]

,

Tj0 :=

[

Aj0 −ST
0j

−QT
0j −AT

0j

]

, Tjj :=

[

Ajj −ST
jj

−QT
jj −AT

jj

]

,

j = 1, ... , N.

Remark 1: For each j ∈ {1, ... , N} equation (13) is a

Riccati equation arising in connection with the deterministic

H∞ problem. Hence, if Γfi
is not empty then Γfi

=
(γfi

, ∞). On the other hand, if γ ∈ Γfi
then the matrix

Ajj − SjjP̄
∗
jj is a stable matrix. Therefore the hamiltonian

Tjj is invertible.

The ARE (15c) produces a positive semidefinite solution

if γ is sufficiently large. Hence, let us define the set.

Γs = {γ > 0| the SARE (15a) has a positive semidefinite

and stabilizing solution P̄ ∗
00}.

We introduce the assumption:

Assumption 3: The set Γs is not empty and it has the form

Γs = (γs, ∞).
Remark 2: a) In the considered general case it is not

clear how the coefficients A, S, Q are depending upon

γ. That is why we have to introduce as an assumption

the fact that the set Γs takes the form of a right

unbounded interval. It is worth mentioning that this

happens if all matrices Ajj are invertible.

b) The fact that P̄ ∗
00 is the stabilizing solution of (15a)

means that the trajectory x = 0 of the Ito differential

equation

dx0(t) = Ãx0(t)dt +

M
∑

p=1

Ap00x0(t)dwp(t) (16)

is exponentially stable in mean square (ESMS), where

Ã := A − SP̄ ∗
00. This is equivalent to the fact

that the Lyapunov operator X → Ã
T
X + XÃ +

∑M
p=1 AT

p00XAp00 are located in the half plane Reλ <
0. This means that (16) is true.

The limiting behavior of Pe as the parameter ||ν || → +0
is described by the following theorem.

Theorem 1: Under Assumptions 1-3, if a parameter γ >
γ̄ := max{γs, γf1 , ... , γfN

} is selected, there exists a small

σ∗ such that for all ||ν || ∈ (0, σ∗), the SMARE (7) admits the

unique symmetric positive semidefinite stabilizing solution

Pe for stochastic system (5) which can be written as

Pe := ΦeP̄ + O(||ν ||), (17)

where

P̄ :=

[

P̄ ∗
00 0

P̄ ∗
f0 P̄ ∗

f

]

, Φe := block diag
(

In0 Πe

)

.

Proof: This can be proved by applying the implicit

function theorem to (10). Since the proof is similar to that

mentioned in [12], it is omitted.

It should be noted that there is no solution of the SMARE

(7) as long as there is no positive semi-definite solutions

P̄jj of the SARE (15c). Conversely, the asymptotic structure

of the solution for the SMARE (7) can be established by

using the reduced-order solution P̄jj of the SARE (15c)

via implicit function theorem. Therefore, the existence of

the reduced-order solution P̄jj of the SARE (15c) will

play an important role in this study. In this case, it is

easy to verify that the magnitude of disturbance attenuation

level γfi
influences to the existence of the reduced-order

solution P̄jj . In fact, when γfi
tends to zero, it is hard to

obtain the reduced-order solution P̄jj except for the special

case. Finally, in this study, the problem considered here is

restricted for the disturbance attenuation level γfi
such that

the reduced-order SAREs (15c) have the solutions P̄jj.

IV. NEWTON’S METHOD

Let us consider Newton’s method (18).

P (n+1)
e (Ae − SeP

(n)
e ) + (Ae − SeP

(n)
e )T P (n+1)

e

+

M
∑

p=1

AT
peP

(n+1)
e Ape + P (n)

e SeP
(n)
e + Q = 0, (18)

where n = 0, 1, ... , and the initial conditions are chosen

as follows.

P (0)
e :=

[

P̄ ∗
00 P̄ ∗T

f0 Πe

P̄ ∗
f0 P̄ ∗

f

]

. (19)

The algorithm represented by equation (18) has the feature

given in the following theorem for the SMS.

Theorem 2: Suppose that Assumptions 1-3 are satisfied. If

the parameter-independent reduced-order SARE (15c) has a

positive semidefinite solution, there exists a small σ̃ such

that for all ||ν || ∈ (0, σ̃), 0 < σ̃ ≤ σ̄, the iterative

algorithm represented by equation (18) converges to the

exact solution of Pe with a rate equal to that of quadratic

convergence; here, P
(n)
e is positive semidefinite. Moreover,

the convergence solutions equal those of Pe in the SMARE

(7) in the neighborhood of the initial condition P
(0)
e = P̄ .

In other words, the following condition is satisfied.

||P (n)
e − Pe|| =

(2θ)2
n

φλ2n
=

O(||ν ||2n

)

φλ2n
, n = 0, 1, ... ,(20)

where λ = 2||Se|| < ∞, φ = ||[∇G(P
(0)
e )]−1||, η = φ ·

||G(P
(0)
e )||, θ = φηλ < 2−1.
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Proof: The proof follows directly by applying the

Newton-Kantorovich theorem [13]. Since the proof is similar

to that mentioned in [11], [12], it is omitted.

V. A HIGH-ORDER STATE H∞ CONTROLLER

In this section, we apply the controller u(n)(t) =

−BT
e P

(n)
e x(t) to the SMS (1) and compare it with the exact

optimal control (9).

Theorem 3: Under the conditions given in Theorem 1, if

the controller gain matrix K(n) := −BT
e P

(n)
e is designed

for a prescribed disturbance attenuation level γ > γ̄ and the

resulted controller u(n)(t) = −BT
e P

(n)
e x(t) is applied to the

SMS (1), then the following inequality will be satisfied:

||(C+HK(n)) · (sIn̄−Ae−BeK
(n))−1De||∞

= ||(C+HK)(sIn̄−Ae−BeK)−1De||∞+O(||ν ||n+1)

< γ+O(||ν ||n+1) (21)

where K = −BT
e Pe and K(n) = −BT

e P
(n)
e .

Proof: Applying the optimal controller u(t) =
Kx(t) = −BT

e Pex(t) to (1) yields

dx(t) = [(Āe + ||ν ||Le)x(t) + Dev(t)]dt

+

M
∑

p=1

Apex(t)dwp(t), x0 = 0, (22a)

J = E

∫ ∞

0

xT (t)Q̄x(t)dt, (22b)

where

Āe =

[

Ā00 Ā0f

Π−1
e Āf0 Π−1

e Āf

]

,

Ā00 := A00 − S00P̄00 − S0f P̄f0, Ā0f := A0f − S0f P̄f ,

Āf0 := Af0 − ST
0f P̄00 − Sf P̄f0, Āf := Af − Sf P̄f ,

Le = −||ν ||−1(BeB
T
e Pe−Ae+Āe), Q̄ = Q+PeBeB

T
e Pe.

Since Āf is stable, there is transformation y(t) = T−1x(t)
such that T−1ĀeT = block diag

(

Âs Π−1
e Âf

)

, where

Âs := Ā00− Ā0f Ā−1
f Āf0 +O(||ν ||) and Âf := Āf +O(||ν ||)

[10].

Using the transformation T , we obtain
[

dy0

Πedyf

]

=

([

Âs 0

0 Âf

][

y0

yf

]

+||ν ||
[

Ls

Lf

]

y

+

[

D0s

Dff

]

v

)

dt +

M
∑

p=1

T−1Apex(t)dwp(t), (23)

where J = E
∫ ∞

0 yT (t)TT Q̄Ty(t)dt, y0 = y(0),
y(t) = [yT

0 (t) yT
f (t)]T and [LT

s Π−1
e LT

f ]T = T−1Le,

[DT
0s Π−1

e DT
ff ]T = T−1De. From (23), if ||ν || is small

enough, then we have ||y||22 ≤ c1||v||22, c1 > 0. Similarly,

substituting u(t) = −K(n)x̂(t) and f(t) = T−1x̂(t) into

system (1), we get
[

df0

Πedff

]

=

([

Âs 0

0 Âf

][

f0

ff

]

+||ν ||
[

L̂s

L̂f

]

y

+

[

D0s

Dff

]

v

)

dt +

M
∑

p=1

T−1Apex̂(t)dwp(t), (24)

where Ĵ = E
∫ ∞

0
fT (t)TT Q̂Tf(t)dt, Q̂ =

Q + P
(n)
e BeB

T
e P

(n)
e , f0 = f(0), [L̂T

s L̂T
f ]T =

−||ν ||−1T−1(BeB
T
e P

(n)
e −Ae + Āe). Hence, from (24), one

can derive ||f ||22 ≤ c2||v||22, c2 > 0. Subtracting (24) from

(23) we get the following equation (25).
[

de0

Πedef

]

=

([

Âs 0

0 Âf

] [

e0

ef

]

+||ν ||
[

L̂s

L̂f

]

e

+

[

O(||ν ||n+1)
O(||ν ||n+1)

]

y

)

dt

+

M
∑

p=1

T−1Apee(t)dwp(t), (25)

where e(t) = y(t) − f(t). From (25), we obtain ||e||22 ≤
c3||ν ||2n+2||y||22 ≤ c4||ν ||2n+2||v||22, c3, c4 > 0.

Then, we note that T−1L̂eT −T−1LeT = O(||ν ||n), ||Q̂−
Q̄|| = m0||ν ||n+1, m0 > 0.

Applying the Schwartz inequality yields

|J − Ĵ | ≤ E

∫ ∞

0

[m1||e(t)|| · ||y(t)||+ m1||e(t)|| · ||f(t)||

+m2 ||ν ||n+1||f(t)||2]dt

≤ m̄[||e||2(||y||2 + ||f ||2) + ||ν ||n+1||f ||22], (26)

where m̄ = max{m1, m2}, m1 = ||T T Q̄T ||, m2 =
||T TBBT T ||. Moreover, substituting ||y||22 ≤ c1||v||22, ||f ||22 ≤
c2||v||22 and ||e||22 ≤ c4||ν ||2n+2||v||22 into (26) yields

|J − Ĵ |
≤ m̄[

√
c4(

√
c1+

√
c2)+c2 ]||ν ||n+1||v||22≤m̄0||ν ||n+1||v||22.(27)

Finally, by using condition J ≤ γ2 ||v||22, we have

Ĵ ≤ [γ2 + O(||ν ||n+1)]||v||22 = [γ + O(||ν ||n+1)]2||v||22, (28)

that is, an O(||ν ||n) accuracy controller u(n)(t) = −K(n)x(t)
achieves the performance level γ + O(||ν ||n+1).

VI. NUMERICAL EXAMPLE FRO

MEGAWAT-FREQUENCY STOCHASTIC

H∞ CONTROL

In order to demonstrate the efficiency of the stochastic

H∞ control for SMS, we present results for the practical

multiarea electric energy systems. The state variable model

of the megawatt-frequency control problem was developed

in [14]. The system matrices are given by the top of the

next page. It is assumed that time constant of the governers

represent the small singular perturbations. Hence, small

parameters are Tgv1 := ε1 = 0.030 and Tgv2 := ε2 = 0.029.

Moreover, it should be noted that µ = 0.

It should be noted that the deterministic disturbance dis-

tribution v(t) := [∆Pd1 ∆Pd2]
T = [0.1 0.1]T and the state

dependent noise related to the load frequency constant [14]

are both considered compared with the existing results [11],

[12]. We suppose that the error of the load frequency constant

is within 5% of the nominal value. Therefore, the proposed

design method is very useful because the resulting strategy

can be implemented to more practical SMS.
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A00 =











0 0.315 0 −0.315 0 0 0
0 0 1 0 0 0 0
0 −1.888 −0.0498 1.888 0 6 0
0 0 0 0 1 0 0
0 1.888 0 −1.888 −0.0498 0 0
0 0 0 0 0 −3.333 0
0 0 0 0 0 0 −3.333











, A01 =











0
0
0
0
0

3.333
0











, A02 =











0
0
0
0
6
0

3.333











,

A10 =

[

0 0 0.41666 0 0 0 0
0 0 0 0 −0.41666 0 0

]

, A20 =

[

0 0 0.41666 0 0 0 0
0 0 0 0 −0.41666 0 0

]

, A11 = A22 = −1,

A100 = block diag
(

0 0 0.00249 0 0.00249 0 0
)

, A101 = A102 = 0 ∈ ℜ
7×1

,

A110 = A120 = 0 ∈ ℜ
1×7

, A111 = A112 = A122 = 0, B01 = B02 = 0 ∈ ℜ
7×1

, B11 = 1, B22 = 1,

D01 =
[

0 0 −0.6 0 0 0 0
]T

, D02 =
[

0 0 0 0 −0.6 0 0
]T

, D11 = D22 = 0, Q = block diag
(

I7 0.25I2

)

.

u(5)(t) =

[

1.5893 9.4531e − 1 4.1393 1.6120 1.8547e − 1 4.2214 −2.8374e − 2 4.6816e − 1 2.1536e − 2
−7.8321e − 1 1.7522e − 3 2.3204e − 1 1.1581 9.5872e − 1 2.6205e − 1 9.3331e − 2 2.2279e − 2 2.6668e − 1

]

x(t).

For every boundary value γ > γ̄ := max{γs, γf1 , γf2} =
2.2608e− 1, the SMARE (7) has the positive definite stabi-

lizing solution because the AREs (15c) and the SARE (15a)

have the positive definite solution, where γs = 2.2608e− 1,

γf1 = γf2 = ∞.
Now, we choose γ = 0.3 (> γ̄) to solve the MSARE (7).

The efficiency of the Newton’s method (18) is demonstrated.
It is easy to verify that algorithm (18) converges to the exact

solution with an accuracy of ||G(P
(n)
e )|| < 1.0e − 11 after

five iterations.

Table 1. Errors per iterations.

n ||G(P
(n)
e )||

0 1.5667
1 4.2489e − 01
2 3.3631e − 03
3 2.0470e − 05
4 1.5710e − 11
5 9.1508e − 12

In order to verify the accuracy of the solution, the remain-

der per iteration is substituted by P
(n)
e into SMARE (7). In

Table 1, the results of the error ||G(P
(n)
e )|| per iteration are

given. It can be seen that algorithm (18) yields quadratic

convergence. Using the obtained iterative solution, the high-

order approximate stochastic H∞ controller is given by the

top of the this page.

VII. CONCLUSION

In this paper, stochastic H∞ control problem for the SMS

has been discussed. Particularly, a new iterative algorithm for

solving the SMARE that has sign-indefinite quadratic form

has been proposed. The proposed algorithm consist of the

Newton’s method. As a result, it has been proven that the

solution of the SMARE converges to a positive semi-definite

stabilizing solution with the rate of convergence of O(||ν ||2n

).
As another important feature, the degradation of the H∞

performance via a high-order state feedback controller by

means of the obtained iterative solution was given for the

stochastic case for the first time. Finally, for the practical

megawatt-frequency control problem, the numerical exam-

ples have shown excellent results that the proposed algorithm

has succeeded in reducing the computational workspace and

the quadratic convergence has been attained. It is worth

pointing out that although the stochastic and the deterministic

uncertainty are both included in the SMS, we can construct

the H∞ controller with high-accuracy.
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