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Abstract— A discrete-time robust extended Kalman filter
(REKF) formulation for uncertain systems expressed in terms of
a set-valued state estimator is described in this paper. The robust
filter and Riccati equations are derived as an approximate
solution to a reverse-time optimal control problem defining this
set-valued state estimator. As presented, the uncertainties are
modeled by a sum quadratic constraint (SQC) that takes into
account both modeling uncertainties as well as uncertainties
introduced from exogenous noise sources.

I. INTRODUCTION

The family of Kalman filters have been applied for state

as well as parameter estimation for numerous linear as

well as nonlinear systems. Though the standard Kalman

filter is considered an optimal estimator in case of linear

systems with Gaussian noise characteristics, its nonlinear

suboptimal counterpart, the extended Kalman filter (EKF) is

known to diverge under influences of severe nonlinearities

and uncertainties [1], [2]. As a solution to this problem

robust forms of the filter have been formulated for a wide

class of uncertainties [3]–[9]. A popular approach developed

for state estimation of uncertain systems is the set mem-

bership state estimation approach. Such approaches, with

a deterministic interpretation of the Kalman filter in terms

of a set-valued state estimator, are described in [10], [11].

The set membership state estimation approach of [10] was

extended by Savkin and Petersen in [4], [12] in order to

accommodate uncertainties in continuous-time linear systems

based on an integral quadratic constraint (IQC). A discrete-

time equivalent was presented in [12], [13] where the uncer-

tainties were modeled by a sum quadratic constraint (SQC).

As a nonlinear extension to the robust linear filter in [4],

James and Petersen proposed a robust extended Kalman filter

(REKF) for continuous-time uncertain systems in [6].

In this paper, we present a discrete-time REKF for an

uncertain discrete-time nonlinear system. The formulation of

such a discrete-time filter is motivated by the fact that most

modern-day sensors provide data in the discrete domain.

The set-valued state estimation filtering approach of [6] is

derived as an approximate solution to a reverse-time optimal

control problem obtained by applying the method of dynamic

programming to a set of forward-time system equations.

This, however, is not straightforward in the discrete-time case
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for which we consider the discrete-time system dynamics

reverse in time. This defines the contribution in the paper.

The set-valued state estimation problem in this case will

be solved by obtaining an approximate solution to the

optimal control problem in terms of a forward-time dynamic

programming equation. The discrete-time uncertain system

dynamics is considered in reverse-time with an SQC-based

uncertainty description.

The remainder of this paper is organized as follows: Sec-

tion II describes the formulation of the reverse-time discrete-

time nonlinear uncertain system and introduces the concept

of set-valued state estimation. This set-valued state estima-

tion problem is then expressed in terms of a corresponding

optimal control problem. Section III provides an approximate

solution to this optimal control problem which leads to

the Riccati and filter equations that define the discrete-time

REKF. Finally, Section IV presents an illustrative example

and compares results obtained by applying the discrete-time

REKF and the discrete-time EKF to a spring-mass-damper

system.

II. PROBLEM FORMULATION

In this section, we consider a reverse-time discrete-time

uncertain nonlinear system which is derived from a forward-

time continuous-time uncertain nonlinear system. The un-

certainties in the discrete-time uncertain system are de-

scribed by an SQC, which is derived from the corresponding

continuous-time uncertainty description in the form of an

IQC. Furthermore, the concept of set-valued state estimation

is introduced and related to a corresponding optimal control

problem.

A. Reverse-time Discrete-time Uncertain Nonlinear System

We begin with a forward-time continuous-time uncertain

nonlinear system of the form,

ẋ(t) = ac(t,x(t),u(t))+Dc(t)w(t),

z(t) = kc(t,x(t),u(t)),

y(t) = cc(t,x(t))+ v(t), (1)

where x(·) ∈ R
n is the state, u(·) ∈ R

m is the known

control input, w(·) ∈ R
p and v(·) ∈ R

l are the process and

measurement uncertainty inputs respectively, z(·)∈R
q is the

uncertainty output and y(·)∈R
l is the measured output. ac(·),

kc(·) and cc(·) are given nonlinear functions and Dc(·) is a

given matrix function of time.
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The uncertainty associated with system (1) can be de-

scribed in terms of an IQC as in [6], [12],

(x(0)−x0)
T N(x(0)− x0)

+
∫ s

0
[w(t)T Qc(t)w(t)+ v(t)T Rc(t) v(t)]

≤ d +
∫ s

0
‖ z(t) ‖2 dt, (2)

where || · || denotes the Euclidean norm. Also, w(·) and v(·)
represent admissible uncertainties described by,

[

w(t)
v(t)

]

= φ(t,x(·)), (3)

where φ(·) is a nonlinear time-varying dynamic uncertainty

function. Also, N = NT > 0 is a given matrix, x0 ∈ R
n is

a given state vector, d > 0 is a given constant and Qc(·),
Rc(·) are given positive-definite, symmetric matrix functions

of time.

In order to derive a discrete-time robust set-valued state

estimator, it is necessary to discretize this continuous-time

uncertain system. However, as mentioned in the introduction,

the discrete-time set-valued state estimator is most straight-

forward to derive if this system is discretized in reverse-

time rather than in forward-time. In order to discretize the

nonlinear uncertain system (1), standard techniques such as

the Euler or Runge-Kutta methods can be applied. This

will lead to a nonlinear reverse-time discrete-time uncertain

system described by the state equations,

x(k) = A(k,x(k +1),u(k))−B(k)w(k),

z(k +1) = K(k,x(k +1),u(k)),

y(k +1) = C(k,x(k +1))+ v(k +1), (4)

where A(·), K(·) and C(·) represent discrete-time nonlinear

functions.

The uncertainty associated with the reverse-time discrete-

time system (4) can be obtained by discretizing the IQC (2)

to obtain an SQC,

(x(0)− x0)
T N(x(0)− x0)

+
T−1

∑
k=0

(w(k)T Q(k)w(k)+ v(k +1)T R(k +1) v(k +1))

≤ d +
T−1

∑
k=0

‖ z(k +1) ‖2, (5)

where v(k + 1) = [y(k + 1) − C(k,x(k + 1))], z(k + 1) =
K(k,x(k+1),u(k)), and the admissible uncertainties w(·) and

v(·) are described as,
[

w(k)
v(k +1)

]

= ψ(k,x(·)) (6)

and ψ(·) is a nonlinear time-varying dynamic uncertainty

function.

The uncertain system (4), with the corresponding SQC

uncertainty description (5) will be used to derive the robust

filter and Riccati equations, which define the discrete-time

REKF.

B. Set-Valued State Estimation and the Corresponding Op-

timal Control Problem

Consider y0(k) = y(k) to be a fixed measured output and

u0(k) = u(k) a known control input for the uncertain system

(4), (5), for k = 1,2, ...,T . The set-valued state estimation

problem involves finding the set ZT [x0,u0(·)|
T
1 ,y0(·)|

T
1 ,d] of

all possible states x(T ) at time step T for the system in

(4) with initial conditions and uncertainty constraints defined

in (5), consistent with the measured output sequence y0(·)
and input sequence u0(·). Given an output sequence y0(·), it

follows from the definition of ZT [x0,u0(·)|
T
1 ,y0(·)|

T
1 ,d], that

xT ∈ ZT [x0,u0(·)|
T
1 ,y0(.)|

T
1 ,d] (7)

if and only if there exists an uncertain input sequence

w(·) such that, VT [xT ,w(·)] ≤ d where the cost functional

VT [xT ,w(·)] is derived from the SQC (5) as,

V T [xT ,w(·)] , (x(0)− x0)
T N(x(0)− x0)

+
T−1

∑
k=0

(w(k)T Q(k)w(k)+ v(k +1)T R(k +1) v(k +1))

≤ d +
T−1

∑
k=0

‖ z(k +1) ‖2 (8)

with v(k + 1) = [y0(k + 1) − C(k,x(k + 1))], z(k + 1) =
K(k,x(k + 1),u0(k)). Here, the vector x(·) is the solution

to the reverse-time discrete-time system (4), with input

uncertainty w(·) and terminal condition x(T ) = xT . Hence,

ZT [x0,u0(·)|
T
1 , y0(·)|

T
1 , d]

=

{

xT ∈ R
n : inf

w(·)
VT [xT , w(·)] ≤ d

}

. (9)

The optimization problem

inf
w(·)

VT [xT ,w(·)] (10)

for the system (4), defines a nonlinear optimal control

problem with a sign indefinite quadratic cost function. The

discrete-time REKF will be derived by finding an approxi-

mate solution to this optimal control problem.

III. DISCRETE-TIME ROBUST EXTENDED KALMAN

FILTER

The optimal control problem (10) for the reverse-time

discrete-time system (4) can be solved via dynamic program-

ming. Indeed, the corresponding discrete-time (forward-time)

Hamilton-Jacobi-Bellman (HJB) equation for this optimal

control problem is given by,

V ∗
k+1(x(k +1))

= min
w(k)

{V ∗
k [A(k,x(k +1),u0(k))−B(k)w(k)]

+w(k)T Q(k)w(k)+ v(k +1)T R(k +1) v(k +1)

− z(k +1)T z(k +1)}

(11)

with initial condition

V ∗
0 (x(0)) = (x(0) − x0)

T N (x(0) − x0). (12)
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As a first step towards obtaining an approximate solution

to the nonlinear optimal control problem (10), (4) we ap-

proximate V ∗
k (·) as:

V ∗
k (x(k)) ≈ (x(k)− x̂(k))T X(k)(x(k)− x̂(k))+Φ(k), (13)

where x̂(k) is a vector representing the robust state estimate

and X(k) is a symmetric matrix.

Applying the approximate solution (13) to the HJB equa-

tion (11), we obtain,

(x(k +1)− x̂(k +1))T X(k +1)(x(k +1)− x̂(k +1))

+ Φ(k +1)

=min
w(k)

{

[A(k,x(k +1),u0(k))−B(k)w(k)− x̂(k)]T X(k)

[A(k,x(k +1),u0(k))−B(k)w(k)− x̂(k)]

+ v(k +1)T R(k +1) v(k +1)

+ Φ(k)+w(k)T Q(k)w(k)− z(k +1)T z(k +1)
}

. (14)

Furthermore, comparing (12) and (13), the initial condi-

tions become x̂(0) = x0, X(0) = N and Φ(0) = 0.

Solving the minimization problem in (14), the following

nonlinear difference equation is obtained,

(x(k +1)− x̂(k +1))T X(k +1)(x(k +1)− x̂(k +1))

+Φ(k +1)

=
{

A(k,x(k +1),u0(k))
T Ξ(k) A(k,x(k +1),u0(k))

−A(k,x(k +1),u0(k))
T Ξ(k) x̂(k)

+C(k,x(k +1))T R(k +1) C(k,x(k +1))

+ y0(k +1)T R(k +1) y0(k +1)

−2 y0(k +1)T R(k +1) C(k,x(k +1))

− x̂(k)T Ξ(k) A(k,x(k +1),u0(k))+ x̂(k)T Ξ(k) x̂(k)

− z(k +1)T z(k +1)+Φ(k)
}

, (15)

where

Ξ(k) = X(k)−X(k)B(k)[Q(k)+B(k)T X(k)B(k)]#B(k)T X(k).
(16)

In the above equation, (·)# denotes the Moore-Penrose

pseudo-inverse. If the matrix (Q(k) + B(k)T X(k)B(k)) is

positive definite, the pseudo-inverse in (16) can be replaced

by a normal matrix inverse. This would hold in all cases for

which a suitable solution exists for X(k); see [12].

In order to obtain an approximate solution to the nonlinear

difference equation (15), a first order linearization of the

nonlinear system (4) is performed about the point x̂(k),

A(k,x(k +1),u0(k))

≈ A(k, x̂(k),u0(k)) + ∇xA(k, x̂(k),u0(k)) (x(k +1)− x̂(k)),

C(k,x(k +1))

≈ C(k, x̂(k)) + ∇xC(k, x̂(k)) (x(k +1)− x̂(k)),

K(k,x(k +1),u0(k))

≈ K(k, x̂(k),u0(k)) + ∇xK(k, x̂(k),u0(k)) (x(k +1)− x̂(k)).
(17)

Substituting the linearized terms from (17) into (15) and

comparing coefficients of various time-dependent variables

we obtain the following set of recursive equations,

Riccati Difference Equation

X(k +1) =





∇xA(k, x̂(k),u0(k))
T Ξ(k)∇xA(k, x̂(k),u0(k))

+ ∇xC(k, x̂(k))T R(k +1)∇xC(k, x̂(k))
− ∇xK(k, x̂(k),u0(k))

T ∇xK(k, x̂(k),u0(k))



 ,

X(0) = N. (18)

Filter State Equation

x̂(k +1) = x̂(k)+X(k +1)−1Λ,

x̂(0) = x0, (19)

where,

Λ =













∇xA(k, x̂(k),u0(k))
T Ξ(k) x̂(k)

− ∇xA(k, x̂(k),u0(k))
T Ξ(k)A(k, x̂(k),u0(k))

+ ∇xC(k, x̂(k))T R(k +1) y0(k +1)
− ∇xC(k, x̂(k))T R(k +1)C(k, x̂(k))

+ ∇xK(k, x̂(k),u0(k))
T K(k, x̂(k),u0(k))













.

(20)

Filter Constant Equation

Φ(k +1)

= 2x̂(k)T













− ∇xA(k, x̂(k),u0(k))
T Ξ(k)A(k, x̂(k),u0(k))

− Ξ(k)A(k, x̂(k),u0(k))
+ ∇xC(k, x̂(k))T R(k +1) y0(k +1)
− ∇xC(k, x̂(k))T R(k +1)C(k, x̂(k))

+ ∇xK(k, x̂(k),u0(k))
T K(k, x̂(k),u0(k))













+ x̂(k)T









∇xA(k, x̂(k),u0(k))
T Ξ(k)∇xA(k, x̂(k),u0(k))

+ 2 ∇xA(k, x̂(k),u0(k))
T Ξ(k) + Ξ(k)

+ ∇xC(k, x̂(k))T R(k +1)∇xC(k, x̂(k))
− ∇xK(k, x̂(k),u0(k))

T ∇xK(k, x̂(k),u0(k))









x̂(k)

+













A(k, x̂(k),u0(k))
T Ξ(k)A(k, x̂(k),u0(k))

+ C(k, x̂(k))T R(k +1)C(k, x̂(k))
− K(k, x̂(k),u0(k))

T K(k, x̂(k),u0(k))
+ y0(k +1)T R(k +1) y0(k +1)
− 2C(k, x̂(k))T R(k +1) y0(k +1)













+
[

Φ(k) − x̂(k +1)T X(k +1) x̂(k +1)
]

,

Φ(0) = 0, (21)

where Ξ(k) is defined in (16).

Assuming that the recursions (18), (19), (21) have so-

lutions x̂(k), X(k), Φ(k) such that X(k) > 0 and (Q(k) +
B(k)T X(k)B(k)) > 0 for k = 1,2, ...,T , the corresponding

approximate set-valued state estimate is given by,

ZT [x0, u0(·)|
T
1 , y0(·)|

T
1 , d]

∼=

{

xT ∈ R
n :

(x(T ) − x̂(T ))T X(T ) (x(T ) − x̂(T )) ≤ d − Φ(T )

}

.

(22)

It should be noted that, if the reverse-time discrete-time

uncertain system (4), (5) is in fact linear as in [12], [13],

then the nonlinear Riccati difference equation (18), the filter

state equation (19) and the filter constant equation (21) yield

a discrete-time linear robust Kalman filter that agrees with

the solution presented in [12], [13].
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IV. ILLUSTRATIVE EXAMPLE

The effectiveness of the discrete-time REKF over the

discrete-time EKF is illustrated by applying both methods

to a spring-mass-damper system in which the total energy in

the system is measured. The total energy can be indirectly

measured using available inertial or motion sensors, and

applied to structural health monitoring and vibration analysis

of aircrafts, spacecrafts and missiles. Computing the energy

also aids in understanding the total energy profile during

various phases of a missile trajectory with the aim of

improving range and accuracy.

We are interested in estimating the velocity x1(t) and

position x2(t) of such a system in the presence of modeling

uncertainties as well as exogenous disturbances. Consider

a continuous-time uncertain spring-mass-damper system de-

scribed by the state equations,

ẋ(t) = Ac x(t)+Bc w(t),

y(t) = Cc(t,x(t))+ v(t),

z(t) = Kc(t,x(t)), (23)

where,

x(t) = [x1(t) x2(t)]
T ,

Ac =

[

−2ζ ωn −ω2
n

1 0

]

,

Bc = [1 0]T ,

Kc(t,x(t)) = [1 1] x(t),

w(t) =
(

ω2
n w̃(t)+∆1z(t)

)

,

Cc(t,x(t)) =
1

2

(

mx1(t)
2 + kx2(t)

2
)

,

v(t) = (ṽ(t)+∆2z(t)) . (24)

Here, w̃(t), ṽ(t) represent exogenous disturbances, and the

terms ∆1z(t) and ∆2z(t) represent uncertainties in the model

dynamics. In the discretized uncertain system model pre-

sented below, these quantities will be bounded by an SQC.

The description and values of various constants in the system

are detailed in Table I.

TABLE I

SPRING-MASS-DAMPER SYSTEM CONSTANTS

Constant Value Units Description

ζ 0.2 - Damping ratio

ωn 1 Hz Natural frequency

m 5 kg Mass

k ω2
n m N m−1 Spring constant

The measurement equation in (24) represents measurement

of the total energy in the system, which can be measured

using standard sensors in a physical application. In order

to simulate the spring-mass-damper system, the continuous-

time system in (23)-(24) is descretized as,

x(k +1) = Ad x(k)+Bd w(k),

y(k +1) = Cd(k,x(k +1))+ v(k +1),

z(k +1) = Kd(k,x(k +1)), (25)

where,

x(k) = [x1(k) x2(k)]
T ,

Ad = eAch,

Bd =
∫ k h

0
eAcτ dτ Bc,

Kd(k,x(k +1)) = [1 1] x(k +1),

w(k) =
(

ω2
n w̃(k)+∆1z(k +1)

)

,

Cd(k,x(k +1)) =
1

2

(

mx1(k +1)2 + kx2(k +1)2
)

,

v(k) = (ṽ(k +1)+∆2z(k +1)) . (26)

Here, k = t/h and the sample time is chosen as h = 10 ms.

The system of equations (25)-(26) was used to simulate

the discrete-time spring-mass-damper system with initial

conditions x(0) = [0 0]T . The uncertainty in the system is

defined by the SQC,

10/h

∑
k=0

(

0.05 w(k)2 +0.5 v(k +1)2
)

≤ d + |z(k +1)|2. (27)

As described in Section III, the dynamics of the discrete-

time uncertain system under consideration needs to be mod-

eled in reverse-time in order to construct the corresponding

Riccati and filter equations. This can be calculated using the

forward-time continuous-time dynamics as,

x(k) = Ak x(k +1)+Bk w(k),

y(k +1) = Ck(k,x(k +1))+ v(k +1),

z(k +1) = Kk(k,x(k +1)), (28)

where,

x(k) = [x1(k) x2(k)]
T ,

Ak = e−Ach,

Bk =
∫ k h

0
e−Acτ dτ Bc,

Kk(k,x(k +1)) = Kd(k,x(k +1)),

Ck(k,x(k +1)) = Cd(k,x(k +1)). (29)

The uncertainty in both process as well as measurement

equations remains the same as in (26) and (27).

The REKF Riccati equation (18) and filter equation (19)

were applied to the simulated system (25)-(26) using the

system dynamic model described by (27)-(29). The discrete-

time EKF was also applied to the simulated system using

the Riccati equation (18) and filter equation (19) for the

system (27)-(29) obtained by setting Kk(k,x(k +1)) = [0 0].
A random initial state of xinit = [0.86 0.09]T was used for

the estimator process.

The results obtained by applying the discrete-time REKF

as well as the discrete-time EKF to the discrete-time

uncertain spring-mass-damper system ((25)-(27)) are now

presented. In these simulations, the disturbance sequences

w̃(k) and ṽ(k + 1) were taken as uncorrelated white noise

sequences with covariances E(w̃(k)2) = 0.62 and E(ṽ(k +
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1)2) = 6.23e−5. Also, the uncertain parameters were taken

as ∆1 = 2.68 and ∆2 = 0.85. These values are consistent

with the SQC (27). Fig. 1 compares the absolute velocity

errors whereas Fig. 2 compares the absolute position errors

obtained by applying the discrete-time REKF and EKF meth-

ods to the uncertain spring-mass-damper system. It is evident

from these plots that the discrete-time REKF estimates states

of the uncertain spring-mass-damper system accurately with

a steady decrease in absolute error, whereas the EKF shows

clear signs of divergence.
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REKF: absolute velocity error

EKF: absolute velocity error

Fig. 1. Comparison of the absolute velocity errors obtained by applying
discrete-time REKF and EKF to the uncertain spring-mass-damper system.
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Fig. 2. Comparison of the absolute position errors obtained by applying
discrete-time REKF and EKF to the uncertain spring-mass-damper system.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we have presented a novel discrete-time

robust extended Kalman filter (REKF) based on the reverse-

time discretization of a continuous-time nonlinear uncertain

system. Filter and Riccati difference equations were derived

as an approximate set-valued state estimator obtained from

the solution to a corresponding optimal control problem. The

performance of the new filter was illustrated by comparing

its absolute estimation error results with that of a standard

EKF for an uncertain spring-mass-damper system. The new

filter can be applied to nonlinear discrete-time systems with

uncertainties modeled by a sum quadratic constraint (SQC)

uncertainty description.
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