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Abstract— In this paper, consensus problems of continuous-
time networked multi-agent systems via sampled control are
investigated. The sampled control protocols are induced from
continuous-time linear consensus protocol by using periodic
sampling technology and zero-order hold circuit. A sufficient
condition for reaching average-consensus under undirected net-
works with sampling delay and switching topology is obtained.
Some numerical simulations are presented to illustrate the
utility of our theoretical results.

I. INTRODUCTION

Consensus problem in networked multi-agent systems has

been attracted increasing attention in recent years. It is

a comprehensive interdisciplinary subject including control

theory, mathematics, biology, physics, computer science,

robotics, artificial intelligence and so on. The applications

of multi-agent systems are extensive, ranging from multiple

space-craft alignment, heading direction in flocking behavior,

average in distributed computation and rendezvous of multi-

ple vehicles. Based on certain quantities of interest, consen-

sus problems of multi-agent systems have been studied by

many researchers(see [1],[2] and the references therein).

In the field of system and control, the development of

consensus theory was mainly impelled by the particles

swarm model mentioned in [3]. Vicsek et al. proposed a

discrete model of finite autonomous agents all moving in the

plane with same speed but with different headings. Every

agent’s heading was updated using a local rule based on

the average of its own heading plus the heading of its

neighbors. Moreover, the concept of neighbors of agents was

introduced. Some simulation results which demonstrated the

nearest neighbor rule were obtained.

In [4], Jadbabaie et al. provided a theoretical explanation

of the consensus behavior of the Vicsek’s model and derived

convergence results for several similarly inspired models.

They proved that Vicsek’s model was still valid under switch-

ing topology, but for which there did not exist a common

quadratic Lyapunov function.

A systematical framework of consensus problem in net-

works of dynamic agents with fixed/switching topology and

communication time-delays was established in [5] by Olfati-

Saber and Murray. In their paper, directed networks with
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fixed topology, directed networks with switching topology,

and undirected networks with communication time-delays

and fixed topology were considered under the assump-

tion that the dynamics of each agent was a simple scalar

continuous-time integrator ẋ = u. Moreover, a disagreement

function was introduced for disagreement dynamics of a

directed network with switching topology.

Following [4] and [5], in [6], Ren and Beard investigated

more comprehensive discrete-time and continuous-time con-

sensus scheme which included Jadbabaie’s result as a special

case. Compared with the results in [4] and [5], they provided

a milder condition that guaranteed consensus achieving for

all the agents.

In [7], a simple but compelling model of network of

agents interacting via time-dependent communication links

was studied. The analysis in this paper was integrated within

a formal framework of set-valued Lyapunov theory. They

also showed that more communication did not necessarily

lead to faster convergence and may eventually led to a loss

of convergence, even for the simple models.

In [8], two problems were considered: the state agreement

problem for coupled nonlinear differential equations and the

rendezvous problem for kinematic point-mass mobile robots.

Their theory based on vector field and non-smooth analysis.

Under the assumption that the vector fields satisfied a certain

sub-tangentiality condition, they proved that asymptotic state

agreement was achieved if and only if the dynamic interac-

tion digraph had the property of being sufficiently connected

over time.

In the past few years, consensus problems of multi-agent

systems have been developed vary fast and several research

topics have been addressed.

Because communication links among agents might be

unreliable due to interaction among agents or external dis-

turbances, the information-exchange topologies are often

dynamic. Meanwhile, owing to long distance or the confine

of medium, communication delays are ubiquitous. Therefore,

consensus problems with switching topologies and time-

varying delays have received general attention [9], [10], [11],

[12], [13].

In [14], [15], [16], [17], consensus problems of multi-agent

systems with higher order dynamics were considered. Part

or all of the agents updated their states according to second-

order or high-order dynamics.

Asynchronous consensus problem were considered in [18],

[19], [20]. The asynchronism may led to negative affection

such as induced delays and time-varying topologies, so it

was more difficult to analyze such systems.
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There are also some results investigating stochastic con-

sensus problems [21], [22], [23], [24], where the com-

municating channel between agents was stochastic. Finite-

time consensus problem is another interesting topic [25],

[26]. Compared with asymptotic consensus, the finite-time

consensus systems have faster convergence rate, higher con-

trol accuracy and better disturbance rejection. Some other

interesting results can be seen in [27], [28], [29], [30] and

so on.

With the development of digital sensors and controllers, in

many cases, though the system itself is a continuous process,

the synthesis of control law can only use the data sampled at

the discrete sampling instants. Compare to continuous-time

system with continuous-time controller or direct discrete-

time system, continuous-time system via sampled control has

many advantages. On the one hand, the digital controller

which is designed based on the sampled controller has

obvious advantages in control accuracy , control speed,

performance and price, and has better generality. On the

other hand, in engineering applications, continuous signals

will require broad bandwidth of networks, and in most

cases, will not be available in practice. Therefore, sampled

control for continuous-time system is more coincident with

applications in our real life. Sampled control is applied

extensively nowadays. Robots, vehicles, airplanes, satellites,

and almost all of modern artificial products are controlled

by digital controller where continuous signals are transferred

into discrete ones.

For consensus problems of continuous-time multi-agent

systems via sampled control, there are only a few relevant

results. In [31] and [32], formation control of multi-agent

systems with intermittent information exchange between the

agents was considered. They both derived stability con-

ditions under a predetermined sampling period. In [33],

sampled-data based average-consensus control for networks

consisting of continuous-time first-order integrator agents

under a noisy distributed communication environment was

considered. They proved that when the sampling size was

sufficiently small, the static mean square error between the

individual state and the average initial states of all nodes

was arbitrarily small. However, in the real applications, we

always want to know how large the sampling period would be

chosen to guarantee the system run well. This requires us to

find an upper bound of sampling period. Moreover, sampling

delay can not be ignored and sometimes may play a key role

in the stability analysis of the whole network. Therefore, we

will also consider the case when sampling delay exists and

is less than a sampling period.

The main contribution of this work is that sampled control

is introduced into consensus problem of multi-agent systems.

Consensus problems with sampled data and sampling delay

are considered. We only consider undirected networks with

sampling delay and switching topology. The consensus pro-

tocol for networks with sampling delay are introduced. We

will establish conditions in which case all the agents can

achieve consensus. Finally, numerical examples are given to

illustrate the utility of our results.

An outline of the rest of this paper is as follows. In Section

II, we review graph theory and the consensus problems

on networks. Section III introduces the sampled-data based

control protocol for networks. Section IV presents the main

results. The simulation results are presented in Section V.

Finally, Section VI concludes the whole paper.

In this paper, notation 1M is the column vector [1, · · · ,1]T

with M-dimension. Notation diag{a1, · · · ,aM} represents the

diagonal matrix







a1 0

. . .

0 aM






.

II. BRIEF REVIEW OF GRAPH AND CONSENSUS

PROBLEM IN NETWORKS

In this section, we introduce algebraic graph theory and

consensus problems. Let G = (V ,E ,A ) be an undirected

graph with the set of vertices V = {1,2, · · · ,M} and the

set of edges E ⊆ V ×V , and a weighted adjacency matrix

A = [ai j] with nonnegative adjacency elements ai j. An edge

of G is denoted by ei j = ( j, i). The adjacency elements

associated with the edges are positive, i.e., ei j ∈ E ⇐⇒
ai j > 0. Moreover, we assume aii = 0 for all i∈V . The set of

neighbors of node i is denoted by Ni = { j ∈ V : ( j, i)∈ E }.

Since the graph considered is undirected, it means once ei j

is an edge of G , e ji is an edge of G as well. As a result, the

adjacency matrix A is a symmetric nonnegative matrix.

A cluster is any subset J ∈ V of the nodes of the graph.

The set of neighbors of a cluster NJ is defined by

NJ =
⋃

i∈J

Ni = { j ∈ V : i ∈ J,( j, i) ∈ E }

The degree of node i is the number of its neighbors Ni and

is denoted by deg(i). The degree of node i is given by

deg(i) =
N

∑
j=1

ai j (1)

The degree matrix is defined as ∆ =
diag{deg(1),deg(2), · · · ,deg(M)}. The Laplacian of

graph G is defined by

L = ∆−A (2)

An important fact of L is that all the row sums of L are

zero and thus 1M = [1,1, · · · ,1]T ∈ R
M is an eigenvector of

L associated with the zero eigenvalue.

A path between each distinct vertices i and j is meant a

finite ordered sequence of distinct edges of G of the form

(i,k1),(k1,k2), · · · ,(kl , j) . A graph is called connected if

there exist a path between any two distinct vertices of the

graph.

Lemma 1: [34] Graph G is connected if and only if

rank(L) = M−1.

By Lemma 1, for a connected graph, there is only one

zero eigenvalue of L, all the other ones are positive and real.

Given a graph G , denote Λ+(L) as the set of nonzero

eigenvalues of the Laplacian L of G .

Given a graph G , let xi ∈R denote the state of node i. We

refer to (G ,x) with x = [x1,x2, · · · ,xM]T ∈ R
M as a network
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with state x and communication topology G . Suppose each

node of a graph is a dynamic agent with dynamics

ẋi(t) = ui(t) (3)

where xi is aforementioned state of node i and ui is the

control input that will be used for consensus problem.

Let χ : R
M → R be a function of the state of the network

x(t). The χ-consensus problem in a network (G ,x) is a

distributed way to calculated χ(x0) by applying inputs ui

that only depend on the states of itself and its neighbors. We

say a feedback

ui(t) = ki(x j1(t),x j2(t), · · · ,x jLi
(t)) (4)

is a control protocol with topology G if the cluster

{ j1, · · · , jLi
} = {i}⋃

Ni, i = 1, · · · ,M.

We say protocol (4) asymptotically solves the χ-consensus

problem if and only if there exists an asymptotically stable

equilibrium x∗ of the network satisfying x∗i = χ(x(0)),i =
1, · · · ,M. Whenever the nodes of a network are all in

consensus, the common value of all nodes is called the

network decision value. A special case with χ(x) = Ave(x) =
1/M(∑M

i=1 xi) is called average-consensus problem.

III. SAMPLED-DATA CONTROL PROTOCOL AND

INDUCED NETWORK DYNAMICS

In this section, we investigate distributed solutions of the

consensus problem via sampled-data linear control. In [5]

the following continuous-time linear consensus protocol was

introduced:

ui(t) = ∑
j∈Ni

ai j(x j(t)− xi(t)), i = 1, · · · ,M. (5)

Here a sampled-data control protocol is induced from (5)

by using period sampling technology and zero-order hold

circuit. Let h > 0 be the sampling period, the obtained

protocol is given as:

ui(t) = ∑ j∈Ni
ai j(x j(kh)− xi(kh)),

if t ∈ [kh,kh+h),k = 0,1,2, · · · ; i = 1, · · · ,M.
(6)

By using the protocol (6), the network dynamics is summa-

rized as follows:

x(kh+h) = Φx(kh),k = 0,1,2, · · · . (7)

where

Φ = I −hL (8)

with L the aforementioned Laplacian associate with the graph

G .

If sampling induced time delay is concerned, the situation

becomes complicated. We assume that the sampling delay τ
is fixed and less than the sampling period, i.e., 0 < τ < h. In

this situation, the protocol becomes

ui(t) =







∑
j∈Ni

ai j(x j(kh−h)− xi(kh−h)), if t ∈ [kh,kh+ τ)

∑
j∈Ni

ai j(x j(kh)− xi(kh)), if t ∈ [kh+ τ,kh+h)

k = 0,1,2, · · · ; i = 1, · · · ,M.
(9)

Then the network dynamics is given as follows:
[

x(kh+h)
x(kh)

]

= Ψ

[

x(kh)
x(kh−h)

]

,k = 0,1,2, · · · . (10)

where

Ψ =

[

I − (h− τ)L, −τL

I, 0

]

. (11)

IV. CONVERGENCE ANALYSIS

In this section, we provide the convergence analysis of

the average-consensus problem for networks with switching

topology. First, we give the set of admissible graphs which

will be used. We assume that the graph G belongs to a

collection of undirected and connected graphs given by

Gc = {G |rank(LG ) = M−1,1T
MLG = 0} (12)

with

λmax = max
G∈Gc

max
λ (LG )∈Λ+(LG )

λ (LG ) < +∞ (13)

In this situation, the protocol becomes

ui(t)=











∑
j∈Ni(t)

ai j(t)(x j(kh−h)−xi(kh−h)), if t∈[kh,kh+τ)

∑
j∈Ni(t)

ai j(t)(x j(kh)−xi(kh)), if t ∈ [kh+ τ,kh+h)

k = 0,1,2, · · · ; i = 1, · · · ,M.
(14)

where A (t) = [ai j(t)] is the adjacency matrix of the graph

G (t) at time t.

Then the network dynamics is summarized as follows:
[

x(kh+h)
x(kh)

]

= ΨG (t)

[

x(kh)
x(kh−h)

]

,k = 0,1,2, · · · . (15)

where

ΨG (t) =

[

I − (h− τ)LG (t), −τLG (t)

I, 0

]

. (16)

with LG (t) the aforementioned Laplacian associate with the

graph G (t) at instant t.

We write [xT (kh),xT (kh−h)] as

[xT (kh),xT (kh−h)] = 1T
2MAve(x(0))+ [δ T (kh),δ T (kh−h)]

(17)

where δ is called the disagreement vector. It is easy to verify

that δ satisfies the following disagreement dynamics

ζ (kh+h) = ΨG (t)ζ (kh) (18)

where ζ (kh) = [δ T (kh),δ T (kh−h)]T .

Before giving the main theorem, we present the following

two lemmas.

Lemma 2: Given a set of Schur stable matrix

AS = {A|A =

[

a b

1 0

]

∈ R
2×2,−3

2
b < a < 1,−2

3
< b ≤ 0}

(19)

and a positive definite matrix

P =

[

2 −1

−1 1

]

> 0, (20)
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then we have

Q = P−AT PA

=

[

1+2a−2a2 b−1−2ab

b−1−2ab 1−2b2

]

> 0,∀A ∈ AS.

Proof: The matrix Q > 0 if and only if 1−2b2 > 0 and

det(Q) > 0.

On the one hand, noticing 1−2b2 > 0 ⇐⇒ − 1√
2

< b <
1√
2
, since − 1√

2
< − 2

3
, we get 1−2b2 > 0 holds, for all b ∈

(− 2
3
,0].

On the other hand, we have

det(Q) = −2a2 −4ab−3b2 +2a+2b

= −2(a+b−1/2)2 −b2 +1/2

Let

f (a,b) = −2(a+b−1/2)2 −b2 +1/2 (21)

Then the curve f (a,b) = 0 is an ellipsoid. Moreover, we

have(See Fig. 1)

{(a,b)|− 3

2
b < a < 1,−2

3
< b ≤ 0} ⊂ {(a,b)| f (a,b) > 0}

(22)

Thus, det(Q) > 0 holds, for all (a,b) satisfying − 3
2
b < a <

1,− 2
3

< b ≤ 0.

Fig. 1: The illustration for Lemma 2.

Lemma 3: Given a connected graph G , we have

{ζ ∈ R
2M|(I2 ⊗1T

M)ζ = 0}
= ((I2 ⊗WG )EP){η ∈ R

2M|([1,0, · · · ,0]⊗ I2)η = 0}
(23)

where WG is an orthogonal matrix such that W−1
G

LG WG =
diag{0,λ2(LG ), · · · ,λM(LG )}, and EP is a permutation ma-

trix given by

EP = [e1,eM+1,e2,eM+2, . . . ,eM,e2M]T ∈ R
2M×2M (24)

where ei is the column vector with 1 in its i’th row and

zeros elsewhere, i = 1, · · · ,2M. It is obvious that EP is an

orthogonal matrix as well, i.e., ET
P EP = I2M .

Proof: For a connected graph G , since LG is a real

and symmetric matrix, there exists an orthogonal matrix WG

such that

W−1
G

LG WG = diag{0,λ2(LG ), · · · ,λM(LG )}

It follows that

(I2 ⊗W−1
G

)ΨG (I2 ⊗WG ) =

[

Ψ1 Ψ2

I 0

]

where

Ψ1 = diag{1,1− (h− τ)λ2, · · · ,1− (h− τ)λM}
and

Ψ2 = diag{0,−τλ2, · · · ,−τλM}
Moreover, we have

ET
P (I2 ⊗W−1

G
)ΨG (I2 ⊗WG )EP

= diag{
[

1 0

1 0

]

,

[

1− (h− τ)λ2 −τλ2

1 0

]

, · · · ,
[

1− (h− τ)λM −τλM

1 0

]

}

For undirected connected graph G , we also have

LG 1M = 0

It follows that

WG diag{0,λ2(LG ), · · · ,λM(LG )}W−1
G

1M = 0

Since WG is orthogonal, we have

W−1
G

1M = c[1,0, · · · ,0]T ∈ R
M

where c is a nonzero constant scalar. Then we have

(I2 ⊗W−1
G

)(I2 ⊗1M) = c(I2 ⊗ [1,0, · · · ,0]T )

= c

[

1,0, · · · ,0,0,0, · · · ,0
0,0, · · · ,0,1,0, · · · ,0

]T

∈ R
2M×2

Notice that

ET
P (I2 ⊗ [1,0, · · · ,0]T ) = [1,0, · · · ,0]T ⊗ I2

It follows that

ET
P (I2 ⊗W−1

G
)(I2 ⊗1M) = c[1,0, · · · ,0]T ⊗ I2

= c

[

1,0, · · · ,0,0,0, · · · ,0
0,1, · · · ,0,0,0, · · · ,0

]T

∈ R
2M×2

This implies that

ET
P (I2 ⊗W−1

G
)span{I2 ⊗1M} = span{[1,0, · · · ,0]T ⊗ I2}

We can rewrite it as

span{I2 ⊗1M} = (I2 ⊗WG )EP span{[1,0, · · · ,0]T ⊗ I2}
Since (I2 ⊗WG )EP is orthogonal as well, it follows that

span{I2 ⊗1M}⊥ = (I2 ⊗WG )EP span{[1,0, · · · ,0]T ⊗ I2}⊥
This means that (23) holds.

Theorem 1: : For any switching signal G (t) : R
+ −→ Gc,

if the sampling delay and sampling period satisfy

0 ≤ τ <
2

3λmax

(25)

and

τ < h <
1

λmax

− τ

2
. (26)
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then the switching protocol (14) globally asymptotically

solves the average-consensus problem. Moreover, the follow-

ing quadratic positive-definite function

V (ζ ) = ζ T (P⊗ IM)ζ (27)

is a common Lyapunov function for the disagreement dy-

namics (18), where P is given by (20).

Proof: Denote

RG (t) = (ET
P (I2 ⊗W−1

G (t)))ΨG (t)((I2 ⊗WG (t))EP) (28)

where WG (t) is the orthogonal matrix such

W−1
G (t)LG (t)WG (t) = diag{0,λ2(LG (t)), · · · ,λM(LG (t))}

Then we have

RG (t) = diag{
[

1 0

1 0

]

,
[

1− (h− τ)λ2(LG (t)) −τλ2(LG (t))
1 0

]

,

· · · ,
[

1− (h− τ)λM(LG (t)) −τλM(LG (t))
1 0

]

}
(29)

Set a = 1 − hλm(LG (t)) + τλm(LG (t)),b =
−τλm(LG (t)),m = 2, · · · ,M. By simple verification, from

(25) and (26), we get that − 3
2
b < a < 1 and − 2

3
< b ≤ 0

hold. By Lemma 2, we have

P−
[

1− (h− τ)λm(LG (t)) −τλm(LG (t))
1 0

]T

×

×P

[

1− (h− τ)λm(LG (t)) −τλm(LG (t))
1 0

]

> 0

(30)

holds for any m = 2, · · · ,M and any t ≥ 0.

It follows that

ηT (IM ⊗P−RT
G (t)(IM ⊗P)RG (t))η > 0 (31)

for any nonzero η ∈ R
2M satisfying ([1,0, · · · ,0]⊗ I2)η = 0.

It is easy to verify that

EP(IM ⊗P)ET
P = P⊗ IM, (32)

then we have

((I2 ⊗WG (t))EPη)T (P⊗ IM −ΨT
G (t)(P⊗ IM)ΨG (t))×

×((I2 ⊗WG (t))EPη) > 0
(33)

for any nonzero η ∈ R
2M satisfying ([1,0, · · · ,0]⊗ I2)η = 0.

By Lemma 3, we have

ζ T (P⊗ IM −ΨT
G (t)(P⊗ IM)ΨG (t))ζ > 0 (34)

for any nonzero ζ satisfying (I2 ⊗ 1T
M)ζ = 0. This implies

that for any switching signal, we always have

V (ζ (kh+h))−V (ζ (kh))
= ζ T (kh+h)(P⊗ IM)ζ (kh+h)−ζ T (kh)(P⊗ IM)ζ (kh)
= ζ T (kh)ΨT

G (t)(P⊗ IM)ΨG (t)ζ (kh)

−ζ T (kh)(P⊗ IM)ζ (kh)
= ζ T (kh)(ΨT

G (t)(P⊗ IM)ΨG (t) −P⊗ IM)ζ (kh) < 0

Therefore, V (ζ ) is really a common Lyapunov function for

the disagreement dynamics (18). This completes the proof.

V. SIMULATIONS

In this section, numerical simulations will be given to

illustrate the theoretical results obtained in the previous

sections. All graphs in our simulations have 0−1 weights.

1 3

6 5 4

2 2 3

6 5 4

(a)
(b)

6 5 4

1 2 3

(c)

1 2 3

6 5 4

(d)

1

Fig. 2: The graphs in Example 1.
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Fig. 3: Simulation result when τ = 0.01,h = 0.08

Example 1 (Network with switching topology): Consider

a network with 4 undirected connected graphs shown in

Fig.2. By calculation, we obtain λmax = 6. From (25) and

(26), it is easy to see that the upper bound of sampling

delay τ and sampling period h is 1/9 . Fig.3 and Fig.4 are

the simulation results with different sampling delay and

sampling period. We can see that the switching protocol

(14) globally asymptotically solves the average-consensus

problem indeed.

VI. CONCLUSION

In this paper, convergence analysis of consensus control

for networks of multi-agent systems via sampled control

has been investigated. Our analysis relies on several tools

from algebraic graph theory, matrix theory and stability

theory. For undirected networks with switching topology, we

have presented a sufficient condition for reaching average-

consensus. The result for fixed topology case is contained in
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Fig. 4: Simulation result when τ = 0.04,h = 0.02

[36]. The future work include large sampling delay case and

time-varying sampling delay case.
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