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Abstract— The paper presents a cooperative control algo-
rithm for a team of Unmanned Aerial Vehicles (UAVs) used in
the surveillance of the area around a military base to protect
against potential threats. The UAVs are required to search an
area of interest, while efficiently allocating their time between
zones of varying degrees of importance. Irregular routes are
preferred, to reduce the ability of an adversary to predict
the patrol routes of the UAVs. In this paper, we consider
a team of potentially heterogeneous, dynamically constrained
UAVs with constant velocities. The problem is approached as
a finite horizon optimization to account for possible alarms
as they occur. This approach seeks to optimize the amount of
information obtained by the UAVs, with surveillance of pop-up
alarms a high but not sole priority. Particle Swarm Optimiza-
tion (PSO) is used to search the control space and optimize the
reward function. This approach guarantees feasible trajectories,
without smoothing, in addition to unpredictable paths.

I. INTRODUCTION

Aerial surveillance is a key technology for a wide range of
civilian and military applications. Civilian uses include, but
are not limited to: forest fire monitoring, wildlife tracking,
oil spill detection, traffic monitoring, and search and rescue.
Military applications are many and varied, including both
strategic and tactical uses, with examples ranging from
target detection, identification, and tracking, to perimeter
monitoring, area surveillance, and intelligence gathering.

The algorithmic results presented in this paper are inde-
pendent of any specific UAV platform. Hence, the UAVs
may be heterogeneous or homogeneous, but must work
cooperatively. By cooperatively, we mean that the UAVs
optimize a common reward function. The UAVs could fly any
of uncountably many feasible paths to perform the desired
surveillance mission, and the extra degrees of freedom will
be exploited to remove predictability from the vehicle flight
paths. The inclusion of pop-up targets and/or alarms as a
stochastic event makes the cooperative planning problem
more complex, and also contributes to the unpredictability of
vehicle routes. Due to the extreme complexity of the resulting
optimization problem, and the requirement to compute new
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routes quickly when pop-up alarms occur, computing an
exact solution to the optimization problem is not feasible.
Instead, a heuristic approach will be used to compute a suit-
able and acceptable sub-optimal solution within the allowable
computation time.

A. Nomenclature

We begin by listing the nomenclature that will be used
throughout the paper. For ease of notation, we also note that
all vectors are considered to be row vectors; column vector
transpose is not indicated. In addition, functional dependence
on time is suppressed in equations where the notation might
seem cumbersome.

number of UAVs = N ∈ N
time horizon = T ∈ N

position of vehicle i = (xi, yi) ∈ R2

orientation angle of vehicle i = ψi ∈ R
control input for vehicle i = ui ∈ R

UAV footprint radius of vehicle i = ri ∈ R
velocity of vehicle i = vi ∈ R

environment reward function = E : R3 → R
instantaneous reward for all UAVs = R : R2N+1 → R

B. Literature Review

The literature in UAV cooperative control is vast and
suggests many ways to control a team of cooperative UAVs
for aerial surveillance and area coverage. Past research for
aerial surveillance can be grouped into at least two cate-
gories. One approach looked at the surveillance problem
as a coverage problem, and optimized the coverage of a
given area, such as the lawnmower pattern. In [1], an
exhaustive search algorithm, similar to a lawnmower pattern,
is developed to search for targets. In this algorithm the
UAVs fly in lanes and turn into subsequent lanes after the
entire current lane has been traversed. Ahmadzadeh et al.
[2] considered the problem of optimizing the coverage of
an area while satisfying hard constraints, such as initial and
final positions. Delima [3] considered optimizing coverage
while using metrics such as dynamic coverage, heterogeneity
of coverage, and energy consumption. Others [4], [5], [6],
[7], [8] have also investigated similar techniques to optimize
coverage.

Another aspect of aerial surveillance focuses on control
algorithms that observe areas of highest interest in a region.
Girard et al. [9] and Beard et al. [10] develop control
algorithms to track the perimeter of a known area of interest.

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

ThA19.1

978-1-4244-4524-0/09/$25.00 ©2009 AACC 2612



In this paper, we consider a team of UAVs used in the
surveillance of a two dimensional space (the base and/or
some surrounding region), while still responding (visiting) to
pop-up alarms during the surveillance period. Our algorithm
surveils the entire region over time, while emphasizing the
areas that have a high potential for intrusions. The algorithm
also generates irregular paths to reduce the ability of an
intruder to predict the paths of the UAVs. Due to the inherent
randomization of the technique, there is no guarantee of
complete coverage of a given area in finite time.

This paper is organized as follows. Section II describes
the objective and the problem formulation. Section III briefly
gives an overview of PSO. Section IV describes the notations
used in the algorithm, and Section V describes the algorithm
itself. Finally, results are given in Section VI for several
example problems, and conclusions are found in Section VII.

II. PROBLEM FORMULATION

A team of UAVs is assigned for surveillance of a military
base and the surrounding area to protect against potential
threats. We define surveillance as simply the monitoring of
a given area. The goal of the UAVs is to find feasible paths
through the regions of most importance to a human operator
at a given time t. The flight trajectory control sequence
for each vehicle is determined by solving the optimization
problem described below. A reward function quantifies the
amount of information the UAVs have accumulated over a
given time T , with R(t) denoting the reward at time instant
t ∈ [0, T ]. The sensor footprints of the cameras are assumed
to be cones that intersect the plane with radius ri, centered
directly below the UAVs. When a region is within a UAV’s
footprint, the reward over the entire region is collected and
is instantaneously set to zero, so the UAVs will tend not
to revisit previously viewed areas. Conversely, when regions
are outside the UAVs’ footprint, the reward grows.

We begin by defining a couple of new variables. Let

pi(t) = (x(t)i, y(t)i) (1)

be the cartesian coordinates of vehicle i, in an inertial frame.
We will omit the dependence on time from this point on.
Define

p = [p1 p2 · · · pN ] (2)

to describe the position coordinates of all N UAVs. Then,
the problem can be stated simply. Find

max
∫ T

0

R(t) dt, (3)

subject to:

f(pi) = {p̂i = (x̂i, ŷi) | d(p̂i, pi) ≤ ri}, (4)

R̃i(pi, t) =
∫

f(pi)

E(pi, t) dA, (5)

R(p, t) =
N∑

i=1

R̃i(pi, t). (6)

In Equation (3), the optimization is performed over all
feasible trajectories. In Equation (4), we define the footprint

of the i-th vehicle, which is centered at pi, where d(p̂i, pi)
denotes the Euclidean metric space. Equation (5) describes
the computation of the local reward information at time t for
vehicle i. In this equation, p̂ is the variable the integration
is computed over; it ranges over all points in the set f(pi).
Moreover, E(x, y, t) is the environment reward function that
describes the relative importance of viewing a given region
of the base at time t, where x,y are cartesian coordinates.
Equation (6) is the total reward for all N UAVs at time t.

The vehicles are dynamically constrained by the Dubins’
vehicle model where ψ is the angular orientation relative to
the positive x-axis. The UAVs are assumed to fly at constant
altitude, implying the dynamics of the UAVs evolve in a
plane, with a constant positive velocity and minimum turning
radius enforced by the control input constraints (see below).
When the vehicles are notified of a target, the vehicles should
visit the site of the target in finite time. The system dynamics
are given by the following equations:

ẋi = vi cos ψi, (7)
ẏi = vi sin ψi, (8)
ψ̇i = ui. (9)

In addition the system has the following constraints:

ψ̇i ≤ ωi, (10)
N⋃

i=1

⋃

tε[0,T ]

f(pi(t)) = Γ, (11)

where Γ is the set of points (region) that is desired to be
visited.

III. REVIEW OF PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO) is an evolutionary
optimization heuristic that is based upon the social behavior
of birds looking for optimal food sources. The algorithm was
developed by Russell Eberhart and James Kennedy. It was
developed after several attempts to simulate the movement
of organisms in a bird flock, such as flocking synchronously,
changing directions suddenly, to scattering and regrouping
[12]. Since then, PSO has been implemented to optimize
nonlinear and piecewise continuous functions. PSO is a non-
gradient optimization heuristic, that can be used to search
non-convex spaces. One of the reasons for its growing
notoriety is because of its easy implementation compared to
other evolutionary algorithms and the quality of its results.

PSO consists of a number of particles (P ∈ Rm), where
m is the number of optimization variables. The entries of the
particle is known as its position vector, which represents a
solution to the optimization problem. Each particle also has a
velocity (V ∈ Rm). The particles have memory of their own
optimal solution position (Pb) as well as the global optimal
position of all the particles (Gb). There are examples in
the literature that break the particle into neighborhoods, the
difference being that the particles only remember Pb and the
best in its neighborhood (Lb), which can consist of several
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”close” particles. Each particle iteratively adjusts its velocity
based on Pb, Gb and a weighting (α) of its previous velocity.
The new velocity is then added to its current position and
the new position offers a new solution to the optimization
problem. By tweaking the constants c1 and c2, the user
can alter the balance of each particle’s exploration versus
exploitation. Typical values for the constants are c1 = c2 =
1.49 and α = 0.72 [14], [15]. To start the particle swarm
optimization technique a random position and velocity is
given to each particle. To evaluate the solution, particles’
positions are then placed into the function to be evaluated.
The PSO algorithm is shown in the following equations:

Vk+1 = αVk + c1µ1 (Pb − Uk) + c2µ2 (Gb − Uk) ,

Uk+1 = Uk + Vk+1,

where µ1, µ2 ∈ [0 1] are random variables with a uniform
distribution.

IV. APPROACH

To simplify the problem at hand, we assume the UAVs
have one of three control inputs: turn left, turn right or go
straight. Mathematically, this enforces a discrete constraint
on ui. For each i = 1, . . . , n we have

ui ∈ {−ωi, 0, ωi} , (12)
ωi > 0, (13)

where ωi is the maximum turning rate of vehicle i. Dis-
cretizing the control input allows us to significantly reduce
the number of feasible solutions from uncountably many to
3NT feasible solutions.

A. Control Input Sequence Array

First we form the control input sequence for each vehicle:

Ui =
[
u1

i u2
i · · · uT

i

]
. (14)

The control input sequence U ∈ RNT contains the control
input sequence for all the UAVs:

U = [U1 U2 · · · UN ] . (15)

The control input sequence array is set up so that the first
T elements correspond to the control input for the first
vehicle; elements T +1 through 2T correspond to the second
vehicle and so on. For each vehicle, the first element of
Ui is the first control input, and the control inputs are
sequentially implemented with the final control input being
the T th component of Ui.

Now we describe the process used to ensure that each
ui ∈ {−ωi, 0, ωi} . The absolute value of each element in the
control sequence array is divided by the maximum element
of the array and then multiplied by three. Let

Ua =
{∣∣Uk

∣∣ : Uk is the kth element of U
}NT

k=1
. (16)

We then compute the temporary control sequence U temp

componentwise. For each k = 1, . . . , NT , let

U temp
k =

3
∣∣Uk

∣∣
max Ua

. (17)

Finally, the actual control sequence is redefined as follows:
for each i = 1, . . . , NT . Redefining the control sequence
allows us to approximate a discrete control sequence based
upon the relative magnitudes of the elements of U

Uk =





−ω, if U temp
k ≤ 1

0, if 1 < U temp
k ≤ 2

ω, if U temp
k > 2

. (18)

B. Position Vectors

Now that the control sequence has been defined for a vehi-
cle, we can numerically integrate the system to approximate
the states of the vehicles, given the initial conditions of each
vehicle. The sequence of the state vectors is defined exactly
like the sequence of the control sequence array. First we
define the state sequence of each vehicle as follows: for each
i = 1, . . . , n

Xi =
[
x1

i x2
i · · · xT

i

]
, (19)

Yi =
[
y1

i y2
i · · · yT

i

]
, (20)

Ψi =
[
ψ1

i ψ2
i · · · ψT

i

]
. (21)

Then we define the state sequence arrays for all vehicles:

X = [X1 X2 · · · XN ] , (22)
Y = [Y1 Y2 · · · YN ] , (23)
Ψ = [Ψ1 Ψ2 · · · ΨN ] . (24)

The first element of each Xi, Yi,Ψi corresponds to the initial
condition of the i-th vehicle, while the last element of each
is the final state of the vehicle. The second element of each
Xi, Yi,Ψi corresponds to the states of the vehicle after the
control input U1

i has been implemented, and so on until the
final state is calculated. A second-order Runge-Kutta method
was used for the numerical integration.

Once the vehicle states are known, the reward for the UAV
being at that location can be calculated from equations (4)
- (6). The total reward for the system at the final time T is
calculated by summing the rewards for each vehicle at each
state in the discretized state array.

V. ALGORITHM

In our algorithm, UAVs communicate via blackboard, that
is, each UAV has access to the environment information
E(x, y, t). The algorithm is as follows: assume a particle
gives a solution/control sequence U . U is then transformed
into a discrete form using equations (16) - (18), yielding U .
At time-step t, vehicle i implements its control. Numerically
integrating the vehicle’s dynamics for the implemented con-
trol allows us to identify the states’ of vehicle i at time-step t,
to evaluate equation (5). A dummy environment Ed(x, y, t) is
then updated by setting Ed(f(pi), t) = 0, that is the region
within the a UAVs’ footprint equal to zero. Vehicle i + 1
then implements its control for the same time-step t, and
updates the dummy environment once again. This is done
for all vehicles. Ed(x, y, t) is updated after each implemented
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control, to ensure no two vehicles receive the same reward.
At the end of time-step t, we use equation (6) to realize the
total reward obtained by all vehicles for that time instant. The
dummy environment for the next time-step, Ed(x, y, t + 1),
is calculated using equation (25), where C(x, y) is a constant
value that depends on the coordinates. After Ed(x, y, t) has
been updated for all the control inputs, a total of N · T
times, the total reward over the entire time horizon using
equation (3) is then compared to those of all other particles
for the global best solution and local best solution. At the
end of the algorithm, the Ed(x, y, t) corresponding to the
optimal control sequence becomes the environment for all
time, E(x, y, t) = Ed(x, y, t).

Ė(x, y, t) = C(x, y) (25)

The feasibility constraint is programmed into the algo-
rithm. Because we are performing a search of the control
space, implementing any control in the allowable control
space will produce a feasible state and hence, a feasible
trajectory. Collision avoidance is implicitly defined within
the optimization problem, as it is not optimal for the footprint
of any two UAVs to intersect at a given time t.

Attending to pop-up alarms is the most difficult require-
ment to implement, and was dealt with using the reward
function. At the instant the UAVs are notified of a potential
threat’s coordinates p̃ (x̃q, ỹq) , the reward in the vicinity of
p̃ is substantially increased beyond the value of area search.
The reason for dealing with targets in this manner is to have
the UAVs balance between target visiting and searching for
new targets. If the UAVs are in an area of very high reward,
it is undesirable to leave that area immediately to visit pop-
ups in very low areas of interest. So we instead entice the
vehicles to visit the targets with a higher reward.

The following is pseudo-code for the described algorithm.

Step 1: Initialize U & V
for pt = 1 to particles

for i = 1 to N
for t = 1 to T

integrate f(x(t),u(t))-system dynamics
end

end
evaluate R(t)

end
pbest is the initialized control sequence
preward is the reward of each particle
gbest is the particle with highest reward
greward is the reward of the gbest particle

for iter=1:iterations
Evaluate PSO

for pt = 1 to particles
for i = 1 to N

for t = 1 to T
integrate f(x(t),u(n,t))

end
end
evaluate R(t)
if reward > preward

preward = reward
pbest = the new particle

end

if reward > greward
greward = reward
gbest = the new particle

end
end

end
end

Psuedo-code 1: UAV surveillance PSO algorithm

VI. RESULTS

For the simulations used in this section, the following
parameters were held constant:

N = 3,

T = 20 (time horizon),
p = 20 (number of particles),
v = [30 30 30],
r = [3 3 3]

ω =
π

2
.

There are four scenarios considered in this section. Each
scenario adheres to the above parameters and was simulated
in MATLAB. The first three subsections show the results
of PSO using three different reward functions. The results
shown in these subsections show the initial reward function
and the number of times an area is within the footprint
of any vehicle. These scenarios do not consider random
targets within the base. The UAVs were allowed to optimize
over 2000 time steps, running the optimization technique
100 times, yielding one run. There were 10 runs with each
UAV starting at a random initial condition, with the averages
shown in the results. The fourth scenario shows the trajectory
of three UAVs optimizing the reward as well as attending to
pop-up alarms. The average time for optimization using these
parameters was 133.7 seconds, which can be greatly reduced
using C++ or Fortran.

The reward functions and their rate of growth were cho-
sen to be continuous semi-positive definite functions. The
functions were chosen specifically such that the regions of
high interest would have higher rewards and grow faster than
regions of low interest. It was important to make sure that the
rate at which the reward function grows was not extremely
rapid so that the reward function does not ”blow up”/grow
unbounded, and also to ensure the UAVs do not stay in the
areas where the reward function grows rapidly, hence the 1

20
constant in Equation (26).

E1(x, y, t0) = max (|50− x|, |50− y|) ,

E2(x, y, t0) = 10
(
sin

x

7
+ sin

y

7
+ 2

)
,

E3(x, y, t0) = 50−max (|50− x|, |50− y|) .

R1 is for perimeter surveillance; R2 is for lake surveillance;
and R3 is for protecting a center asset. Each of the three
reward functions satisfies

Ėk(x, y, t) =
1
20

Ek(x, y, t0), (26)
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Fig. 1. Contour of Ė1(x, y, t0), for perimeter surveillance

Fig. 2. Number of visits per 2000 steps, for perimeter surveillance

for k = 1, 2, 3.

A. Perimeter Surveillance

Figure 1 shows Ė1, the growth rate of the reward function.
It is proportional to the distance away from the center, as
expected for perimeter surveillance. In this scenario, the
UAVs would like to stay near the perimeter of the base to
prevent threats from reaching the interior. Figure 2 shows the
number of times a specific area was within the footprint of
any vehicle. The UAVs highly concentrated their time to the
outer edges of the base, as desired in perimeter surveillance.
The number of visits to an area is proportional to rate of
growth of the reward. The regions along the outer edge of
the base were within the radius of view on average 28 times.
As the distance from the center of the base decreases so does
the number of times the area is viewed. The relationship is
almost linear, with the inner most region of the base being
viewed approximately once.

B. Lake Surveillance

Figure 3 is a surveillance problem where there are regions
of very little interest such as small lakes held within the base
(dark blue regions centered at (30,30), (80,30), (30,80) and
(80,80). The probability of a target being in these regions
is very low, while regions outside the lakes are of greater
interest. The goal in the scenario is to spend almost no time
viewing regions over the lakes, but instead visit the hot spots
such as roads. Figure 4 demonstrates the UAVs donate the
majority of their time to the more important regions outside
of the lakes, where the environment grows the fastest. The

Fig. 3. Contour of Ė2(x, y, t0), for lake surveillance

Fig. 4. Number of visits per 2000 steps, for lake surveillance

regions with highest growth rate were viewed on average 28
times, on 2000 time steps. The inner most regions of the
lakes were viewed less than five times, over the 2000 time
steps.

C. Center Asset

Another scenario to consider is the surveillance of a
stationary object, at the center of the base. Figure 5 shows
the reward function: the area of the highest interest lies in
the center. Therefore the UAVs should focus their attention
on the center of the base. Figure 6 shows the results from
PSO. The inner most region is viewed on average a 33 times,
and the remainder of the base is viewed a number of times
inversely proportional to the distance from the center. The
outer most areas of the base are viewed approximately once.

Fig. 5. Contour Ė3(x, y, t0), for center asset surveillance
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Fig. 6. Number of visits per 2000 steps, for center asset surveillance

Fig. 7. Center Asset Surveillance with Target

D. Target Attendance and Trajectories

The last scenario considers the surveillance of a center
asset, when there is an alarm that goes off to notify the
UAVs of a potential threat, represented by an X in Figure 7.
The UAVs must identify the object to decide whether indeed
it is a target or not. In addition, the remainder of the UAVs
must continue to watch the center asset. The results show
one UAV goes to scout the object while the remainder of the
UAVs continue their surveillance. After the UAV scouts the
object, it returns back to surveillance of the center asset.

VII. CONCLUSION

The UAV control algorithm in this paper, can easily
be implemented and used for surveillance in both military
and civilian applications. The results shown in the previous
section show that PSO is a viable approach to constructing
trajectories for difficult cooperative surveillance problems.
We have demonstrated that the PSO method combines both

exploration and exploiting of important areas for surveil-
lance. The algorithm at hand can be used to calculate
trajectories online, and within reasonable time. Furthermore
the PSO algorithm generates unpredictable paths online, that
makes it difficult for adversaries to predict the paths of the
UAVs.
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