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Abstract—Control design and improvement of dynamic 

atomic force microscopy (AFM) modes and development of new 

dynamic modes are among the central problems of AFM theory 

and practice.  Proper design can speed up the scan, improve 

quality, and suggest new useful image channels and algorithms 

for quantitative measurements at the nanometer scale. This 

paper provides a rigorous modeling based on first principles and 

mechanical setting of the AFM. A relationship between the 

empirical “effective” parameters of mass-spring models and the 

properties of cantilever and mechanical characteristics of the 

AFM was formulated. KBM averaging method was used to 

derive asymptotic dynamics with amplitude and phase as the 

state variables. Two equations for steady state of this asymptotic 

dynamics have four unknowns – amplitude, phase, height, and 

frequency shift. Keeping two of four unknown variables constant 

(and re-solving other two by the equations for steady state) 

determines six dynamic AFM modes, of which four are widely 

used. They are amplitude modulation (AM) and frequency 

modulation (FM) with force spectroscopy and imaging 

operations. The good match between the simulated and 

experimental results for AM is found. 

I. INTRODUCTION 

Atomic force microscopy (AFM) [1], which has been 

introduced as an accessory to scanning tunneling microscopy 

(STM), has been developed into the leading scanning probe 

technique. Nowadays, AFM is broadly applied for exploring 

various materials and phenomena at the nanoscale.  In its basic 

function AFM is used for high-resolution profiling of surfaces 

and it can be also applied for examination of local mechanical 

and electromagnetic properties. The core of this method is the 

force interactions between a minute tip attached to a cantilever 

and a sample surface. The cantilever response to the 

tip-sample forces is employed for surface profiling while the 

probe is pivoted over the surface. Initially, a quasistatic 

deflection of the cantilever, which is proportional to the force, 

was used for the force measurement and control when the 

scanning tip stays in a permanent contact with the sample. 

Such contact mode has definite limitations in studies of soft 

materials. Dynamic techniques, in which an oscillating probe 

comes only into an intermittent contact with a sample, were 

introduced to overcome this hurdle. Oscillatory AFM is 

implemented in the amplitude modulation (AM) [2] or 

frequency modulation (FM) [3] modes, which complement 

each other in studies of samples in various environments.  The 

AM mode is most applicable for ambient-condition studies 

and its wide applications to polymers and biological objects 
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made AFM a routine characterization method. Despite the 

broad acceptance of the AM mode the use of oscillating probe 

has a serious drawback due to a complicated relationship 

between the parameters of probe dynamics (amplitude, phase, 

frequency) and the tip-sample force. For a while a poor 

knowledge about the tip-sample force interactions in 

oscillatory modes was compromised by empirical 

observations and simplified theoretical considerations [4-6]. 

Recently the use of specialized probes was suggested for 

either reconstruction of the tip-sample force from harmonics 

analysis [7-8], or for direct measurements of the tip-sample 

force during a single oscillation [9]. Although all these efforts 

are very useful and informative, a rigorous approach towards 

dynamics of AFM modes is still in demand and this need will 

be growing further with the development of multifrequency 

AFM measurements [10]. The multifrequency detection of the 

probe response is invaluable for studies in complex but 

frequently occurring practical situations when the forces of 

different origin (mechanical, electrostatic, magnetic, etc) 

cause displacements of the same microfabricated probe. A 

deconvolution of different force contributions can be achieved 

in the multifrequency approach. For example, surface 

topography and surface potential can be simultaneously and 

independently determined with similar and high resolution 

when a conducting probe operates in the intermittent contact 

regime [11-12]. This complexity demands the detailed and 

rigorous consideration of the AFM oscillatory modes, and the 

treatment of the problem in terms of asymptotic nonlinear 

mechanics is suggested below. Classification of the oscillatory 

modes based on this theory provides a background for better 

understanding of AFM functionality, realistic simulators, 

improved control design, and quantitative measurements of 

local properties (mechanical, electrostatic, magnetic, etc.).  

II. MODEL OF AFM CANTILEVER DYNAMICS 

 

 

 

 

 

 

 

 

 

 

 

A mechanical model of a controllably oscillated AFM 

probe that will be considered in the dynamic analysis is 
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presented in Figure 1. A thin cantilever of length L and 

cross-section hbS ×=  is attached to the base at point

( )cZZx == ,0 . The base is oscillating as ( ) tAZtZ c ωsin,0 0+= .  

Concentrated forces may be applied to the tip due to 

tip-sample interaction at the distance ∆  from the edge, i.e. at

∆−= Lx ; weight of the tip is applied at the same point. 

Mathematically this problem can be described by 

Euler-Bernoulli’s type of equation (excellent treatment can be 

found in [13]) 
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with the following boundary conditions. 

Base motion:  

( ) tAZtZ c ωsin,0 0+=                         (2) 

Cantilever is attached to the base: 

 ( ) 0,0 =
∂

∂
t

x

Z                                 (3) 

Free end (no moment):  
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The following notations (SI units are shown in brackets) are 

used in (1)-(5): 

L, b, and h [m]-length, width and height of the cantilever;  

∆ [m] –position of the tip from the end of the cantilever; 

x [m]-horizontal coordinate; 

Z [m]-vertical coordinate; 

Zc [m]-the position where cantilever is attached to the base;
  

 t [sec]-time; 

[ ]m0A -amplitude of base (piezo drive) vibration; 

ω [rad/sec]-frequency of base (piezo drive) vibration; 

( )txZ ,  [m]-vertical position of the cantilever at point x and 

time t; 

[ ]1sec−β - damping coefficient (may depend on ω); 
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3

m
12

bh
I = -moment of inertia of the cross-section with 

respect to horizontal axis; 


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


3m

kg
ρ -density of the cantilever; 

[ ]2mbhS = -area of the cross-section of the cantilever; 

( ) [ ]NSZH ××× m1ρ -concentrated force applied to the tip due 

to tip-sample interaction; 

[ ]NSp ××× m1ρ  -weight of the tip 

( ) 






m

1
xδ -Dirack’s delta function. 

Ignoring the weight of the tip (which adds only an 

insignificant technical complication), the motion of the tip 

located at the position   l= L−∆  near the first resonance is 

( ) 11, ξη ++= cZtlZ  

where ξ1 and η1 satisfy the following equations 

 

                      (6)  

( )dtd ϕωη += cos1
                           (7) 

1ω  is the 1
st
 eigen-frequency of the cantilever [13]; 

β1, calculated by the formula 
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is the damping factor of the cantilever’s 1
st
 mode and 

 Q1 is the quality factor of the 1
st
 mode; 

����� is a norm of special basis function of the first mode such 

that ������ � 1; the norm has SI unit 
√�
; 
d and ϕd are (calculated using Euler-Bernoulli based math) 

amplitude and phase of the tip’s oscillation caused by base 

oscillation only (usually called “free” oscillation by AFM 

practitioners), but not by tip-sample interaction; d and ϕd 

depend on A0, ω, ω1, β1, and ∆; 

and ( )zzF &sgn;  is the tip-sample interaction function at the 

cantilever position z at the location of the tip; this function 

defines behavior of the mode; we assume that it depends on 

direction of the motion z&sgn ; tip-sample interactions will be 

discussed below in Section IV. 

III. KRYLOV-BOGOLIUBOV-MITROPOLSKY (KBM) 

AVERAGING FOR MODELING OSCILLATING AFM MODES 

We assume that 

11

1 <<= −
Qε                                  (9) 

is small and it is admissible to neglect the values of order of ε2
. 

We also assume that the difference between driving frequency 

ω and the eigen-frequency ω1 is of the order ε and define the 

related parameter of order 1. 
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These are the natural assumptions for most of practical cases.  

We also consider small piezo drive amplitudes, i.e. ε~0A ,  

then we can show that in (6), (7) 1~d ; and 
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The following equation is a direct consequence of (10): 
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Let us define the function H of the order of 1 as the following 
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This function has unit of acceleration, and ( ) 1~sgn; zzH & . 

We use the following notations 
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Defining the effective mass by 
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equations (12), (13) become 
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Let  

11 ξηξ +=  

 

It is a combined tip’s deflection due to the base vibration and 

the tip-sample interaction. Then equation (6) is equivalent to  

( ) ( )tfεξξεξωξ +Φ=+ &&& ,
2

1          (16) 

with (using (14)-(15)) 
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10 sgn;, −+=Φ ZH              (17) 
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Using (8)-(11), this formula with accuracy of the order ε2

 is 

equivalent to 
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  Solution of equation (16), as shown in Figure 2, is close to 

the rapidly oscillating harmonic function with slowly varying 

amplitude and phase. The amplitude and phase are the 

parameters measured by AFM and it is desirable to model 

AFM dynamics with these state variables. Using van der Pole 

(amplitude-phase) variables (x,y), defined by [14] 

 

yxyx sincos 1ωξξ −== &       (20) 

 

equation (16) can be written in the equivalent form 
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or, substituting  f  from (18)-(19), 
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System of differential equations (22) has a slow variable x and 

two fast variables y and ζ. Introducing a new slow variable 

(phase difference) as difference between two fast ones, 

y−= ζθ                       (23) 

equation (22) is equivalent to 

 

 

 

 

Applying KBM averaging (over the remaining fast variable ζ) 

method [14], we obtain asymptotic equation 
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 and, after calculating the second integrals, the following 

equations: 

 

To further simplify, we write according to (17) and (20), 

and, using (13),(14),(15), 

 

 

  This is the main equation of oscillatory AFM dynamics and 

can be used for an efficient simulation, as a plant for control 

systems design, and many other applications. In this paper it is 

used for the definition and classification of oscillatory AFM 

modes and for interplay between theory and experiment. 
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Asymptotic as ε→0 solution 

of equation (17) is harmonic 

with slowly varying 

amplitude x, phase y and 

large frequency ω1    

Figure 2. Plot of the solution of equation (16) looks like 

black box for observable time; it has no information 

besides amplitude and phase of the rapid oscillation 
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 Steady-state solutions of (24) for amplitude and phase (x,θ) 

satisfy the following system of equations 
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where 
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can be called normalizing force. Using the notation 
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equation (25) can be written as 
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Well known formulas can be derived from (25) or (28): 

Cleveland et al. [4] formula that relates phase and dissipation 

in AM AFM is equivalent to the first equation of (25) with g=0 

and effective parameters used in [4] calculated based on the  

physical parameters defined in this paper; Sader & Jarvis [5] 

formula for relative frequency shift and Garcia & Perez [6] 

formulas for frequency shift in FM mode are equivalent to the 

second equation of (25) with θ=π/2. In their formulas we 

should use   ( )
2

1

2

1

2

1  and  2/ l

ra
ZSmkFFF ρωω ==+= . 

IV. ABOUT TIP-SAMPLE INTERACTION 

 
 

 

 

AFM tip-sample interaction is very critical for 

interpretation of experimental results, and so it is a topic of 

intensive experimental and theoretical study. For the purpose 

of this paper we use Lenard-Jones solid and elastic solid 

models. Lenard-Jones potential is a model of interaction on 

the molecular level. Attraction force per unit area between two 

parallel plates and related potential can be computed by 

integration [15, p. 31]. Then, using Derjagin approximation, 

the force between a parallel layer and the spherical tip of 

molecules can be modeled by the following formula 
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where [15, p. 31] z is the distance between the layer and the 

tip; and the parameters are: Z0 is the equilibrium distance, γ is 

a half of the work of adhesion, and R is the radius of the tip. 

Realistic correction to model (29) for molecular multilayers 

such that N/2 layers are free to move has been described in 

[15, p. 39-45].  The graphs of this model for different N are 

shown in the left part of Figure 3 and demonstrate the effect of 

adhesive avalanche [15] which is one of the (many) reasons of 

dissipation when approach curve Fa may be different from 

reproach one Fr. This is one of the “jump to contact” models. 

The combination of Lenard-Jones, Derjagin approximation 

and adhesive avalanche describes the tip-sample interaction 

before and slightly after the point of geometrical contact. 

Mechanical (elastic and elasto-adhesive) contact is 

described by elastic solid models (Hertz [15, p.245], JKR [15, 

p. 272, 269] and DMT [15, p. 238]). These models depend on 

radius of the tip R, work of adhesion 2γ and reduced elastic 

modulus E
*
. JKR-DMT transition is parameterized by λ [15, 

p.290-292], see the right part of the graph in Figure 3. Some 

generalizations of these models for the tips with arbitrary 

axi-symmetrical profiles are presented in [16]. These 

elastic-adhesive models describe the tip-sample interaction 

after and slightly before the point of geometrical contact. 

It seems natural to match the Lenard-Jones solid curves 

with the elastic solid curves in the area slightly before and 

slightly after the point of geometrical contact where both 

models are valid. This match is demonstrated in Figure 3 (red 

dashed line) and can be implemented algorithmically on 

experimental curves by fitting parameters N and λ. This match 

provides a consistent and theoretically justified model of tip 

sample interaction from tip approaching the surface to a dip 

penetration of the tip. 

V. CLASSIFICATION OF DYNAMIC AFM CONTROL MODES 

System of equations (28) and its extended form (25) are the 

steady state equations for AFM asymptotic dynamics (24) 

with dynamic states x –amplitude, and θ -phase. Two 

equations of (28) have four unknowns: amplitude x, phase θ, 

base position Zc usually called height, and variable G 

proportional to relative frequency shift defined by (27). “Free” 

oscillation amplitude d is assumed constant, however it can be 

considered as fifth unknown (in this case usually x assumed 

constant). To solve two equations of (28), two of the four 

unknowns should be kept constant and this provides 6 possible 

combinations. Each combination relates to a potential AFM 

dynamic control mode and four of these modes are widely 

used as will be shown below. 

Figure 3. Match of Lenard-Jones and elastic solid models 

by fitting parameter N and λ 
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In practice two unknown variables are kept constant by 

feedback control. However, in this paper we assume that 

feedback control is instant and ideal. This allows avoiding 

dealing with complications of feedback implementation and 

concentrating on definition of the dynamic control modes and 

their properties. 

The four widely used dynamic control modes are 

1) Amplitude Modulation (AM): G=const (usually G=0 

-resonance) 

a) AM Spectroscopy mode: G and Zc====const; for each 

Zc x====A and θθθθ are calculated respectively for 

amplitude curve A versus Zc (AvZ) and for phase 

curve θθθθ  versus Zc (θθθθvZ).  

b) AM Imaging mode: G and x====A====const (amplitude 

set-point). At each sample position XY the 

tip-sample interaction defines Fa and Fr in (25); 

solutions Zc versus XY give height image and θθθθ  

versus XY – phase image - the main data channels 

for AM. 

2) Frequency Modulation (FM): θθθθ=const (usually θθθθ=π/2 

–resonance) 

a) FM Spectroscopy mode: θθθθ and Zc = const; G 

versus Zc – frequency shift curve; x====A versus Zc – 

amplitude curve. 

b) FM Imaging mode: θθθθ  and G = const; for each XY 

point of the sample tip-sample force determines 

Fa and Fr in (25); solutions Zc versus XY give 

height image; and x====A versus XY –amplitude 

image - the main data channels for FM.  

VI. INTERPLAY WITH THEORY AND EXPERIMENTAL RESULTS 

In this section simulation of AM AFM based on equation 

(28) or (25) will be compared with experimental results in 

different modes classified in Section V.  

A. AM Spectroscopy Mode: AvZ and θvZ curves 

The AvZ and θvZ curves, which are simulated for a 

non-dissipative case, are presented in Figure 4 (top). Some of 

the data were reported in [17]. Different solutions (branches) 

for amplitude and phase dependencies on Z are marked with 

different colors. On a sample approach to the oscillating probe 

(the distance changes from right – large Z to left - small Z) the 

system accommodates at the green branch (L) with amplitude 

and phase both gradually diminishing. As Z is changing a 

saddle-node bifurcation in amplitude/phase coordinates can 

happen and the system will jump to the black branch (H). The 

reverse transition is expected at lower Z. This behavior well 

matches to the experimental curves obtained on Si substrate, 

Figure 4 (bottom). The locations with the abrupt transitions 

are marked with the yellow and red circles. The most drastic 

changes are observed for the θvZ curves and they are also 

related to the transition of the tip-sample forces from the 

attractive to repulsive range. 

When a dissipative case of adhesive avalanche [15] was 

considered, the main features of the simulated curves 

remained the same as in the non-dissipative case yet their 

shape has changed, Figure 5. Experimental data obtained on 

polymer samples are consistent with these theoretical 

predictions although variations were observed depending on 

type of sample, stiffness of the probe and tip size. In some 

cases such as operation at small amplitudes and imaging of 

sticky materials the amplitude and phase response behave 

according to the green branch solution. The abrupt changes of 

the phase curves and the kinks on the amplitude curves, which 

are consistent with the transition from the green branch (L) to 

the white branch (H), were also often detected. Red branch (U) 

is unstable and so never detected by experiment; it is 

important, however, to describe the bifurcations. 

 

        

             
Figure 4. Simulated (upper plots) and experimental (lower 

plots) AvZ and θvZ curves. Simulations were done for the 

conservative case. Three branches (H, L - high and low 

amplitude branches; U - unstable branch) and bifurcations are 

shown. The measurements were performed on Si substrate.  

 

         
 Figure 5. Simulated AvZ and θvZ curves for dissipative case 

of adhesive avalanche. H, L, U and bifurcation are shown. 

  

B. AM Imaging Mode 

Simulation of the images in different AFM modes might 

shed light on many outstanding problems of these techniques 

related to experiments at different forces and use of probes of 

various geometries and tip dimensions. We have initiated the 

interplay between the experimental images and simulations 

using a crystal of polydiethylsiloxane as an example. This 

sample is often used for demonstration of high-resolution 

imaging in oscillatory modes. The sketch of the 

crystallographic structure of the bc-plane of this crystal and 

one of the experimental images of the same crystal surface are 

shown in Figure 6. The image shows a similar periodical 

pattern with the periodicities matching the crystal unit cell. In 

other images one can also see differences of the fine structure 

inside the unit cell. There are a number of reasons for these 
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variations, and the simulation of the images is invaluable for 

their recognition and possible elimination.  

The simulated images, which were obtained using Hertz 

model for tip-sample force interactions, are presented in 

Figures 7A-D. The pattern in Figure 7A was simulated for 

imaging with an atomically sharp probe at an extremely low 

force. Only at such a condition the image mimics the expected 

crystallographic structure of the sample (Figure 7E). The 

image in Figure 7B was obtained at the same force but with 

the 5-nm tip - the practical limit for commercial AFM probes. 

This results in smearing of the unit cell details. The main 

repeat distances did not change much and they are within the 

limits (~5%) of AFM accuracy (not-perfect piezo-scanners). 

 

    
Figure 6. A sketch of the bc-plane of polydiacetylene crystal 

(left) and the image of this plane in the AM mode (right).  

 

 
Figure 7. Top row: Simulated AFM images of polydiacetylene 

crystal at different forces and with tips of different size. 

Cross-sections along the horizontal direction in the images are 

shown underneath. Bottom row: the X-ray structure of the 

surface and experimental AFM images obtained in AM mode 

match the top row simulated images if blurred by noise. 

 

Surprisingly, the patterns generated for imaging at elevated 

force and with larger tips (Figures 7C-D) exhibit periodic 

features inside the crystal unit cell yet their nature has nothing 

to do with fine structure of the sample. The cross-section 

profile of the image simulated for 15-nm tip (Figure 7D) 

exhibits 8 peaks that are less than 9 peaks seen in the profiles 

of Figures 7A-C. This is another example of bifurcations that 

complicate AFM studies. These results and the data obtained 

in simulation of images with single defects [18] confirm that 

sharp probes and operation at low forces are the required 

conditions for high-resolution AFM studies and for 

registration of images with the fake-free contrast and features.    

The practically relevant case was explored by the 

simulation of imaging with double tips. Figure 8 shows a set 

of images of the crystal obtained for probes with double tips 

oriented along the horizontal (top patterns) and vertical 

(bottom patterns) directions. As the tips’ size increases from 

150 pm (left) to 1 nm (middle) and to 5 nm (right) the pattern 

becomes more consistent with the unit cell of the crystal. This 

result is another confirmation that the interpretation of the 

AFM images of periodical structures in the molecular and 

atomic scale is an extremely challenging task. 

 

         
Figure 8. Simulated AFM images of polydiacetylene crystal 

obtained with probes having double tips. 

VII. SUMMARY 

Theoretical analysis of oscillatory AFM modes was 

performed in a rigorous way using the Euler-Bernoulli 

equation of the cantilever and asymptotic KBM averaging 

method for the tip motion.  The amplitude modulation (AM) 

and frequency modulation (FM) modes are classified among 

other potential modes in the framework of this approach. 

Simulation of amplitude and phase curves as well as AFM 

images shows close match with the experimental data. A 

broad use of this method in the interplay with experimental 

results will be indispensable for more thorough verification of 

AFM capabilities and their further progress.   
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