
 
 

  

Abstract—Recently, Adaptive critic design (ACD) has been 
applied to controller design extensively. It is a powerful 
approach to cope with the model nonlinearity and 
uncertainties. Existing ACD-based controllers have been 
proven as uniformly ultimately bounded (UUB). However, 
UUB only makes the tracking error converge to a certain 
bounded region. Although we can minimize the bounded 
region by increasing the number of the hidden nodes of the 
neural networks in the ACD, the computation cost of the 
ACD-based controller increases. In many engineering 
applications, we prefer the asymptotical stability which can 
ensure the tracking error converges to zero. In this paper, we 
propose a novel asymptotically stable ACD-based controller 
for a class of uncertain nonlinear systems. This controller 
firstly uses the feedback linearization to improve the system 
dynamic characteristics, and then combines ACD and 
variable structure control to achieve the asymptotical stability 
under large model uncertainties. An empirical study is 
conducted on a 2-link manipulator to validate the new 
controller design approach. Results show that the nonlinear 
system using the proposed controller can achieve 
asymptotical stability and good dynamic response 
characteristics when large model uncertainties exist. 

I. INTRODUCTION 
daptive critic design (ACD) schemes, both in 
continuous and discrete time forms, have been 

developed in the past few years [1][2][3]. ACD originates 
from the combination of Dynamic Programming and 
Reinforcement Learning [4], which is used to solve 
nonlinear optimal control problems online or offline 
without the need of accurate plant models. In the ACD 
architecture, there are two networks termed the critic 
network and the action network [5]. The critic network 
approximates the cost-to-go function describing the 
performance of the system; and the action network gives 
optimal action by minimizing the output of critic network. 
In both of the critic network and the action network, neural 
networks are employed to approximate the cost-to-go 
function and the action inputs respectively. 

The stability of the ACD is studied in [4][6][7]. In 
exiting literature, ACD-based controllers have been proven 
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as uniformly ultimately bounded (UUB) [8][9][10][11]. 
Although UUB is useful in the bounded error control cases, 
it is not enough for precise tracking applications. For 
example, when an airplane’s attitude is disturbed from its 
nominal position by the wind, we not only expect the 
airplane to maintain its attitude in a  certain range which is 
determined by the magnitude of the disturbance, i.e., UUB, 
but also require that the attitude gradually goes back to the 
original value [12]. This type of engineering requirement is 
referred to as asymptotic stability. In the controller design 
based on ACD, although the bounded error region can be 
minimized by increasing the number of the hidden nodes in 
the neural networks, computing the control law consumes 
more time. 

In this paper, a novel asymptotically stable ACD-based 
controller is developed for uncertain nonlinear systems. In 
previous research on controller designs, many models have 
been setup in many engineering applications. However, 
these models are usually discarded in many ACD-based 
controller designs [13],[14]. Although these models may 
not be as accurate as they are required, they are useful for 
improving the system dynamic characteristics in the design. 
In our approach, the plant is approximately linearized 
employing feedback linearization method using the known 
nominal model. Actually, the nominal model is given with 
model uncertainty because the accurate plant usually is not 
available. To make the controller robust, ACD is employed 
to approximate the unknown model uncertainty. The 
ACD-based controller proposed in this paper is different 
from the original formulation. In our architecture, the critic 
network is not used to approximate the cost-to-go function. 
The output of the critic network is an adaptive control item 
to adjust the action network. Similar schemes are proposed 
in [8][9][11]. However, these schemes are only proven to 
hold the UUB property. To ensure the system as 
asymptotically stable, variable structure control (VSC) is 
employed in our scheme to compensate the approximated 
error in the action network. The updating of all the 
controller parameters is performed online, without the 
offline learning required in the traditional ACD schemes. 

The reminder of the paper is organized as follows: 
Section II gives the problem statement. Section III 
introduces the background knowledge on the neural 
networks and Lyapunov stability theorems. Section IV 
presents a general controller structure employing feedback 
linearization. Section V gives the detailed description of the 
asymptotically stable controller design based on the 
combination of ACD and VSC. Section VI presents the 
asymptotical stability proof of the proposed controller. 
Section VII conducts a simulation using the asymptotically 
stable ACD controller for a 2-link manipulator and 
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summarizes the results. The conclusion is given in Section 
VIII. 

II. PROBLEM STATEMENT 
In this paper, we consider a class of nonlinear systems 

given by the following general formulation 
1 2

1

1

( ) ( ) ( ) ( )
n n

n

x x

x x
x f x g x u t d t

y x

−

=

=

= + +
=

,                       (1) 

where 1 2[ ]T
nx x x x= is the system state vector, 

( )u t  is the control input, and ( )y t  is the output of the 
system. ( )d t  is the unknown disturbance with a known 
upper bound so that Mdtd <)( . It is assumed that the 
nonlinear function ( )f x  and ( )g x  are smooth and they 
consist of the nominal part and the uncertain part 
as ˆ( ) ( ) ( )f x f x f x= + ∆  and ˆ( ) ( ) ( )g x g x g x= + ∆  

respectively, where ˆ ( )f x  and ˆ( )g x  are the nominal parts 
which are known, ( )f x∆  and ( )g x∆  are the uncertain 
parts which are unknown.  

In many studies on adaptive critic design (ACD), the 
filtered tracking error is defined as [8][11]: 

( 1) ( 2) (1)
2 1( ) ( ) ( ) ( ) ( )n n

nr t e t e t e t e tλ λ− −
−= + + + + ,   (2) 

where 1( ) ( ) ( )de t x t x t= −  is the tracking error, ( )dx t  is the 

desired trajectory. ( 1) (1)( ), , ( )ne t e t−  are the derivatives of 
the tracking error ( )e t . 2 3 1, , ,n nλ λ λ− −  are the design 

parameters so that 1 2
2 1

n n
ns sλ λ− −

−+ + +  is Hurwitz. This 
means that when ( )r t  converges to 0 and then ( )e t  also 
converges to 0. 

Note that the filtered tracking error is actually a sliding 
surface in variable structure control (VSC). According to 
the theorem of VSC, the VSC control law makes sure the 
states of the system reach the sliding surface. When the 
system is constrained by VSC to stay on the sliding surface, 
the system dynamics are governed by ( ) 0r t = . To 
maintain the system at ( ) 0r t = , the following action input 
is adopted in the exiting literature [9] 

1( ) ( )[ ( ) ( )]N v Nu t g x K r f x v t−= − − + ,            (3) 
where ( )g x  is assumed as a known function, vK  is the 
gain matrix which is positive definite. ( )Nf x  is the 
approximate matrix of  the nonlinear function ( )f x  by 
neural network, and ( )v t  is a robustifying vector.  

Note that it is assumed there is no prior knowledge of the 
function ( )f x  in (3). Actually, the nominal part ˆ ( )f x  of 

( )f x  is known in many engineering applications. To make 
full use of the prior plant model to improve the dynamic 
characteristics, the feedback linearization is conducted 
firstly using the nominal plant model consisting of ˆ ( )f x  
and ˆ( )g x  in our approach. 

The stability of the existing ACD-based controllers are 
proven to be uniformly ultimately bounded (UUB) 
[8][9][10][11]. This means that the filtered tracking error is 
bounded and converges to a certain residual set which is 
determined by the approximate errors in the neural 
networks. Although we can minimize the residual set by 
increasing the number of hidden nodes of the neural 
networks in ACD, it results in the increment of the 
computing cost. However when the number of the hidden 
nodes is small, the system performance may deteriorate. In 
the engineering practice of the controller design, 
asymptotical stability is preferred which means the tracking 
error converges to 0 asymptotically. In the following 
sections, an asymptotically stable ACD-based controller 
will be studied. 

III. BACKGROUND KNOWLEDGE 
The objective of this section is to present two aspects of 

knowledge. The first one is the neural networks, which is 
used to approximate the model uncertainty in this paper. 
The other is Lyapunov stability theorem, which is 
employed to analyze the stability of our controller design.   

A. Neural Networks 
In this paper, we apply two-layer feedforward neural 

networks to approximate the model uncertainty. The neural 
networks consist of a hidden layer and an output layer. 
They are described as 

( )T T
Ny W V xσ= ,                                 (4) 

where [1 ]T Tx x=  is the augmenting vector, Ny  is the 
output of the neural networks. V  is the weight matrix in 
the hidden layer. W  is the weight matrix in the output layer. 

(.)σ  is the activation function, which is chosen as 
(.) 1/[1 exp(.)]σ = +  in this paper.  
Neural networks are extensively used to approximate a 

general function ( )f x , where ( )f x  is a smooth linear or a 
nonlinear function. According to the Stone-Weirstrass 
theorem, the approximation equation of neural networks 
can be given in [15],[16], as 

( ) ( )T Tf x W V xσ ε= + ,                             (5) 
where ε  is a neural network reconstruction error. Note that 
for all the constant vector Nε , we can construct a neural 
network so that Nε ε< . That means ε  can be decreased 
by increasing the number of hidden nodes in the neural 
networks. 

B. Lyapunov Stability 
Lemma 1: Uniformly Ultimately Bounded (UUB) [17] 

Let ( )L x  be a Lyapunov function of a continuous-time 
system that satisfies the following properties 

1 2

3 3

( ) ( ) ( )

( ) ( ) ( )

x L x x

L x x

γ γ

γ γ η

≤ ≤

≤ +
,                       (6) 

where η  is a positive constant , 1γ  and 2γ  are continuous 
strictly increasing functions, and 3γ  is a continuous, 
non-decreasing function, then if  

( ) 0,   ( )L x for x t η< > ,                               (7) 
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Then ( )x t  is uniformly ultimately bounded. In addition, if 
(0) 0x = , ( )x t  is uniformly bounded. 

Lemma 2: Lyapunov’s theorem for local stability [12] 
If, in a ball 

0RB , there exists a function ( )L x : nR R→ ,  

where ( )L x  is called a Lyapunov function candidate, such 
that:  
a) ( ) 0L x >  with equality if and only if x = 0, that means 

positive definite;  
b) ( ) 0L x < , that means the derivative of the ( )L x  is 

negative definite.  
Then the system is asymptotically stable in the sense of 

Lyapunov. 
There are two steps in applying the above theorems to 

analyze the stability of a nonlinear system. The first step is 
to choose an appropriate positive Lyapunov function; and 
the second step is to determine its derivative along the path 
of the nonlinear systems. 

IV. THE CONTROLLER USING FEEDBACK LINEARIZATION 
In this section, the control law is deduced based on 

feedback linearization using the nominal plant model. The 
UUB stability proof of the feedback linearization based 
controller is also given in this section. 

Using the Equation (1) and (2), the dynamics of the 
filtered tracking error can be rewritten as 

          
( ) ( 1)

2
(2)

1

ˆ ˆ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

n n
d nr f x g x u x e t

e t e t f x g x u d t

λ

λ

−
−= + − +

+ + + + ∆ + ∆ +
    (8) 

where ˆ ( )f x  and ˆ( )g x  are the nominal functions. 
 We use feedback linearization to get the control input 

( )u t  as follows 
1 ( )

( 1) (2)
2 1

ˆˆ( ) ( )[ ( )

( ) ( ) ( )]

n
v d

n
n

u t g x K r f x x

e t e t e tλ λ

−

−
−

= − − +

− − − −
.           (9) 

Substituting (9) into (8), the closed-loop system becomes 
( , ) ( )vr K r p x u d t= − + + ,                             (10) 

where ( , ) ( ) ( )p x u f x g x u= ∆ + ∆  is the model uncertainty 
which is derived from the inaccuracy of the nominal model. 

To evaluate the stability of the closed-loop system, 
Lyapunov function is defined as 

1 0
2

TL r r= > .                                    (11) 

The derivative of the Lyapunov function is 

2min

[ ( , ) ( )]

( )

T T
v

v M M M

L r K r r p x u d t

K r r f g u d

= − + +

< − + ∆ + ∆ +
,          (12) 

where Mf∆  and Mg∆ are the upper bounds so that 

Mfxf ∆<∆ )(  and Mgxg ∆<∆ )( . min
vK is the smallest 

singular value of the gain matrix vK . 

Equation (12) implies that 0L <  provided that 
2min ( ) 0v M M MK r r f g u d− + ∆ + ∆ + < . This further 

implies that we can get 0L <  as long as 

min
M M M

v

f g u d
r

K
∆ + ∆ +

> .                        (13) 

According to the Lemma 1, the closed-loop system 
employing the control law (9) is UUB. However, we prefer 
that the filtered the tracking error asymptotically converge 
to 0. In the next section, we will discuss how to make the 
closed-loop system asymptotically stable using ACD and 
VSC. 

V. THE ASYMPTOTICALLY STABLE ADAPTIVE CRITIC 
CONTROLLER ARCHITECTURE 

In this section, a new asymptotically stable controller is 
proposed. This controller is obtained by combining ACD 
and VSC. To analyze the stability of the closed-loop system, 
a Lyapunov function is designed, and the proof of the 
asymptotical stability is given in the next section.  

A. The Architecture of the Proposed Controller 
Design  

Fig. 1 shows the proposed controller architecture. The 
control law has three entities. The first is the feedback 
linearization control item, which is determined by the 
nominal model and the gain matrix vK . The second is the 
ACD item, which is the output of the action network. In the 
updating law of ACD, the weight matrix in the critic 
network is tuned by itself and the weight matrix in the 
action network is updated by the critic network. The third is 
the VSC item, which is adjusted by the critic network. 

Uncertain Plant

Sliding Plane

Feedback
Linearization

Critic Network

Action Network VSC

∑ ∑∑

r ∑
RefR

 
Fig. 1 The architecture of the proposed controller design 

B. The Critic Network 
The critic network is defined as a neural network 

1 1( )T TR W V rσ ρ= + ,                                  (14) 
where ρ  is an adaptive parameter. 1W  is the weight matrix 
in the critic network, 1V  is randomized in the initialization 
which is constant in the control process. 

The weight matrix in the critic network is updated by 
1 1 1( )T TW R V rσ= −Γ ,                            (15) 

where 1Γ  is a diagonal positive definitive matrix can be 
chosen by the designer. 

The updating law of the parameter ρ  is defined as  

1 1 1( )T T T
vW V r V K rρ σ ′= ,                            (16) 

where ( )σ ′ ⋅  is the derivate of the function ( )σ ⋅  

C. The Action Network 
To make the control law robust to the model uncertainty 
( )f x∆  and ( )g x∆ , the action network is applied to 

approximate ( , )p x u  using neural networks. In the 
approximation architecture, the action network has the 
following formulation 

2 2( ) ( ) ( )T Tp s W V s sσ ε= + ,                       (17) 
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where [1 ]T T Ts x u= , 2W  is the ideal weight to 
approximate the uncertainty. 2V  is randomized in the 
initialization and it is constant in the control process. ( )sε  
is the neural network reconstruction error which is bounded 
by 1 1( ) Nxε ε< . It was  shown in [18] that the bigger the 
number of hidden layer nodes, the smaller the neural 
network reconstruction error. 

The output of the action network is defined to 
approximate the model uncertainty ( )p s  as 

2 2
ˆˆ ( ) ( )T Tp s W V sσ= ,                              (18) 

where ˆ ( )p s  is the current approximated value of the model 
uncertainty ( )p s . 2Ŵ  is the current estimation of the real 
weight 2W . 

The weight matrix in the action network is updated by 
1 1

2 2 2 2 2 1 1 1
ˆ ˆ( ) ( ) ( )T T T T T T TW V s r V s R W V r Vσ σ σ− − ′= Γ + Γ ,   (19) 

where 2Γ  is a diagonal positive definitive matrix chosen by 
the designer.  

D. The New Controller Law Formulation 
The new control law is defined as 

1 ( )

( 1) (2)
2 1

ˆˆ ˆ( ) ( )[ ( , ) ( )

( ) ( ) ( )]

n
v d

n
n

u t g x K r p x u v f x x

e t e t e tλ λ

−

−
−

= − − + − +

− − − −
,    (20) 

where v  is  the VSC item or a robustifying vector. It is 
defined as 

1 1 1 1

( ), ( ) 0 ˆ( ) , ( )
( ), ( ) 0

T T T T Ti f i
v i f r R W V r V

i f i
ζ

σ
ζ

< − >⎧ ′= = +⎨> <⎩
,     (21) 

where 1N Mdζ ε= +  is the upper bound of 1 ( )d tε + . 
Using the control law (20), the closed-loop system is 

formulated as  
( ) ( )vr K r v p s d t= − + + + ,                       (22) 

where ( )p s  is the current estimation error of ( )p s . It is 
also defined as 

2 2( ) ( ) ( )T Tp s W V s sσ ε= + ,                         (23) 
where 2 2 2

ˆW W W= −  is the current estimation error of the 
weight matrix in the action network. 

VI. THE STABILITY ANALYSIS 
In this section, we make a study on the stability of the 

proposed controller in Section V. According to the 
Lyapunov stability theorem, the proof of asymptotical 
stability is given. 

Before crafting the Lyapunov function, the following 
assumptions are given 

 1 1 2 2,  m mW W W W≤ ≤ ,                            (24) 
where 1 2,  m mW W  are the bounds on the weight matrices 

1 2,  W W .  

In  [8] [9] [11], the variables 1 2, , ,r R W W  are selected to 
construct the Lyapunov function. Note that the goal of the 
controller is that the filtered tracking error r  and the output 
R of the critic network are stable, so r  and R  are selected 
in the construction of the Lyapunov function; in addition, 
the action network is used to approximate the model 
uncertainty, and the objective of the estimation is to make 

the error of the weight 2W  converge to 0, so 2W  is selected 
to construct the Lyapunov function. In contrast, the critic 
network is not used to approximate a function as in tradition 
ACD design: it is used as an adaptive item to adjust the 
action network and VSC. So the approximation error 1W  in 
the critic network does not exist. Actually, the convergence 
of R  denotes that both of the weight matrix 1W  and 
adaptive parameter ρ  in the critic network are convergent. 
Based on the above analysis, we choose Lyapunov function 
constructed by the 2, ,r R W , which are different from the 
formulation in the former literatures [8][9][11]. The 
Lyapunov function is defined as  

2 2 2
1 1 1 ( )
2 2 2

T T TL r r R R tr W W= + + Γ ,                  (25) 

where  ( )tr ⋅  is the operator of the matrix trace. 

Proof: Calculating the derivative of L  

2 2 2( )T T TL r r R R tr W W= + + Γ .                         (26) 
Substituting (14) and (22) into (26), we can get 

1 2 2

1 1 1 1 1

1 1 1 1

1 1 1 2 2 2 2 2

[ ( ) ] ( )

ˆ ˆ( ) ( )
ˆ ( ) [ ( ) ])
ˆ ( ) ( ) ( )

T T T T T
v

T T T T T T T
v

T T T T

T T T T T T T T

L r K r r d t v r W V s

R W V r R W V r V K r

R W V r V d t v

R W V r V W V s R tr W W

ε σ

σ σ

σ ε

σ σ ρ

= − + + + +

′+ +

′+ + +

′+ + + Γ

.(27) 

Using 2 2
ˆW W= −  and the property ( ) ( )tr ab tr ba= ,  

1 1 1 1

2 2 1 1

1 1 1

2 2 1 1 1

2 2 2

ˆ[ ( ) ][ ( ) ]

ˆ[ ( ) ] ( ( ) )
ˆ ( )

ˆ[ ( ) ( )) ]

ˆ( )

T T T T T T
v

T T T T T T

T T T T
v

T T T T T T

T T

L r K r r R W V r V d t v

tr W V s r tr W V r R

R W V r V K r

tr W V s R W V r V

R tr W W

σ ε

σ σ

σ

σ σ

ρ

′= − + + + +

+ +

′+

′+

+ − Γ

.     (28) 

Simplifying the above function 
1 1 1 1

2 2 2 1 1 1 2 2

1 1 1 1 1

[ ( ) ][ ( ) ]

ˆ{ [ ( ) ( ) ( ) ]

{ ( ) } ( ( ) )

T T T T T T
v

T T T T T T T T

T T T T T T T
v

L r K r r R W V r V d t v

tr W V s r V s R W V r V W

tr W V r R R W V r V K r

σ ε

σ σ σ

σ ρ σ

′= − + + + +

′+ + − Γ

′+ + +

.    (29) 

Substituting (15) (16) and (19) into (29), 
1 1

1 1 1 1

( )

[ ( ) ][ ( ) ]

T T T
v

T T T T T

L r K r V r R

r R W V r V d t v

σ

σ ε

= − − Γ

′+ + + +
.                (30) 

Substituting VSC item (21) into (30), 

1 1( ) 0T T T
vL r K r V r Rσ< − − Γ < .                   (31) 

According to the Lemma 2, the system employing the 
control law (20) is asymptotically stable. It implies that r , 
R  and 2W  converge to 0 asymptotically.  

VII. NUMERICAL STUDY 
We conducted empirical studies to evaluate the proposed 

adaptive controller based on the combination of feedback 
linearization, ACD, and VSC applied to a 2-link 
manipulator. The results are summarized in this section. 

A. The 2-link manipulator Problem 
The model of the 2-link manipulator used in this 

simulation is the same as the one in [8]. 
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1 2

2 ( ) ( )
x x
x f x u d t

=
= + +

,                         (32) 

where 1 1 2[ ]Tx q q= , 2 1 2[ ]Tx q q= ,the control input is 
1( )u M q τ−=  and The disturbance is  1( ) ( ) dd t M q τ−= , dτ  

is the external disturbance. The nonlinear function )(xf  is 
give by 

1( ) ( )[ ( , ) ( , ) ( )]f x M q C q q F q q G q−= − + + .         (33) 
The parameters in the 2-link manipulator model are 

given by 
2 2 2

1 2 1 2 2 2 2

2 1 2 2 2 1 2 2
2 2

2 2 2 1 2 2 2 2

( )
2 cos( ) cos( )( )

cos( )

m m a m a m a
m a a q m a a qM q

m a m a a q m a

⎡ ⎤+ +
⎢ ⎥

+ += ⎢ ⎥
⎢ ⎥+⎣ ⎦

,      (34) 

2
2 1 2 1 2 2 2

2
2 1 2 1 2

(2 )sin( )
( , )

sin( )
m a a q q q q

C q q
m a a q q

⎡ ⎤− +
= ⎢ ⎥

⎣ ⎦
,                   (35) 

1 2 1 1 2 2 1 2

2 2 1 2

( ) cos cos( )
( )

cos( )
m m ga q m ga q q

G q
m ga q q

+ + +⎡ ⎤
= ⎢ ⎥+⎣ ⎦

,         (36) 

where 1 2 1 ma a= = are the manipulator arm lengths, 
29.8 m/sg =  is the acceleration due to gravity, 

1 2 1 kgm m= =  are the joint masses. 

B. Simulation Setup 
The simulation is conducted in Matlab. In our simulation, 

the nominal plant model parameters are set to 
be 1 2 1.4 ma a= = and 1 2 2 kgm m= = . The reference 
command is set to be a constant vector 

1 [0.3 0.3]T
cx = (rad). The noise of the plant is set as one 

combining a constant vector and a white noise, as 
0.01

( ) ( )
0.01d nt d tτ

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
,                           (37) 

where ( )nd t  is the white noise with the variance 0.1. 
 The parameters of the controller is summarized as 

follows 
100 0

0 100vK ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
, 1

0.295 0
0 0.28

λ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,                      (38) 

2 0
0 2

v
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 1 20.09,  0.06Γ = Γ = .                          (39) 

C. Simulation Results 
The simulation results are presented in Fig. 2-Fig. 5. In 

these figures, the complete controller follows the proposed 
controller design in Equation (20) (Method 1); the 
controller without model compensation means that the 
nominal model is not available (Method 2). In this situation, 
we set the nominal model as ˆ ( )f x O= , ˆ ( )g x I= , where O  
is zero matrix and I  is identity matrix; the controller 
without VSC compensation means that VSC item v  in 
Equation (20) is O (Method 3). 

Fig. 2 shows the time response of the complete controller 
when the number of the hidden nodes in neural networks is 
20. Fig. 3 shows the time response of the controller without 
model compensation. Comparing the two figures, we 
observe that, although both controllers make the tracking 
errors converge to 0, the complete controller has faster 

response speed than the controller without model 
compensation. 

 
Fig. 2 The time response of the complete controller ( 20hN = ) 

 
Fig. 3 The time response of the controller without model compensation 

( 20hN = ) 

 
Fig. 4 The time response of the controller without VSC compensation 

( 20hN = ) 

Fig. 4 and Fig. 5 show the time response of the controller 
without the VSC compensation when the number of the 
hidden nodes in the neural networks is 20 and 2 
respectively. As we know in Section III, the more the 
hidden nodes in the neural networks, the smaller the 
reconstruction error. Comparing the two figures, we get 
that, when the reconstruction error is small, the controller 
performs well without the VSC compensation. However, if 
the reconstruction error is big, the controller without the 
VSC compensation is unable to make the tracking error 
converge to 0. Fig. 6 shows the time response of the 
controller when the number of the hidden nodes is 2. It 
implies that, although the reconstruction error in the neural 
networks is big, the controller with the VSC compensation 
can deal with large reconstruction error and make the 
tracking error converge to 0. That is to say, the system 
using the complete controller is also asymptotically stable 
when the number of the hidden nodes is small. 
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Fig. 5 The time response of the controller without the VSC compensation 

( 2hN = ) 

 
Fig. 6 The time response of the complete controller ( 2hN = ) 

Using the aggregate of squared errors between the 
reference and the actual response on each output over the 
duration of the experiment, we can compare the aggregate 
performance of these controllers. The smaller the aggregate 
error, the better the control performance. Table 1 
summarizes the results.  

Table 1. The aggregate errors with different controllers and different 
number of the hidden nodes 

Method 1(Nh=20) 2(Nh=20) 3(Nh=20) 3(Nh=2) 1(Nh=2) 
e1 0.0035 0.0124 0.0244 0.1465 0.0036 
e2 0.0045 0.0166 0.0378 0.1876 0.0049 

VIII. CONCLUSION 
In this paper, we discuss the controller design using 

Adaptive Critic Design (ACD) for uncertain nonlinear 
systems. Existing ACD-based controllers were proven to be 
uniformly ultimately bounded. Although this is useful in 
the bounded error control, it is not enough for many precise 
tracking applications where asymptotical stability is 
preferred. To solve this problem, we developed a novel 
asymptotically stable ACD-based controller.  

In our controller design, the feedback linearization is 
conducted based on the known nominal plant model to 
improve the system dynamic characteristics firstly; then we 
employ ACD to approximate unknown model uncertainties 
in order to make the controller robust; and lastly variable 
structure control item is employed to make the controller 
asymptotically stable. To evaluate the validity of the 
proposed controller, an empirical study is conducted on a 
2-link manipulator. Results show the proposed controller 
can ensure good dynamic response characteristics and 
asymptotical stability under large model uncertainties. 
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