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Abstract— The development of quantitative models of signal 
transduction, as well as parameter estimation to improve 
existing models, depends on the ability to obtain quantitative 
information about various proteins that are part of the signaling 
pathway. However, commonly-used measurement techniques 
such as Western blots and mobility shift assays provide only 
qualitative or semi-quantitative data which cannot be used for 
estimating parameters. This paper presents a solution of an  
inverse problem for quantitatively determining transcription 
factor profiles from green fluorescent protein (GFP) reporter 
data. We have used this technique to quantitatively characterize 
activation of the transcription factor NF-kB by the cytokine 
TNF-α. The obtained results are in good agreement with 
qualitative descriptions of NF-kB activation as well as 
semi-quantitative experimental data from the literature. While 
the presented approach has been applied to NF-kB and TNF-α 
signaling, it can be used to determine the profile of other 
transcription factors with only minor modifications. 

I. INTRODUCTION 

YSTEMS Biology seeks to develop models for 
describing cellular behavior on the basis of regulatory 
molecules such as transcription factors and signaling 

kinases. The control of gene expression by transcription 
factors is an integral component of cell signaling and gene 
expression regulation [1-2]. Different transcription factors 
exhibit different expression and activation dynamics, and 
together govern the expression of specific genes and cellular 
phenotypes [3]. An important requirement for the 
development of these signal transduction models is the ability 
to quantitatively describe the activation dynamics of 
transcriptions so that parameters can be estimated for model 
development. The activation of transcription factors under 
different conditions have been conventionally monitored 
using protein binding techniques such as electrophoretic 
mobility shift assay, chromatin immunoprecipitation [4], or 
fluorescent recovery after photo bleaching (FRAP) [5]. While 
electrophoretic mobility shift assays or chromatin 
immunoprecipitation provide snapshots of activation at a 
small set of single time points, they can yield only qualitative 
or semi-quantitative data at best. This approach also requires 
the use of multiple cell populations for each time point at 
which transcription factor activation is to be measured, and 
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often, the true dynamics of transcription factors are not 
captured due to limited sampling points and frequencies. 
Compared with the above two methods, FRAP yields the 
dynamic parameters for the binding interactions instead of the 
information about transcription factor activation. Hence, 
these methods are not ideal for investigating time-dependent 
activation of transcription factors in a quantitative manner. 
Other methods such as  

More recently, fluorescence-based reporter systems have 
been developed for the continuous and non-invasive 
monitoring of transcription factors and the elucidation of 
regulatory molecule dynamics. Recent studies [6-9] have 
used green fluorescent protein (GFP) as a reporter molecule 
for continuously monitoring activation of a panel of 
transcription factors for 24 h. These systems involve 
expressing GFP under the control of a minimal promoter such 
that GFP expression and fluorescence is observed only when 
a transcription factor is activated (i.e., when the transcription 
factor binds to its specific DNA binding sequence and 
induces expression from a minimal promoter) (Fig.1A & B). 
The dynamics of GFP fluorescence is used as the indicator for 
dynamics of the transcription factor being profiled. The 
primary drawback with this approach is that it does not 
provide direct activation rates of the transcription factors 
being investigated. Even though transcription factor 
dynamics influence GFP dynamics, the relationship between 
the two is non-trivial as the induction of GFP fluorescence 
itself involves multiple steps (i.e., transcription of GFP 
mRNA, GFP protein translation, and post-translational 
processing) [10]. The observed fluorescence dynamics in 
GFP reporter cell systems is the result of two different 
dynamics: (i) the dynamics of transcription factor activation 
by a stimulus-mediated signal transduction pathway and (ii) 
the dynamics of GFP expression, folding, and maturation. 
Therefore, it is necessary to uncouple the effects of these 
independent systems in order to quantitatively determine 
transcription factor activation profiles underlying cellular 
phenotypes. 

In this work, we solve an inverse problem to derive 
transcription factor activation rates from GFP-based 
fluorescent reporter systems. We demonstrate that NF-kB 
activation dynamics can be accurately determined from GFP 
reporter profiles, using GFP reporter data for the activation of 
the transcription factor NF-kB by the cytokine TNF-α (Fig. 
1C). It should be pointed out that the presented approach is 
not limited to NF-kB and can be used to determine the 
activation profile of any transcription factor as long as GFP 
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reporter fluorescent profiles are available and the dynamics of 
transcription factor can be easily mathematically described.  

 
Fig. 1.  GFP-based reporter systems for investigating transcription factor (TF) 
activation. The DNA response element (RE) to which the TF binds is 
upstream of a minimal promoter that controls GFP expression (A) No 
fluorescence is observed in the absence of TF binding, (B) Binding of TF 
leads to promoter activation and GFP fluorescence, (C) Dynamics of a TF 
(e.g., NF-kB) is influenced by activation of the TF and the dynamics of GFP 
expression. 

II. PRELIMINARIES 

A. K-means Clustering  

K-means clustering is a method for identifying patterns in 
data and for dividing data into k disjoint clusters [11]. The 
principle of K-means clustering is to minimize the objective 
function expressed in (2) by determining centroids for each of 
the k clusters:   
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where Si, i=1, 2, …, k, represents all points belonging to the 

i-th cluster, i  is the centroid of all the points ij Sx  , and 
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where Ni is the total number of the data points in cluster Si.  
The procedure to perform K-means clustering consists of 

the following steps:  
1)  The initial centroids μi, i=1, 2,… , k,  for the k clusters 

are assigned or randomly sampled from the data points;  
2)  Each data point xj is assigned to a cluster m. This 

decision is made by determining the smallest value for  
2

mjx   among all possible ones
2

ijx  , i=1, 2, …, 

k.  
3) The function f  from (1) is computed by computing the 

sum of distances for all data points as well as for all clusters.  
4)  Equation (2) is used to update the centroid of each 

cluster by averaging the data points of the corresponding 
cluster;  

5)  Steps 2) through 4) are repeated iteratively until the 
relative change in the objective function  f  between iterations 

is less than a certain threshold.  

B. Principle Component Analysis (PCA) 

Principal component analysis [12] is a well-established 
technique for identifying multivariable patterns in data. Using 
PCA a data matrix X can be composed as follows: 

X=TPT+E (3) 
where T is the score matrix, P is the loading matrix, and E is 
the residual between the actual data and the reconstruction by 
PCA. The columns of P represent principle components of 
the data matrix, while the columns of T are the projections of 
the data matrix onto the principle components [13].   

The motivation for using PCA for image analysis in this 
paper is derived from the work presented in [14-15], which 
shows that clusters in a score plot from PCA are associated 
with features of an image.  

C. Mathematical Description of Digital Images  

The tristimulus theory states that any visual color can be 
represented by overlaying three color information channels. 
For television and computer graphics, the standard colors 
used are red, green and blue [14]. An RGB image can be 
represent by a three-dimensional matrix 
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where M is of size 3 ji . ji  is the resolution of the 

image, which means that there are i rows of pixels in the 
images and each row has j columns of pixels. Each pixel of 
the image has three intensity values, i.e. one for red, green, 
and blue. M can be rewritten into a two-dimension matrix X 

with the size of 3)(  ji in (5) by listing the three intensity 

values of each pixel line by line so that each row of 

X represents the red, green and blue values of a pixel: 
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(5) 

The intensity for each pixel is defined as the sum of the red, 
green, and blue values.  

bgrI   
(6) 

Image analysis extracts information from a time-series of 
images, represented by M matrices recorded at different 
points in time. A common image analysis procedure is to (1) 
record images at different time points, (2) separately analyze 
the images, and (3) combine the image analysis results for 
different time points to determine dynamics of the system.  

III. IMAGE ANALYSIS BASED ON PCA AND K-MEANS 

CLUSTERING 

A series of images taken by fluorescent microscopy were 
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analyzed to generate a time series of data representing the 
average fluorescent intensity of the cells in the images. In 
order to compute a fluorescent intensity profile it is required 
to first determine the areas in the image representing cells 
where fluorescence can be seen. The procedure for 
determining these areas makes use of principal component 
analysis and K-means clustering. A second step involves 
computing the average fluorescence intensity over these 
areas.  The detailed steps involved in these procedures are 
described in the following.  

Principal component analysis can be performed on X to 
determine pixels with similar brightness in the images by 
calculating the distance from a pixel to the first principal 
component (PC 1) as illustrated in Fig. 2. 

 
Fig. 2.  Principal component analysis applied to images to determine pixels 
with similar features. 

 
 The projection of a point onto PC 1 can be used as a 

measure for clustering the pixel brightness into different sets 
via K-means clustering. Fig. 3 illustrates the procedure of 
fluorescent cell searching based on K-mean clustering and 
PCA. In an initial step PCA is used to divide the pixels of the 
image into two clusters based upon their projection onto PC1. 
K-means clustering iteratively updates the pixels and 
centroids of the two clusters until the sum of distances from 
all the pixels in each cluster is minimized. The cluster with 
the larger variation is divided in a next step. The centroids of 
the two new clusters, which are determined by PCA, and the 
centroid of the un-divided cluster are used as the initial 
centroids of the three clusters for K-means clustering, which 
then sorts the pixels of the image belonging to one of the three 
clusters. This procedure can be repeated until any number of 
desired clusters is obtained. The clusters with higher 
fluorescent intensity are considered to represent the cells 
which show a significant level of fluorescence. Once the cell 
region has been determined it is possible to compute the 
average fluorescent intensity by the following formula: 
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where If,k refers the fluorescent intensity of the kth pixel in a 
fluorescent cell region, Ib,k refers the fluorescent intensity of 
the kth pixel belonging to the background, Nf is the total 
number of pixels in the fluorescent cell region, Nb is the total 

number of pixels in the background. The reason for 
subtracting the intensity of the pixels representing the 
background is to reduce measurement noise due to brightness 
variations.  

 

 
Fig. 3.  K-means clustering algorithm used for identifying cell regions in 
fluorescent images. 

 
This procedure has to be repeated for each image taken at 

different points in time to generate a time series of data for the 
fluorescent intensity. An example of the outcome of this 
procedure can be seen in Fig. 4 where the first three clusters 
represent fluorescent cells while the pixels included in 
clusters 4 and 5 correspond to the background.  

 

 
 
Fig. 4.  Results of the image analysis algorithm. (A) Fluorescent microscopy 
image, (B) Fluorescent regions detected by the image analysis procedure: (C) 
– (G) clusters 1 through 5 detected by the algorithm; white pixels refer to 
pixels included in a specific cluster, (H) cumulative results of clusters 1, 2, 
and 3; the white region in (H) is chosen as the region representing cells with 
GFP while the black pixels shown in (H) represent the background. 
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IV. SOLUTION OF AN INVERSE PROBLEM TO OBTAIN THE 

PROFILE OF TRANSCRIPTION FACTORS FROM THE INTENSITY 

PROFILE 

The structure of this section is as follows: Subsection A 
presents a model describing transcription, translation, and 
activation of GFP. The model uses the NF-kB concentration 
as the input and predicts the fluorescence intensity profile that 
can be measured. In subsection B, a solution of an inverse 
problem involving the model from subsection A to determine 
the NF-kB concentration is presented.  

A. Model Describing Transcription,Ttranslation, and 
Activation of GFP  

Since the presence of NF-kB in the nucleus (i.e., activation 
of NF-kB) does not immediately lead to fluorescence seen in 
the images it is required to develop a model describing 
transcription/translation as well as activation of GFP. The 
equations of this model are based upon the model described 
by Subramanian and Srienc [10] where modifications are 
made to account for the constant reporter DNA levels in our 
experiments (i.e., due to stable integration of the reporter 
plasmid into the genomic DNA in our reporter cell line [8]) as 
well as to include the effect of transcription factor 
concentrations on the transcription rate. These changes result 
in the following model describing the measurement 
dynamics:  
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(8) 

where CNF-kB is the concentration of activated NF-kB in the 
nucleus, m is the mRNA concentration, n is the concentration 
of GFP, and f corresponds to the concentration of activated 
GFP. The values of the parameters shown in (8) are given in 
Table 1. The procedure for estimation of C is described 
below.  

The experimental measurements consist of the 
fluorescence intensity, I, as seen on the images which is 
directly proportional to the concentration of activated green 
fluorescent protein: 

If   (9) 

where   is the ratio between activated GFP and computed 
fluorescence intensity.  

As I can be obtained from the fluorescence images that 
have been processed by the procedures described in the image 
analysis section, the dynamics of  NF-kB can be computed by 
solving an inverse problem involving (8). 

B. Inverse Problem Formulation for Obtaining 
Transcription Factor Profile from Fluorescent Intensity 
Data  

In this subsection we develop a procedure that computes 
the NF-kB concentration profile from the experimental data 
by solving an inverse problem using the model from 
equations (8) and (9). While it is possible to formulate this 
inverse problem and solve it numerically, it is actually 
possible to derive an analytical solution for this specific 
problem which computes CNF-kB from the fluorescence 
intensity profile I. This analytical solution treats (8) as a static 
nonlinearity 
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which is followed by a system of linear differential 
equations: 
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Taking a Laplace transform of (11) results in f(s) as a 
function of u(s): 
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While it is possible to choose any function to describe u(s), 
we opted for  
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as u(s) represents a concentration profile of CNF-kB that 
shows damped oscillatory behavior for continuous 
stimulation as has been reported in the literature [16]. 
Substituting (13) into (12) and performing an inverse Laplace 
transform results in: 
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where A1, A2, A3, A4, A7, and are constants with the values 

given in Appendix.  
The values of the parameters ε, n  and Tα are estimated by 

fitting f(t) to the experimental data for each experiment. The 
concentration of NF-kB is then given by: 

TABLE I 
PARAMETERS FOR THE MODEL SHOWN IN EQUATION (8) 

Parameter Value Parameter Value 

Sm 373 1/hr Sf 0.347 1/hr 

Dm 0.45 1/hr C 108 nM 

Sn 780 1/hr p 5 nM 

Dn 0.5 1/hr m(0), n(0), f(0) 0 nM 
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The values of C from (10) and   from (9) only need to be 
estimated once and can be assumed to be constant for all 
future experiments. We have chosen the concentration profile 
for NF-kB as reported in the paper by Hoffman et al. [16], 
which corresponds to a stimulation with 10 ng/ml of TNF-α, 
as the input, and have estimated C and   from experimental 
data that we have collected for stimulation with 10 ng/ml of 
TNF-α. The value of C  was determined to be 108 nM and   
was found to be equal to 2.5562104. It should be noted that 
some of the data derived from a stimulation with 10 ng/ml of 
TNF-α was used for determining these parameter values, 
while other data points will be used for testing model. Fig. 5 
shows the fit of (14) to the data generated by this experiment.  

 
Fig. 5.  Comparison of experimental data and the model predictions for f/   
where the NF-kB concentration serves as the input to the model and is taken 
from Hoffman et al.’s paper [16]. 

V. APPLICATION OF THE PROCEDURE TO ADDITIONAL 

EXPERIMENTAL DATA  

The activation of NF-kB in H35 reporter cells was 
investigated by stimulating with different TNF-α 
concentrations (6ng/ml, 10ng/ml, 13ng/ml, and 19 ng/ml). 
The data was analyzed using the described image analysis 
procedure, resulting in the fluorescence intensity profiles 
shown (Solid line) in Fig. 6. The error bars indicated +/- one 
standard deviation from the mean of the measurements taken 
for each time point. Fig. 6. also depicts the results of the 
estimated fluorescence intensity given by estimating model 
parameters for equation (14) for each case. The values for C 
and   are constant for these experiments, however, the 
values for ε, n  and Tα, as shown in Table 2, are estimated 

separately for each data set. The corresponding concentration 
profiles for NF-kB, as computed by (15) are shown in Fig. 7. 
It can be seen that stimulation with higher concentrations of 
TNF-α results in larger long-term concentrations of NF-kB as 
well as in higher peak concentrations. One important aspect 
of this procedure is that the data obtained is quantitative (i.e., 
numerical values of the NF-kB profile at each time point are 
obtained) and not merely qualitative or semi-quantitative. 

 

 
Fig. 6.  Experimental data and the fitted curve for different TNF-α  

concentrations.  
 

 
Fig. 7.  NF-kB profiles computed via solution of the inverse problem for 
TNF-α concentrations of 6 ng/ml, 10 ng/ml, 13 ng/ml, and 19 ng/ml. 

VI. DISCUSSION AND CONCLUSION 

We have demonstrated in this work that transcription 
factor activation profiles can be quantitatively extracted from 
fluorescent reporter data. The presented approach was 
effective in deriving transcription factor activation rates from 
GFP profiles generated from NF-kB reporter cells stimulated 
with 6–19 ng/mL of TNF-α, a concentration range that is 
within the range of those commonly used in cell culture 
experiments [6, 17] and reported to result in strong activation 
of NF-kB [9]. However, predicting NF-kB activation at lower 
concentrations further improvement (e.g., in the image 
analysis methods) is needed to increase the GFP signal/noise 
ratio for effectively predicting profiles of low abundance 
transcription factors. 

Another discrepancy between the model and experimental 
data is predicting long-term NF-kB activation profiles. The 

TABLE 2 

ESTIMATED VALUES FOR n, AND αT  

TNF-α Concentration ε 
n  Tα 

6 ng/ml 0.2 4.52 0.26 

13 ng/ml 0.2 4.52 0.31 

19 ng/ml 0.28 4.61 0.35 
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data in Fig. 6 shows that fluorescence decreases after ~ 11 h 
even though the stimulus (TNF-α) is continually present, with 
the decrease being more pronounced at the higher 
concentrations. However, this decrease is not reflected in Fig. 
6 which shows NF-kB levels being constant beyond 11 h as 
the assumed model structure from (13) cannot represent this 
decrease. It is possible to postulate a different profile for the 
transcription factor, resulting in differences in (13), e.g., one 
that can reflect such a decrease. However, it is not clear if the 
decrease in fluorescence observed after ~ 11 h of stimulation 
results from experimental artifacts (i.e., fluorescent 
photobleaching and cell death arising from cells being 
repeatedly exposed to UV light for imaging) or is a real 
biological phenomenon (i.e., consequence of change in gene 
expression arising due to constant stimulation with TNF-α). 
A better understanding of long-term activation is needed to 
evaluate this behavior. 

In summary we have developed a methodology for 
quantitatively determining transcription factor profiles. This 
technique makes use of fluorescence microscopy images 
from a GFP reporter system for transcription factor activation 
and involves solving an inverse problem to determine the 
transcription factor profile from the fluorescence intensity 
dynamics. Data generated by this method can then be used to 
estimate parameters for signal transduction pathway models. 
This technique was applied to the activation of NF-kB by 
TNF-α, however, it can be used for other transcription factors 
with only minor modifications. 

APPENDIX 

Equations for computing the values of the constants found 
in (14) 
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