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Abstract— This paper develops semistability and uniform
semistability analysis results for switched linear systems.
Semistability is the property whereby the solutions of a dy-
namical system converge to Lyapunov stable equilibrium points
determined by the system initial conditions. Since solutions to
switched systems are a function of the system initial conditions
as well as the switching signals, uniformity here refers to the
convergence rate of the multiple solutions as the switching
signal evolves over a given switching set. The main results
of the paper involve sufficient conditions for semistability and
uniform semistability using multiple Lyapunov functions and
sufficient regularity assumptions on the class of switching
signals considered.

I. INTRODUCTION

An essential feature of multiagent network systems is

that these systems possess a continuum of equilibria [1],

[2]. Since every neighborhood of a nonisolated equilibrium

contains another equilibrium, a non-isolated equilibrium can-

not be asymptotically stable. Hence, asymptotic stability is

not the appropriate notion of stability for systems having

a continuum of equilibria. For such systems possessing a

continuum of equilibria, semistability [3] is the relevant no-

tion of stability. Semistability is the property whereby every

trajectory that starts in a neighborhood of a Lyapunov stable

equilibrium converges to a (possibly different) Lyapunov

stable equilibrium. It is important to note that semistability is

not equivalent to set stability of the equilibrium set. Indeed,

it is possible for trajectories to approach the equilibrium set

without any trajectory approaching any single equilibrium

[3].

Since communication links among multiagent systems are

often unreliable due to multipath effects and exogenous

disturbances, the information exchange topologies in network

systems are often dynamic. In particular, link failures or

creations in network multiagent systems result in switchings

of the communication topology. This is the case, for example,

if information between agents is exchanged by means of

line-of-sight sensors that experience periodic communication

dropouts due to agent motion. Variation in network topology

introduces control input discontinuities, which in turn give

rise to switched dynamical systems. In this case, the vec-

tor field defining the dynamical system is a discontinuous

function of the state and/or time, and hence, system stability
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should involve analysis of semistability of switched systems

having a continuum of equilibria.

Building on the results of [1], [4], in this paper we develop

semistability and uniform semistability analysis results for

switched linear systems. Since solutions to switched systems

are a function of both the system initial conditions and

the admissible switching signals, uniformity here refers to

the convergence rate to a Lyapunov stable equilibrium as

the switching signal ranges over a given switching set.

The main results of the paper involve sufficient conditions

for semistability and uniform semistability using multiple

Lyapunov functions and sufficient regularity assumptions on

the class of switching signals considered. Specifically, using

multiple Lyapunov functions whose derivatives are negative

semidefinite, semistability of the switched linear system is

established. If, in addition, the admissible switching signals

have infinitely many disjoint intervals of length bounded

from below and above, uniform semistability can be con-

cluded. Finally, we note that the results of the present paper

can be viewed as an extension of asymptotic stability results

for switched linear systems developed in [4], [5].

II. SWITCHED DYNAMICAL SYSTEMS

The notation used in this paper is fairly standard. Specif-

ically, R denotes the set of real numbers, Z denotes the set

of integers, Z+ denotes the set of nonnegative integers, Z+

denotes the set of positive integers, C denotes the set of

complex numbers, Rn denotes the set of n × 1 real column

vectors, Re λ denotes the real part of λ ∈ C, (·)T denotes

transpose, and (·)D denotes the Drazin generalized inverse.

For A ∈ Rn×m we write rankA to denote the rank of A,

N (A) to denote the null space of A, R(A) to denote the

range space of A, and for A ∈ Rn×n we write spec (A)
to denote the spectrum of A. Furthermore, we write ‖ · ‖
for the Euclidean vector norm, Bε(α), α ∈ R

n, ε > 0,

for the open ball centered at α with radius ε, dist(p,M)
for the distance from a point p to the set M, that is,

dist(p,M) , infx∈M ‖p − x‖, and x(t) → M as t → ∞
to denote that x(t) approaches the set M, that is, for each

ε > 0 there exists T > 0 such that dist(x(t),M) < ε for

all t > T .

In this paper, we consider switched linear systems Gσ

given by

ẋ(t) = Aσ(t)x(t), σ(t) ∈ S, x(0) = x0, t ≥ 0, (1)

where x(t) ∈ Rn, Aσ(t) ∈ Rn×n, σ : [0,∞) → P denotes

a piecewise constant switching signal, and S denotes the

set of switching signals. The switching signal σ effectively

switches the right-hand side of (1) by selecting different
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vector fields from the parameterized family {Apx : p ∈ P}.

The switching times of (1) refer to the time instants at which

the switching signal σ is discontinuous. Our convention here

is that σ(·) is left-continuous, that is, σ(t−) = σ(t), where

σ(t−) , limh→0+ σ(t + h). The pair (x, σ) : [0,∞) × S →
Rn is a solution to the switched system (1) if x(·) is

piecewise continuously differentiable and satisfies (1) for all

t ≥ 0. The set Sp[τ, T ], τ > 0, T ∈ [0,∞], denotes the set

of signals σ for which there is an infinite number of disjoint

intervals of length no smaller than τ on which σ is constant,

and consecutive intervals with this property are separated by

no more than T [4] (including the initial time). Finally, a

point xe ∈ Rn is an equilibrium point of (1) if and only if

Aσ(t)xe = 0 for all σ(t) ∈ S and for all t ≥ 0.

We assume that the following assumption holds for (1).

Assumption 1:
⋂

p∈P N (Ap) − {0} 6= Ø.

Let E , {xe ∈ Rn : Aσ(t)xe = 0, σ(t) ∈ S, t ≥ 0}.

Then E =
⋂

p∈P N (Ap) and E contains an element other

than 0. It is important to note that our results also hold for

the case where
⋂

p∈P N (Ap) = {0}. However, due to space

limitations, we do not consider this case in the paper.

Definition 2.1: i) An equilibrium point xe ∈ E of (1) is

Lyapunov stable if for every switching signal σ ∈ S and

every ε > 0, there exists δ = δ(σ, ε) > 0 such that for

all ‖x0 − xe‖ ≤ δ, ‖x(t) − xe‖ < ε for all t ≥ 0. An

equilibrium point xe ∈ E of (1) is uniformly Lyapunov stable

if for every ε > 0, there exists δ = δ(ε) > 0 such that for

all ‖x0 − xe‖ ≤ δ, ‖x(t) − xe‖ < ε for all t ≥ 0.

ii) An equilibrium point xe ∈ E of (1) is semistable if

for every switching signal σ ∈ S, xe is Lyapunov stable and

there exists δ = δ(σ) > 0 such that for all ‖x0 − xe‖ ≤ δ,

limt→∞ x(t) = z and z ∈ E is a Lyapunov stable equilibrium

point. An equilibrium point xe ∈ E of (1) is uniformly

semistable if xe is uniformly Lyapunov stable and there exists

δ > 0 such that for all ‖x0 − xe‖ ≤ δ, limt→∞ x(t) = z
uniformly in σ and z ∈ E is a uniformly Lyapunov stable

equilibrium point.

iii) The switched system (1) is semistable if all the

equilibrium points of (1) are semistable. The switched system

(1) is uniformly semistable if all the equilibrium points of (1)

are uniformly semistable.

Next, we present the notion of semiobservability which

plays a critical role in semistability analysis of linear dy-

namical systems. For details, see [6].

Definition 2.2 ([6]): Let A ∈ Rn×n and C ∈ Rl×n. The

pair (A, C) is semiobservable if

n
⋂

k=1

N
(

CAk−1
)

= N (A). (2)

The following lemmas and propositions are needed for the

main results of the paper.

Lemma 2.1: Let A ∈ Rn×n and C ∈ Rl×n. If the pair

(A, C) is semiobservable, then

N (A) ∩ N (C) = N (A). (3)

Lemma 2.2 ([6]): Consider the switched dynamical sys-

tem (1). Assume that there exists a family {Pp : p ∈ P} of

symmetric, nonnegative-definite matrices such that, for every

σ ∈ S,

0 = AT
p Pp + PpAp + Rp, p ∈ P , (4)

where Rp = CT
p Cp, Cp ∈ Rl×n, and the pair (Ap, Cp)

is semiobservable for every p ∈ P and for an appropriately

defined set of symmetric, nonnegative-definite matrices {Rp :
p ∈ P}. Then the following statements hold:

i) N (Pp) ⊆ N (Ap) ⊆ N (Rp), p ∈ P .

ii) N (Ap) ∩R(Ap) = {0}, p ∈ P .

Proposition 2.1: Consider the switched dynamical system

(1). Assume that there exists a compact family {Pp : p ∈ P}
of symmetric, nonnegative-definite matrices such that, for

every σ ∈ S, (4) holds, the pair (Ap, Cp) is semiobservable

for every p ∈ P and for an appropriately defined set of

symmetric, nonnegative-definite matrices {Rp : p ∈ P}, and

xT(t)(Pσ(t) + LT
σ(t)Lσ(t))x(t)

≤ xT(t)(Pσ(t−) + LT
σ(t−)Lσ(t−))x(t), t ≥ 0, (5)

where Lp , In − ApA
D
p . Then (1) is Lyapunov stable. If,

in addition, {Ap : p ∈ P} is a compact set, then (1) is

uniformly Lyapunov stable.

Proposition 2.2: Consider the switched dynamical system

(1). Assume that every point in E is Lyapunov stable.

Furthermore, assume that for a given σ(t) ∈ S and x0 ∈ R
q,

the trajectory of (1) satisfies x(t) → E as t → ∞. Then

x(t) → z as t → ∞, where z ∈ E . Alternatively, assume

that every point in E is uniformly Lyapunov stable and for

a given x0 ∈ Rq , the trajectory of (1) satisfies x(t) → E as

t → ∞ uniformly in σ(t) ∈ S. Then x(t) → z as t → ∞
uniformly in σ(t) ∈ S, where z ∈ E .

Lemma 2.3: Let A ∈ Rn×n. Assume that there exists a

symmetric, nonnegative-definite matrix P ∈ Rn×n such that

0 = ATP + PA + R, (6)

where R = CTC, C ∈ R
l×n, and the pair (A, C) is

semiobservable. Then spec(A) ⊆ {λ ∈ C : Re λ < 0} ∪ {0}
and, if 0 ∈ spec(A), then 0 is semisimple. Alternatively,

assume that there exists a symmetric, positive-definite matrix

P ∈ Rn×n such that (6) holds and

rank

[

A − ωIn

C

]

= n (7)

for every nonzero ω ∈ R. Then spec(A) ⊆ {λ ∈ C : Re λ <
0} ∪ {0} and, if 0 ∈ spec(A), then 0 is semisimple.

Lemma 2.4: Let A ∈ Rn×n and C ∈ Rl×n. If rankA < n
and the pair (A, C) is semiobservable, then there exists an

invertible matrix S ∈ R
n×n such that

S−1AS =

[

Â11 0(n−1)×1

[01×(n−3), 1, 01×1] 01×1

]

,

CS =
[

Ĉ1 0l×1

]

, (8)

where Â11 ∈ R(n−1)×(n−1) and Ĉ1 ∈ Rl×(n−1). Further-

more, if rankA = n− 1 and the pair (A, C) is semiobserv-

able, then there exists an invertible matrix T ∈ Rn×n such
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that

T−1AT =





A11 0(n−r−1)×r 0(n−r−1)×1

A21 A22 0r×1

A31 A32 01×1



 ,

CT =
[

C1 0l×(r+1)

]

, (9)

where the pair (A11, C1) is observable, A22 is asymptotically

stable, A11 ∈ R(n−r−1)×(n−r−1), A21 ∈ Rr×(n−r−1),

A22 ∈ Rr×r, A31 ∈ R1×(n−r−1), A32 ∈ R1×r, [A31, A32] =
[01×(n−3), 1, 01×1]U

−1, U ∈ R(n−1)×(n−1) is nonsingular,

and C1 ∈ Rl×(n−r−1).

III. SEMISTABILITY OF SWITCHED LINEAR SYSTEMS

In this section, we present several sufficient conditions for

semistability of switched linear systems.

Theorem 3.1: Consider the switched dynamical system

(1). Assume that there exists a compact family {Pp : p ∈ P}
of symmetric, nonnegative-definite matrices such that, for

every σ ∈ S, (4) and (5) hold, and the pair (Ap, Cp) is

semiobservable for every p ∈ P and for an appropriately

defined compact set of matrices {Cp : p ∈ P}. Furthermore,

assume that {Ap : p ∈ P} is compact. Then the following

statements hold:

i) If S ⊂ Sp[τ, T ] for some sufficiently large τ > 0, 0 <
T < ∞, and N (Aσ(t)) ⊆

⋂

s∈[0,t] N (Aσ(s)), t ≥ 0,

then (1) is uniformly semistable.

ii) If S ⊂
⋃

τ>0,0<T≤∞ Sp[τ, T ] and N (Aσ(t)) ⊆
⋂

s∈[0,t] N (Aσ(s)), t ≥ 0, then (1) is semistable.

Proof. i) It follows from Proposition 2.1 that (1) is

uniformly Lyapunov stable. To show uniform semistability, it

follows from Proposition 2.2 that we need to show x(t) → E
as t → ∞ uniformly in σ. Let σ ∈ S, let x(t), t ≥ 0, be

a solution to (1), and let T , {t1, τ1, t2, τ2, . . . , tk, τk} ⊂
(0, t) be an increasing sequence of time instants in the

interval (0, t) such that the lengths of the intervals [ti, τi) are

no smaller than τ on which σ = pi and the intervals between

these have length no larger than T , that is, τi ≥ ti + τ for

i ∈ {1, 2, . . . , k}, ti+1 ≤ τi + T for i ∈ {1, 2, . . . , k − 1},

t ≤ τk+T , and t1 ≤ T . Next, it follows from Lemma 2.3 and

Assumption 1 that spec(Ap) = {λ ∈ C : Re λ < 0} ∪ {0}
and 0 is semisimple for every p ∈ P . Now, it follows from

Lemma 2.4 that there exists an invertible matrix Sp ∈ Rn×n

such that, with [xT
a , xs]

T = Spx, (1) can be transformed into

the form
[

ẋa

ẋs

]

=

[

Âp11 0(n−1)×1

[01×(n−3), 1, 01×1] 01×1

] [

xa

xs

]

,

y =
[

Ĉp1 0l×1

]

[

xa

xs

]

, (10)

where xa ∈ R
n−1, xs ∈ R, and Âp11 is asymptotically stable.

Since Âp11 is asymptotically stable, it follows that there exist

positive numbers λ, ρ such that ‖eÂp11t‖ ≤ e−λ(t−ρ) for

every t ≥ ρ and p ∈ P .

Let J be the set of all sequences p1, p2, . . . , pq ∈ P with

length of at most ⌈T/τ⌉, where ⌈·⌉ is a ceiling function

defined by ⌈x⌉ , min{n ∈ Z : x ≤ n}. Let τ > ρ. Define

µ , max
τ1∈[τ,τ+T ]

max
τ2∈[τ,τ+T ]

· · · max
τq∈[τ,τ+T ]

max
J

‖eÂpq11τq · · · eÂp211τ2eÂp111τ1‖. (11)

Note that J is a finite set and [τ, τ +T ] is compact. Hence,

it follows that

µ ≤ max
J

q
∏

i=1

max
τi∈[τ,τ+T ]

‖eÂpi11
τi‖ < 1. (12)

Next, it follows from (11) that

‖eÂσ(ti)11
(ti+1−ti)‖ ≤ µ, i ∈ {1, 2, . . . , k}. (13)

Let Φσ(t, s) denote the state transition matrix of ẋa =
Âσ11xa and note that

Φσ(t, 0) = Φσ(t, tk)Φσ(tk, tk−1) · · ·Φσ(t1, 0), t > 0. (14)

If t < T + τ , then T = Ø. Hence, for t ≥ T + τ , it follows

that Φσ(ti+1, ti) = eÂσ(ti)11
(ti+1−ti), i ∈ {1, 2, . . . , k − 1}.

Hence, it follows from (13) and (14) that

‖Φσ(t, 0)‖ ≤ ‖Φσ(t, tk)‖ · ‖Φσ(tk, tk−1)‖ · · ·

·‖Φσ(t1, 0)‖

≤ µk‖Φσ(t1, 0)‖ ≤ µkM. (15)

Since xa(t) = Φσ(t, 0)xa(0) and 0 < µ < 1, it follows

from (15) that limt→∞ xa(t) = 0. Furthermore, since µ and

k are independent of the switching signal σ, it follows that

x(t) → 0 as t → ∞ uniformly in σ.

Next, note that ẋs(t) = [01×(n−3), 1, 0]xa(t),
t ≥ 0. Hence, xs(t) is continuously differentiable and

limt→∞ ẋs(t) = 0 uniformly in σ. Thus, for every h > 0,

|xs(t + h) − xs(t)| ≤ h|ẋ(ξ)|, t < ξ < t + h, (16)

which implies that limt→∞ |xs(t+h)−xs(t)| = 0 uniformly

in σ, and hence, limt→∞ xs(t) exists. Let limt→∞ xs(t) =
αs ∈ R. Now, since

x(ti + hi) − x(ti) = Sσ(ti)

[

xa(ti + hi) − xa(ti)
xs(ti + hi) − xs(ti)

]

, (17)

where 0 < hi < ti+1 − ti, i ∈ Z+, and {Sp : p ∈ P} is

compact, it follows that limi→∞ ‖x(ti + hi) − x(ti)‖ = 0.

Furthermore, since for i ∈ Z+,

x(t−i+1) − x(ti) = Sσ(t−
i+1)

[

xa(t
−
i+1)

xs(t
−
i+1)

]

−Sσ(ti)

[

xa(ti)
xs(ti)

]

= Sσ(ti)

[

xa(ti+1) − xa(ti)
xs(ti+1) − xs(ti)

]

,

it follows that limi→∞ ‖x(ti+1) − x(ti)‖ = 0. Hence, for

every t ≥ 0 and h > 0, it follows that

x(t + h) − x(t) = x(t + h) − x(ti+j)

+

j−1
∑

k=0

x(ti+k) − x(ti+k−1)

+x(ti−1) − x(t), (18)
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where ti−1 < t ≤ ti < ti+1 < · · · < ti+j < t + h ≤ ti+j+1.

Hence,

‖x(t + h) − x(t)‖ ≤ ‖x(t + h) − x(ti+j)‖

+

j−1
∑

k=0

‖x(ti+k) − x(ti+k−1)‖

+‖x(t) − x(ti−1)‖,

which implies that limt→∞ ‖x(t+h)−x(t)‖ = 0, and hence,

limt→∞ x(t) exists. Let limt→∞ x(t) = β ∈ R
n. Note that

this convergence is also uniform in σ.

Define zσ , S−1
σ [01×(n−1), αs]

T. Then x(t) − zσ(t) =
S−1

σ(t)[x
T
a (t), xs(t) − αs]

T. Since the set {S−1
p : p ∈ P} is

compact, it follows that there exists b > 0 such that ‖S−1
p ‖ ≤

b for all p ∈ P . Hence,

‖x(t) − zσ(t)‖ ≤ b

∥

∥

∥

∥

[

xT
a (t)

xs(t) − αs

]∥

∥

∥

∥

, t ≥ 0, (19)

which implies that limt→∞ ‖β − zσ(t)‖ = 0. Hence,

limt→∞ zσ(t) = β. Note that zσ ∈ N (Aσ) for every σ ∈ S.

Now, it follows from N (Aσ(ti)) ⊆
⋂i

l=0 N (Aσ(tl)), i ∈ Z+,

that β ∈
⋂∞

i=0 N (Aσ(ti)) =
⋂

p∈P N (Ap) = E . Hence,

x(t) → E as t → ∞, uniformly in σ. Finally, it follows

from Proposition 2.2 that (1) is uniformly semistable.

ii) It follows from Proposition 2.1 that (1) is Lyapunov

stable. To show semistability, it follows from Lemma 2.2

that we need to show x(t) → E as t → ∞. Let σ ∈ S
and let x(t), t ≥ 0, be a solution to (1). Then σ ∈
Sp[τ, T ] for some τ > 0 and T ≤ ∞. However, τ and

T are not uniform over all switching signals σ(·). Let T ,

{t1, τ1, t2, τ2, . . . , tk, τk} ⊂ (0, t) be as defined in i). Next,

it follows from Lemma 2.4 that there exists an invertible

matrix Tp ∈ Rn×n such that with [xT
o , xT

u , xs]
T = Tpx, (1)

can be transformed into the form




ẋo

ẋu

ẋs



 =





Ap11 0(n−r−1)×r 0(n−r−1)×1

Ap21 Ap22 0r×1

Ap31 Ap32 01×1





·





xo

xu

xs



 ,

y =
[

Cp1 0l×(r+1)

]





xo

xu

xs



 , (20)

where xo ∈ Rn−r−1, xu ∈ Rr, xs ∈ R, y ∈ Rl, the pair

(Ap11, Cp1) is observable, and Ap22 is asymptotically stable.

Since (Ap11, Cp1) is observable, it follows from Lemma 1 of

[7] that for λ, δ > 0 there exists a matrix Kp ∈ R(n−r−1)×l

such that ‖e(Ap11+KpCp1)t‖ ≤ δe−λ(t−τ), t ≥ τ , p ∈ P .

Now, consider ẋo = (Aσ11 +KσCσ1)xo −Kσy. First, we

show that
∫ ∞

0
‖y(t)‖2dt < ∞. Let

Vp(x) = xTPpx + xTLT
p Lpx, p ∈ P , x ∈ R

n. (21)

Then it follows that V̇σ(t)(x(t)) = −xT(t)CT
σ(t)Cσ(t)x(t) =

−‖y(t)‖2. Hence,
∫ ∞

0 ‖y(t)‖2dt ≤ Vσ(0)(x(0)) < ∞. Next,

note that

xo(t) = e(Ap11+KpCp1)txo(τk)

−

∫ t

τk

e(Ap11+KpCp1)(t−s)Kpy(s)ds,

t ∈ [τk, tk+1). (22)

Hence, for every t ∈ [τk, tk+1), it follows from the Cauchy-

Schwarz inequality that

‖xo(t)‖ ≤ δe−λ(t−τ)‖xo(τk)‖

+α

(
∫ t

τk

‖y(s)‖2ds

)1/2

, (23)

where α , (
∫ ∞

0
‖e(Aσ11+KσCσ1)sKσ‖2ds)1/2 < ∞ since

{Ap : p ∈ P} and {Cp : p ∈ P} are compact. Since (1) is

Lyapunov stable, ‖xo(t)‖, t ≥ 0, is bounded.

Next, we show that limt→∞ xo(t) = 0. Suppose, ad ab-

surdum, xo(t) 6→ 0 as t → ∞. Then limt→∞ xo(t) = ν 6= 0
or lim inft→∞ xo(t) 6= lim supt→∞ xo(t). Note that τk was

chosen so that τk → ∞ as t → ∞. Since
∫ ∞

0
‖y(t)‖2dt <

∞, it follows that limτk→∞

∫ ∞

tk
‖y(t)‖2dt = 0. Hence,

limt→∞

∫ t

τk
‖y(s)‖2ds = 0. Thus, if limt→∞ xo(t) = ν 6= 0,

then by taking the limit on both sides of (23), it follows

that ‖ν‖ ≤ δ‖ν‖, which is a contradiction since δ is

arbitrary. Next, let a , lim inft→∞ ‖xo(t)‖ and b ,

lim supt→∞ ‖xo(t)‖ and note that 0 ≤ a < b < ∞. Choose

an unbounded sequence {ηn}
∞
n=1 with τk ≤ ηnk

< tk+1 so

that lim supn→∞ ‖xo(ηn)‖ = b. By taking t = ηnk
in (23)

and nk → ∞, it follows that b ≤ δb, which is a contradiction

since δ is arbitrary. Thus, limt→∞ xo(t) = 0.

Next, since U−1
p [0, xT

u ]T belongs to the unobservable

subspace of the pair (Âp11, Ĉp1), where Up ∈ R(n−1)×(n−1)

denotes the Kalman transformation matrix of the pair

(Âp11, Ĉp1), and Âp11 and Ĉp1 are given by (10), it follows

that U−1
p [0, xT

u ]T belongs to the smallest subspace M that is

Âp11-invariant1 for all p ∈ P and contains the unobservable

subspaces of all pairs (Âp11, Ĉp1), p ∈ P . Since Âp11

is a full rank matrix, it follows that M = {0}. Hence,

limt→∞ xu(t) = 0.

Note that

[

Ap11 0(n−r−1)×r

Ap21 Ap22

]

∈ R(n−1)×(n−1) is a

full rank matrix and [Ap31, Ap32] ∈ R1×(n−1). Then it

follows that there exists gp ∈ R1×(n−1) such that

[Ap31, Ap32] = gp

[

Ap11 0(n−r−1)×r

Ap21 Ap22

]

. (24)

Hence,

ẋs = [Ap31, Ap32]

[

xo

xu

]

= gp

[

Ap11 0(n−r−1)×r

Ap21 Ap22

] [

xo

xu

]

= gp

[

ẋo

ẋu

]

. (25)

1Given a matrix A ∈ R
n×n, a subspace M of R

n is A-invariant if and
only if the state of ẋ = Ax starting at time τ is such that x(τ) ∈ M, then
x(t) ∈ M for all t ≥ τ .
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Now, it follows that

xs(ti + hi) − xs(ti) = gσ(ti)

[

xo(ti + hi) − xo(ti)
xu(ti + hi) − xu(ti)

]

,

0 < hi ≤ ti+1 − ti, i ∈ Z+, (26)

which implies that limi→∞ |xs(ti + hi) − xs(ti)| = 0.

Using similar arguments as in the proof of i), it follows

that limt→∞ |x(t + h) − x(t)| = 0 for h > 0, and hence,

limt→∞ xs(t) exists. The rest of the proof is similar to the

proof of i).

The next result uses the geometric (rank) condition given

in Lemma 2.3 to develop a sufficient condition for semista-

bility.

Theorem 3.2: Consider the switched dynamical system

(1). Assume that there exists a compact family {Pp : p ∈ P}
of symmetric, positive-definite matrices such that, for every

σ ∈ S, (4) holds,

xT(t)Pσ(t)x(t) ≤ xT(t)Pσ(t−)x(t), t ≥ 0, (27)

and rank

[

Ap − ωIn

Cp

]

= n for every nonzero ω ∈ R

and every p ∈ P , and for an appropriately defined compact

set of matrices {Cp : p ∈ P}. Furthermore, assume that

{Ap : p ∈ P} is compact. Then the following statements

hold:

i) If S ⊂ Sp[τ, T ] for some sufficiently large τ > 0, 0 <
T < ∞, and N (Aσ(t)) ⊆

⋂

s∈[0,t] N (Aσ(s)), t ≥ 0,

then (1) is uniformly semistable.

ii) If S ⊂
⋃

τ>0,0<T<∞ Sp[τ, T ] and N (Aσ(t)) ⊆
⋂

s∈[0,t] N (Aσ(s)), t ≥ 0, then (1) is semistable.

Finally, we develop sufficient conditions for semistability

of switched linear systems involving Laplacian matrices [8].

Theorem 3.3: Consider the switched dynamical system

(1) with −Ap being Laplacian. Assume that there exists a

compact family {Pp : p ∈ P} of symmetric, positive-definite

matrices such that, for every p ∈ P and σ ∈ S, (4) and

(27) hold, and there exists an infinite sequence of nonempty,

bounded, nonoverlapping time-intervals [tij
, tij+kj

), i ∈ Z+,

j ∈ Z+, where tk denotes switching time instant, such that

the switching times tk satisfy tk+1 − tk ≥ τ > 0, k ∈ Z+,

t0 , 0, with the property that across each such interval,

rank

[

Aσ(tij+ℓ) − ωℓIn

Cσ(tij+ℓ)

]

= n for all nonzero ωℓ ∈ R

and every ℓ = 0, 1, . . . , kj − 1, and an appropriately defined

compact set of matrices {Cp : p ∈ P}. Furthermore, assume

that {Ap : p ∈ P} is compact. If τ is sufficiently large

and N (Aσ(ti)) ⊆
⋂i

l=0 N (Aσ(tl)), i ∈ Z+, then (1) is

semistable.

Proof. The proof of Lyapunov stability is similar to

the proof of Proposition 2.1 by considering the family of

Lyapunov functions Vp(x) = xTPpx. Since Aσ is Lyapunov

stable for σ ∈ S, it follows from i) of Definition 11.7.1 of [9]

that spec(Aσ) ⊆ {λ ∈ C : Re λ ≤ 0} and, if λ ∈ spec(Aσ)
and Re λ = 0, then λ is semisimple. Since, by assumption,
⋂

p∈P N (Ap)−{0} 6= Ø, it follows that there exists z ∈ Rn,

z 6= 0, such that Aσ(t)z = 0 for all t ≥ 0, which further

implies that 0 is a common eigenvalue of Aσ(t) for all

t ≥ 0. Hence, 0 ∈ spec(Aσ) and 0 is semisimple. Then,

using similar arguments as in the proof of Lemma 2.4, it

follows that for every σ ∈ S there exists an invertible matrix

Sσ ∈ Rn×n such that the matrix Aσ can be transformed into

the form

S−1
σ AσSσ =

[

Âσ11 0(n−1)×1

[01×(n−3), 1, 01×1] 01×1

]

, (28)

where Âσ11 ∈ R(n−1)×(n−1) is semistable. Furthermore,

since rank

[

Aσ(tij+ℓ) − ωℓIn

Cσ(tij+ℓ)

]

= n for all nonzero ωℓ ∈

R and every ℓ = 0, 1, . . . , kj −1, it follows from Lemma 2.3

that Âσ(tij+ℓ)11 ∈ R
(n−1)×(n−1), ℓ = 0, 1, . . . , kj − 1, is

asymptotically stable. Since Âσ11 is semistable, it follows

from Proposition 11.2.3 of [9] that

‖eÂσ(ti)11
(ti+1−ti)‖ ≤ 1, i ∈ Z+. (29)

Moreover, since Âσ(tij+ℓ)11 ∈ R is asymptotically stable,

it follows that there exist positive numbers λ, ρ such that

‖e
Âσ(tij+ℓ)11t

‖ ≤ e−λ(t−ρ) for every t ≥ ρ and ℓ =
0, 1, . . . , kj − 1.

Consider the switched dynamical system given by

[

ẋa(t)
ẋs(t)

]

=

[

Âσ(t)11 0(n−1)×1

[01×(n−3), 1, 01×1] 01×1

]

·

[

xa(t)
xs(t)

]

,

[

xa(0)
xs(0)

]

= Sσ(0)x(0), t ≥ 0. (30)

Clearly, [xT
a (t), xs(t)]

T = Sσ(t)x(t), where x(t) denotes the

solution of (1). By assumption there exists a finite upper

bound T on the lengths of the intervals [tij
, tij+kj

) across

which rank

[

Aσ(tij+ℓ) − ωℓIn

Cσ(tij+ℓ)

]

= n for all nonzero ωℓ ∈

R and every ℓ = 0, 1, . . . , kj −1. Since ti+1− ti ≥ τ , i ≥ 0,

it follows that kj ≤ ⌈T/τ⌉, j ≥ 1.

Let τ > ρ and let J be the set of all sequences

p1, p2, . . . , pq ∈ P with length of at most ⌈T/τ⌉ for which

rank

[

Aσ(tij+ℓ) − ωℓIn

Cσ(tij+ℓ)

]

= n for all nonzero ωℓ ∈ R

and every ℓ = 0, 1, . . . , kj − 1, and define

µ , max
τ1∈[τ,T ]

max
τ2∈[τ,T ]

· · · max
τq∈[τ,T ]

max
J

·‖eÂpq11 · · · eÂp211τ2eÂp111τ1‖. (31)

Note that since J is a finite set and [τ, T ] is compact, it

follows that

µ ≤ max
J

q
∏

i=1

max
τi∈[τ,T ]

‖eÂpi11
τi‖ < 1. (32)
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Next, it follows from (31) that

‖e
Âσ(tij+kj−1)(tij+kj

−tij+kj−1)
· · · e

Âσ(tij+1)(tij+2−tij+1)

·e
Âσ(tij

)(tij+1−tij
)
‖ ≤ µ, j ≥ 1. (33)

Furthermore, note that

e
Âσ(tij+1−1)(tij+1

−tij+1−1)
· · · e

Âσ(tij+1)(tij+2−tij+1)

·e
Âσ(tij

)(tij+1−tij
)

=

(

e
Âσ(tij+1−1)(tij+1

−tij+1−1)
· · ·

·e
Âσ(tij+kj

)(tij+kj+1−tij+kj
)
)

·

(

e
Âσ(tij+kj−1)(tij+kj

−tij+kj−1)
· · ·

·e
Âσ(tij

)(tij+1−tij
)
)

. (34)

Then it follows from (29) and (33) that

‖e
Âσ(tij+1−1)(tij+1

−tij+1−1)
· · · e

Âσ(tij+1)(tij+2−tij+1)

·e
Âσ(tij

)(tij+1−tij
)
‖ ≤ µ, j ≥ 1. (35)

Now, it follows from (35) that

‖xa(tij+1 )‖ ≤ µ‖xa(tij
)‖, j ≥ 1. (36)

Hence, ‖xa(tij
)‖ ≤ µj−1‖xa(ti1)‖, which implies that

limt→∞ xa(t) = 0. Furthermore, note that ẋs(t) =
[01×(n−3), 1, 0]xa(t), t ≥ 0. Hence, xs(·) is continuously

differentiable and limt→∞ ẋs(t) = 0. Thus, for every h > 0,

|xs(t + h) − xs(t)| ≤ h|ẋ(ξ)|, t < ξ < t + h, (37)

which implies that limt→∞ |xs(t+h)−xs(t)| = 0, and hence,

limt→∞ xs(t) exists. Let limt→∞ xs(t) = αs ∈ R.

Next, since

x(ti + hi) − x(ti) = Sσ(ti)

[

xa(ti + hi) − xa(ti)
xs(ti + hi) − xs(ti)

]

, (38)

where 0 < hi < ti+1 − ti, i ∈ Z+, and {Sp : p ∈ P} is

compact, it follows that limi→∞ ‖x(ti + hi) − x(ti)‖ = 0.

Furthermore, since

x(t−i+1) − x(ti) = Sσ(t−
i+1)

[

xa(t
−
i+1)

xs(t
−
i+1)

]

−Sσ(ti)

[

xa(ti)
xs(ti)

]

= Sσ(ti)

[

xa(ti+1) − xa(ti)
xs(ti+1) − xs(ti)

]

, (39)

i ∈ Z+, it follows that limi→∞ ‖x(ti+1) − x(ti)‖ = 0.

Hence, for every t ≥ 0 and h > 0, it follows that

x(t + h) − x(t) = x(t + h) − x(ti+j)

+

j−1
∑

k=0

x(ti+k) − x(ti+k−1)

+x(ti−1) − x(t), (40)

where ti−1 < t ≤ ti < ti+1 < · · · < ti+j < t + h ≤ ti+j+1.

Hence,

‖x(t + h) − x(t)‖ ≤ ‖x(t + h) − x(ti+j)‖

+

j−1
∑

k=0

‖x(ti+k) − x(ti+k−1)‖

+‖x(t) − x(ti−1)‖,

which implies that limt→∞ ‖x(t+h)−x(t)‖ = 0, and hence,

limt→∞ x(t) exists. Let limt→∞ x(t) = β ∈ Rn.

Define zσ , S−1
σ [01×(n−1), αs]

T. Then x(t) − zσ(t) =
S−1

σ(t)[x
T
a (t), xs(t) − αs]

T. Since the set {S−1
p : p ∈ P} is

compact, it follows that there exists b > 0 such that ‖S−1
p ‖ ≤

b for all p ∈ P . Hence,

‖x(t) − zσ(t)‖ ≤ b

∥

∥

∥

∥

[

xT
a (t)

xs(t) − αs

]∥

∥

∥

∥

, t ≥ 0, (41)

which implies that limt→∞ ‖β − zσ(t)‖ = 0. Hence,

limt→∞ zσ(t) = β. Note that zσ ∈ N (Aσ) for every σ ∈ S.

Now, it follows from N (Aσ(ti)) ⊆
⋂i

l=0 N (Aσ(tl)), i ∈ Z+,

that β ∈
⋂∞

i=0 N (Aσ(ti)) =
⋂

p∈P N (Ap) = E . Hence,

x(t) → E as t → ∞. Finally, it follows from Proposition 2.2

that (1) is semistable.

IV. CONCLUSION

This paper extends the notions of uniform asymptotic

stability of switched linear systems to uniform semistability

of switched linear systems. In particular, semistability and

uniform semistability are established using multiple Lya-

punov functions. Future work will concentrate on analyzing

information consensus algorithms in dynamical networks

with switching topologies using the proposed semistability

framework.
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