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Abstract—This paper proposes a convex optimal control prob-
lem as a mathematical model of human postural control during
quiet standing. The human body is modeled as a two-segment
inverted pendulum controlled by a single ankle torque. Several
performance criteria that are quartic in the state and quadratic
in the control are utilized. The discrete-time approximation
to each of these problems is a convex programming problem.
These problems were solved by the Newton-KKT method. The
solutions are shown to exhibit many of the experimentally
observed postural control phenomena, especially greater sway
than would occur with a linear feedback control without delay.

I. INTRODUCTION

H
UMAN postural control has been extensively studied

over many years, primarily because understanding the

postural control system would likely lead to better means

of protecting people from falls—a major threat to the elderly

[12][20]. Nonetheless, there are still relatively simple aspects

of the control that are poorly understood and somewhat

controversial. Specifically, humans standing quietly seem to

sway more than is consistent with a linear feedback controller

with no feedback delay [19] . Because the sway amplitude is

small, linearization of the closed–loop dynamics is certainly

appropriate, so it is hard to image that nonlinearities in the

control are important during postural sway.

However, a nonlinear controller that is approximately lin-

ear with zero gain at the nominal equilibrium posture could

possibly explain postural sway. It is also reasonable to believe

that the human postural control system is, in some sense,

optimal. We hypothesize that the performance measure is not

linear quadratic (LQ) but is of higher order (HO), i.e., the

performance measure has the form

J =
1

2

∫
∞

0

[
K∑

i=1

qix
2m
i (t) +

L∑

j=1

rju
2
j (t)]dt (1)

where qi and rj are cost coefficients, K,L,m are integers, and

the xi and uj are deviations from the nominal equilibrium

values of the states and controls respectively. The rest of this

paper is devoted to testing this hypothesis.
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The following section reviews the prior literature on pos-

tural control. This is followed by a derivation of the model of

the quietly standing human, which, although simple, is stan-

dard in the literature. The resulting optimal control problem

is then described, discretized and solved for four versions of

the performance criteria. The solutions to the optimal control

problems with higher order (HO) performance criteria are

shown to exhibit several characteristic features of quietly

standing humans. The paper concludes with a description of

three specific important and straightforward ways in which

this research can be extended.

II. BACKGROUND

Many early works have investigated different aspects of

the quantitative and qualitative properties of the spontaneous

postural sway: proprioception [7][16], vestibular system [15],

vision [1][4][8] and somato-sensory [9][10][11]. Postural

sway during quiet standing is influenced by different physi-

ological conditions, including: aging [1] height, weight, and

muscle strength/weakness as well as disease state [19]. Pos-

tural sway is inconsistent with the usual feedback controls in

engineering because it is spontaneous with low amplitude and

low energy consumption. Many quantitative and qualitative

analyses of spontaneous postural sway have been performed

in the time and frequency domain to characterize the random

oscillatory motions including: trajectory of the center of

pressure (CP) [4][5][6][15][16]; trajectory of the center of

mass (CM) [21][22]; trajectory of the ankle joint angle [7][8]

and trajectories of other body points [1][2]. Sway amplitude

and velocity are the two most important measurements to

characterize the anterior-posterior postural sway behavior.

Collins and DeLuca[5] proposed a combination of open-

and closed-loop control strategies and introduced a new

analysis technique called the Stabilogram Diffusion Function

(SDF) to explain their experimental findings. SDF measures

the similarity of the average center of pressure (CP) between

different time intervals. This analysis is very sensitive to sway

amplitude and velocity; it showed that quiet stance behavior

is characterized by "persistence" over short time intervals and

"anti-persistence" over longer time intervals.

For a long time, standing posture control strategies were

considered to be reflex-like responses elicited automatically

by a sensory stimulus. But now it is more commonly believed

to be a fundamental motor skill learned by the central

nervous system (CNS). The idea is that the CNS anticipates
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spontaneous changes in body position during quiet stance

and continuously modulates ankle extensor muscle activity

to compensate for the changes. The behavior of the postural

control system has been approximated by various linear

systems with multiple parameters including:1) Linear (P/PD/

PID) Control[19]; 2) LQR[13]. The parameters have included

muscle stiffness, damping, time delay and a source of random

noise, etc.

III. NORMALIZED HUMAN UPRIGHT STANDING MODEL

A. Inverted Pendulum Model

The human body is often approximated and simplified as

a single segment, single joint inverted pendulum that rotates

about the ankle joint. This model has been widely used in

studying standing posture control during quite upright stand-

ing [17][18][21]. One reason for this is that experimental

observations suggest that, for small postural deviations, there

is very little, if any, knee and hip angular motion. We use

this simple model here, although it should be obvious that

our approach also applies to much more complex and realistic

multi-segment models of the quietly standing human

Figure 1. Single joint inverted pendulum model used in studying posture
control during quite upright standing

The dynamical equation for the inverted-pendulum is

Io

d2θ

dt
= Mghsin(θ) + u + ǫ (2)

θ Sway angle

θ̇ Sway velocity

θ̈ Sway acceleration

M The body segment mass

Io Moment of inertia of the body segment

h Distance of CM from the ankle

g Acceleration of gravity

u Total ankle torque

yg Horizontal displacement of the CM

yp Horizontal displacement of the CP

ǫ Disturbance torque

In this inverted pendulum model, ankle torque is the control

input. The ankle joint torque that stabilizes the body during

quiet stance can be generated actively and passively. Passive

torque [17] components are the result of tension/stiffness pro-

duced by muscle tonus and by the stiffness of the surrounding

tissue, such as ligaments and tendons. The active torque [17]

component is produced by muscle contractions. Because the

CM is located in front of the ankle joint, backward ankle

torque is continuously applied to the body to prevent it

from falling forward [20]. However, the stabilization of quiet

stance by passive torque alone is not possible, and therefore

an active component is required to maintain stability.

Because ankle flexor activity is rare and ankle extensors

are considerably activated, it can be said that ankle extensors

contribute the most toward control of the ankle joint torque

and therefore the body posture during quiet stance. [12].

B. Dimensional Analysis

Dimensional analysis has been often used for qualitative

reasoning about physical systems. For this human standing

model [·] denotes dimension, M is mass, L is length, T is

time and 1 indicates dimensionless.

[θ] = 1 [Io] = ML2

[g] = L/T 2 [h] = L
[u] = ML2/T 2 [ǫ] = ML2/T 2

We introduce the quantities

θ̃(τ) = θ(t), ũ(τ) = u(t), ǫ̃(τ) = ǫ(t) (3)

where τ = t/β and the normalization factor β =
√

h/g ,

which has dimension [β] = T . Given dt
dτ

= β and θ̃(τ) =
θ(t), we apply the chain rule to obtain a dimensionless first

order derivative with respective to time
dθ̃(τ)

dτ
= β dθ(t)

dt
.

Repeating the process for the second derivative:

d2θ̃(τ)

dτ2
= β2 d2θ(t)

dt2
(4)

Now, we can rewrite Equation (2)

Io

1

β2

d2θ̃(τ)

dτ2
= mghsinθ̃(τ) + ũ(τ) + ǫ̃(τ) (5)

Given β =
√

h/g, we have

d2θ̃(τ)

dτ2
=

mgh

Io

h

g
sinθ̃(τ) +

ũ(τ)

Io

h

g
+

ǫ̃(τ)

Io

h

g
(6)

Let mgh
Io

= α. We can simplify Equation (6) into a completely

dimensionless form:

d2θ̃(τ)

dτ2
= αβ2sinθ̃(τ) +

ũ(τ)

Io

β2 +
ǫ̃(τ)

Io

β2 (7)

It is interesting to notice: [α] = 1
T 2 , whereas [β2] = T 2 and

dimensions of each variable are
[

d2θ̃(τ)
dτ2

]
= 1,

[
θ̃(τ)

]
= 1,

[
αβ2

]
= 1,

[
ũ(τ)
Io

β2
]

= 1 and
[

ǫ̃(τ)
Io

β2
]

= 1. We omit the

tilde and simplify as,

θ̈(τ) = αβ2sinθ(τ) +
u(τ)

Io

β2 +
ǫ(τ)

Io

β2 (8)
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then, letting x̂1 = θ, x̂2 = θ̇

{
˙̂x1 = x̂2

˙̂x2 = αβ2sin(x̂1) + u(τ)
Io

β2 + ǫ(τ)
Io

β2 (9)

Further define û = u
I0

β2, ǫ̂ = ǫ(τ)
Io

β2 and a nominal

equilibrium posture of x̂1 = 10◦, x̂2 = 0. We can then apply

sin(x̂1 − 10)  x̂1 − 10 to simplify the system without

losing generality, because the angular excursions possible

during stable posture regulation are less than ±5o. Then

the dimensionless differential Equation (9) linearized about

x̂1 = 10◦, x̂2 = 0 has the simplified form :

{
ẋ1 = x2

ẋ2 = αβ2x1 + û + ǫ̂
(10)

where x1 and x2 are deviations from the nominal equilibrium

point and û is defined as the difference from the û needed

to maintain equilibrium at 10◦. The two parameters α and

β provide a body characteristic measurement for the sway

model.

C. Performance Measure

Since the prior research suggests the postural controller

is fairly insensitive to small errors, the plant model has two

states and one controller, and the noise is very small, we

(temporarily) ignore the noise and simplify Eqn (1) to

J =
1

2

∫
∞

0

[px2m
1 (t) + qx2n

2 (t) + û2(t)]dt (11)

As m and n increase, the performance measure assigns

smaller and smaller weight to small postural sway. We will

discuss the choice of p, q, m and n below.

IV. SOLUTION OF OPTIMAL CONTROL PROBLEM

Discretization

We define x =

[
x1

x2

]
, coefficient A =

[
0 1

αβ2 0

]
and

B =

[
0
1

]
. By choosing the discrete time step τ̂ we can

convert the continuous-time system in Eqn (10) to the discrete

time system:

x(k + 1) − x(k) = τ̂
2 [Ax(k + 1) + Bû(k + 1)]

+ τ̂
2 [Ax(k) + Bû(k)]

Let A =

[
0 τ

2
αβ2 τ

2 0

]
and B =

[
0
τ
2

]
. Then, the discrete

time optimal control problem is defined as

min J(x, û) =
∑N

0 px2m
1 (k) + qx2n

2 (k) + û2(k)

subject to x(k + 1) = Ãx(k) + B̃[û(k + 1) + û(k)]

where

Ã = (I − A)−1(I + A) , B̃ = (I − A)−1B

and N is the final time for the optimal control. This is always

a convex programming problem. Such problems are known

to have a solution and are comparatively easy to solve using

a Newton-KKT interior point method.

Define new overall optimization variable

We introduce a new overall optimization variable as

s = [û(0), x(1)T , û(1), x(2)T , û(2) . . . , x(N)T , û(N)]T

The objective function J(x, û) then becomes J(s) and the

variable s ∈ R
3N+1. We introduce the following notation for

the Newton-KKT iteration algorithm.

s(i) Overall state variable at ith iteration

r(i) Gradient for the overall state variable at ith

iteration, defined as r(i) = ∇J(s(i))
H(i) Hessian matrix for overall state variable at ith

iteration, defined as H(k) = ∇2J(s(i))

Note that the Hessian H(i) is block diagonal.

H(i) = diag[R
(i)
0 , Q

(i)
1 , R

(i)
1 , Q

(i)
2 , R

(i)
2 , . . . Q

(i)
N , R

(i)
N ]

where

R
(i)
n = ∇2f(û

(i)
n ) = 2

Q
(i)
n = ∇2f(x

(i)
n ) =

[
∂2f(x(i)

n
)

∂x1∂x1
0

0
∂2f(x(i)

n
)

∂x2∂x2

]

Each term on the diagonal of the Hessian H(i) = ∇2J(s(i))
is positive definite, except at x1(k) = 0 or x2(k) = 0 for

some k = 0, 1, 2, ..., N .

Newton-KKT Interior-Point Methods

In this section, we describe an iterative interior point

algorithm to solve the KKT system [3]. The Newton step

△s
(i)
nt for an equality constrained problem is characterized

by the following KKT system:

[
H(i) AT

s

As 0

] [
△s

(i)
nt

w

]
=

[
−r(i)

0

]
(12)

where

As =




−B̃ I −B̃ · · · · · · O
... −Ã −B̃ I −B̃

...
...

...
...

...
...

...

O · · · −Ã −B̃ I −B̃




Using the Schur Complement to solve the KKT system

H(i)△s
(i)
nt + AT

s w = −r(i) (13)
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1) Define C = −As[H
(i)]−1AT

s

2) Solve for w from Cw = As[H
(i)]−1r(i)

3) Solve for △s
(i)
nt from H(i)△s

(i)
nt = −Asw − r(i)

4) Validation: define λ(△s
(i)
nt ) =

√
[△s

(i)
nt ]

T H(i)△s
(i)
nt

• IF 1
2λ2(△s

(i)
nt ) ≤ ǫ DO s(i+1) = s(i) + △s

(i)
nt

• ELSE DO Linear Search

Choose µ ∈ (0, 0.5) η ∈ (0, 1) ν = 1
While

λ(s(i) + ν△s
(i)
nt ) > λ(s(i)) + µν∇λT (s(i))△s

(i)
nt

Do ν := νη
Update s(i+1) = s(i) + ν△s

(i)
nt

V. RESULTS

The simulations are based on the simplified sway model

defined in Eqn (10) using Peterka’s body parameters [19] as

shown in Table I. Four different optimal control problems

were solved and their operation simulated for different sce-

narios.

Table I
BODY CHARACTERISTICS AND DIMENSIONLESS MODEL PARAMETERS

Symbol Quantity Value

M Body mass 76 kg
I0 Body moment of inertia 66 kg.m2

h CM height over ankle joint axis 0.87 m
g Acceleration of gravity 9.8 m/s2

α mgh/I0 9.26

β
√

h/g 0.092

A. Open-loop Control for Different Initial States without

Noise

We first solved the basic postural optimal control problems

under no disturbance torque with J(x, û) =
∑N

0 [px2m
1 (k)+

qx2n
2 (k) + û2(k)], with [m, n]=[1, 1], [1, 2], [2, 1] and [2, 2].

The optimal control is open loop, so each problem was solved

for every initial condition in a grid as indicated in Table II.

Table II
OPEN-LOOP SIMULATION PARAMETERS

Symbol Quantity Values

Fx1 Feasible angular range [−5◦, 5◦]
σx1 Angular step interval size 0.05◦

Fx2 Feasible velocity range [−1.5◦/s, 1.5◦/s]
σx2 Velocity step interval size 0.005◦/s
N Ending point 20
i Num of iterations 20
p Angular cost coefficient 0.1
q Velocity cost coefficient 0.5

This array consisted of the following feasible sway range:

angular displacement x1 ∈ Fx1 , [−5◦, 5◦] with step

interval size σx1
= 0.05◦ and angular velocity x2 ∈ Fx2

,

[−1.5◦/s, 1.5◦/s] with step interval size σx2
= 0.005◦/s.

The resulting optimal state trajectories are shown in Fig. 2.
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Figure 2. State Trajectory of Four Different Control Strategies Starting
from Different Initial State

The [1, 1] result is for an LQ optimal control—a linear

system. The [2, n] results, as expected, have considerably

more movement for small x1. The choice of p = 0.1 means

that the main sway effects will appear for |x1| < 0.5◦. In

order to obtain an approximation to the optimal feedback

control, we then interpreted the first value of the control

signal as the optimal feedback gain for any state identical to

the initial state, resulting in the control torque as a function

of state (feedback control) shown in Fig. 3. The feedback

control for an arbitrary initial condition was then computed

by interpolating from this grid.
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Figure 3. Control Torque Map in the Feasible Sway Range

As expected, the [1, 1] feedback control is linear—it is

the LQ optimal feedback control. The other three feedback

controls have nearly zero slope at |x1| = 0 and steep slope
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for large |x1|. The [1, 2] feedback controller seems to have an

interesting skewness. We can use the obtained control torque

map over the feasible sway range to fully describe the HO

system with fixed noise level as is discussed in the following

sections.

B. Control with Fixed Initial State and Noise Level

In this section, we simulated the closed–loop HO system

with a fixed noise level using the optimal feedback control

obtained from the torque map in Fig 3. The noise is white

Gaussian noise with zero-mean and standard deviation δǫ =
0.1. The simulation parameters are listed in Table III.

Table III
FIXED INITIAL STATE AND NOISE LEVEL PARAMETERS

Symbol Quantity Value

x1 Angular displacement +3◦

x2 Angular velocity +0.1◦/s
δǫ Noise level 0.1
T Simulation duration 20 secs
1

τ
Sampling rate 50 Hz

Notice that the optimal controls for all three HO perfor-

mance criteria are much more aggressive in reducing the large

initial deviations than the LQ optimal control. However, all

three respond less to the small deviations that remain after

roughly 10 seconds as shown in Fig 4.
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Figure 4. Trajectories of angular state x1, angular velocity x2 and the
control input û for different performance criteria

C. Control of Equilibrium Driven by Different Noise Levels

It is interesting to simulate the system starting from an

equilibrium state and driven by different levels of noise.

The results are shown in Figs 5 and 6. Note that the noise

sequences are identical for all four trajectories in each of the

figures. The noise in each figure is, except for a scale factor,

also identical. As expected, all of the HO controllers result

in greater sway than the LQ optimal controller. Somewhat

surprisingly, all four controllers produce trajectories that

seem to cluster near some nominal state, drift from that state,

and then cluster elsewhere. The [2, n] controllers have the

most sway, The [1, 2] controller seems to have the least.
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Figure 5. State trajectories of four different control schemes to maintain
the equilibrium state driven by different levels of noise
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Figure 6. SDF function of four different control schemes to maintain the
equilibrium state driven by different levels of noise

The SDF describes the relationship between the time

interval of motion and the average of corresponding changes

in position [5]. It is sufficient to detect differences in postural

sway and also very sensitive. The CP SDF is defined to be〈
△y2

p

〉
=

〈
[yp(t + △t) − yp(t)]

2
〉
, where 〈·〉 denotes the

ensemble mean of the time series, and △t ranges from 0

to 10 seconds in the simulation. The computation of yp, the

displacement of the CP is based on the displacement of the

CG yg and CG acceleration ÿg: I0ÿg = Mgh(yg − yp). At
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△t = 0, the SDF
〈
△y2

p

〉
value is always zero, when △t

increases
〈
△y2

p

〉
will also increase, because yp(t) and the

time-shifted version yp(t+△t) becomes less similar to each

other.

The SDFs for the four designed control schemes are plotted

in figure 6. They demonstrated that the [1, 1] controller

expends the most energy and the [2, 2] the least. Note that

stability is not an issue. None of the controllers allows enough

sway to jeopardize stability in any way. The conditions for

the SDF’s plotted in Fig.6 are the standard ones. That is,

the subjects start at equilibrium. In this case only the [2, 2]
controller truly replicates the experimentally obtained SDF’s.

There is a scaling issue here. The effect of changing p and

q on the SDF should be studied. Lastly, we computed the

energy expended by each of the controllers in maintaining

the posture when starting from equilibrium and perturbed by

white Gaussian noise. The results are shown in Table IV.

Table IV
TORQUE ENERGY Eab(û) =

∑
b

a
û2(n) AT RANGE [0s, 20s]OF FOUR

CONTROL STRATEGIES UNDER DIFFERENT NOISE LEVEL

Noise level [1, 1] [1, 2] [2, 1] [2, 2]

δǫ = 0.1 0.3715 0.1401 0.1998 0.1081
δǫ = 0.2 0.9125 0.5518 0.5565 0.4341
δǫ = 0.3 1.6074 1.1965 1.0966 0.9793

The SDF’s measured by Collins [5] and studied by Peterka

[19] are similar to those we obtained for our [1, 2] and [2, 2]
optimal controllers. They exhibit two slopes with the steeper

slope at small time intervals. Note that the SDF’s calculated

for [1, 1] and [2, 1] are nearly straight — different from the

experimental observations. The comparison is not completely

fair because we have small noise and non-zero initial error.

However, the experimental results could possibly begin with

some initial error.

VI. CONCLUSIONS

An optimal control problem consisting of a simple di-

mensionless inverted pendulum model of the human and a

performance criterion that is quartic in at least some states

and quadratic in the control has been formulated, solved by

the Newton-KKT method, and shown, in many respects, to

exhibit similar behavior to humans standing quietly. Although

the simple inverted pendulum model is standard in the

literature on human postural regulation, the greatest value of

the work reported here may well be the ease with which it can

be extended. Optimal control models of the quietly standing

human involving more complex models of the human and

performance criteria of the form of Eqn. (1) can be solved

by the same techniques as were used in this paper.

This approach provides an effective way to study, among

other aspects of the control problem, the coordination of

muscles acting at the knee, hip, and ankles. This approach can

even handle delays, although with the somewhat unrealistic

restriction that the full state is available to the controller.

Because the dynamics are linear, the excursions from equi-

librium are small and the performance criteria are symmetric

about zero, certainty equivalence is likely to hold, at least

approximately. Thus, this approach can be used to study the

effects of delay.
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