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Abstract— The objective of this paper is to develop numer-

ically simple and effective methods for system analysis using
truncated ellipsoids. The paper studies linear time-invariant
systems subject to persistent disturbance and state constraint.
The maximal output under a set of initial conditions and the
overshoot under a given step input are estimated. Attempts
are also made to detect an invariant set, as large as possible,
within state/output constraint. The results are based on the
set invariance condition for the truncated ellipsoid, and a
characterization of the set where the output possibly reaches a
local extreme.
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I. INTRODUCTION

We consider the following linear system subject to persis-

tent disturbance:

ẋ = Ax + Bu + Ew, y = Cx, (1)

where x ∈ R
n is the state, u ∈ R

m is a step input, w ∈ R
q

is the persistent disturbance bounded by w Tw ≤ 1 and y ∈
R

p is the output. Assume that A is Hurwitz. We examine

analysis problems including estimating the maximal output

and overshoot, and searching for an invariant set, as large as

possible, within a certain state constraint.

Characterizing the maximal output and overshoot under

step input and/or persistent disturbance is a traditional prob-

lem in control theory. It has been studied under different

frameworks, such as the L1 performance framework (e.g.,

[6]) and the invariant set framework (e.g., [1], [3], [4],

[8]). The L1 framework exactly characterizes the worst case

maximal output under persistent disturbance for linear time-

invariant systems. It allows for dynamic uncertainties, but

it is not clear how the methods can be used for general

parametric, possibly time varying, uncertainties. On the other

hand, the invariant set framework usually provides an es-

timate for the maximal output by using various Lyapunov

functions, and the methods can be readily extended to

handle systems with general parametric uncertainties and

time-varying nonlinearities that can be described with linear

differential inclusions.

Two typical types of invariant sets are the invariant el-

lipsoids [4] and the invariant polytopes[1], [3], [8], corre-

sponding to quadratic Lyapunov functions and polyhedral

Lyapunov functions, respectively. The analysis methods re-

sulting from quadratic functions can be conservative but are

still widely used due to computational efficiency via LMI
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technique. The methods based on invariant polytopes may

theoretically yield non-conservative results, if the number of

vertices is allowed to be arbitrarily large. However, for sys-

tems of order greater than 3, the number of vertices quickly

grows out of reach for any numerical methods. In recent

years, other types of non-quadratic Lyapunov functions have

been developed for uncertain systems, constrained control

systems and hybrid systems (see e.g.,[5], [7], [9], [11], [12],

[13]). The Lyapunov functions in these works pertain to

or are composed from several quadratic functions. Thus

they lead to optimization problems with matrix inequality

constraints, usually a mixture of LMIs and BMIs.

An interesting invariant set is considered in [14] for

systems with input and state constraint. The set is formed

by cutting off parts of an ellipsoid with several pairs of

hyperplanes, representing the state and input constraint. The

resulting invariant set is called “semi-ellipsoidal set” in [14].

In this paper, we will call it a truncated ellipsoid. In [14], the

truncated ellipsoid is used as a viability set, or an admissible

set in [8]: if the initial condition x0 starts from the set, the

response x(t) will satisfy the input and state constraint for

all t ≥ 0.

The truncated ellipsoid is actually an intersection of an

ellipsoid and a polytope. So part of its boundary is from an

ellipsoid and the rest from a polytope. In terms of Lyapunov

function, the truncated ellipsoid is the level set of a function

of the form

V (x) = max{xTPx, xTCT

1C1x, · · · , xTCT

pCpx}. (2)

When P = 0, V (x)1/2 is a polyhedral function. Thus V (x)
can be considered as the mix of a quadratic function and a

polyhedral function.

In this paper, we will use V similar to that in (2) and

invariant truncated ellipsoid to estimate a bound for the

maximal output under step input and persistent disturbance,

as well as to find an invariant set, as large as possible,

within state constraint. Since the function V incorporates

the structure of the output and the constraint, the resulting

optimization problems involves only a few bilinear terms and

the constraint becomes LMIs when one or two variables are

fixed. Thus the computational burden is just a little heavier

than the corresponding algorithm resulting from applying

quadratic functions, but the improvement is significant, as

will be demonstrated with examples. Some miscellaneous

analysis problems were considered in [16] using truncated

ellipsoid. This paper deals with more general problems in a

systematic way.

Notation We use coS to denote the convex hull of a set S
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and ∂S to denote the boundary of S. We use LV to denote

the 1-level set of a positive definite function V , LV := {x ∈
R

n : V (x) ≤ 1}. For P = P T ≥ 0, E(P ) = {x ∈ R
n :

xTPx ≤ 1}.

II. CONDITION OF SET INVARIANCE FOR INTERSECTION

OF ELLIPSOIDS

Consider the following system:

ẋ = Ax + Ew, (3)

where x ∈ R
n, w ∈ R

q. Assume that A is Hurwitz and

w(t)Tw(t) ≤ 1 for all t. A set S is said to be invariant

for this system if every x(0) ∈ S implies x(t) ∈ S for all

t ≥ 0 and all possible w(·). Invariant ellipsoids for such

a system are characterized via a matrix inequality (in [4]),

which becomes an LMI when one scalar variable is fixed.

This matrix inequality is used to evaluate several input-state

and input-output properties including the maximal output and

the overshoot. As acknowledged in [4], the estimation of

these quantities can be conservative. In this paper, we would

like to use the intersection of several ellipsoids as invariant

set to reduce the conservatism.

The intersection of ellipsoids can be described as a level

set of the pointwise maximum of a family of quadratic

functions:

V (x) = max{xTPjx : j = 1, 2, · · · , J}, (4)

where Pj = P T

j ≥ 0. This function has been used in [7],

[9], [11] as a Lyapunov function to analyze robust stability

and performance under finite energy disturbances for linear

differential inclusions and saturated systems. In [7], [9], [11],

V is simply called the max function. Denote the one level

set of V as

LV = {x ∈ R
n : xTPjx ≤ 1, j = 1, · · · , J},

and denote its boundary as ∂LV .

For P = P T ≥ 0, denote E(P ) = {x ∈ R
n : xTPx ≤ 1}.

If P > 0, then E(P ) is an ellipsoid; if P ≥ 0 and the

rank of P is one, i.e., P = C TC for a certain row vector C,

then E(P ) = E(CTC) is the region between two hyperplanes

Cx = ±1, which is unbounded. We may regard E(P ) for

a singular P as a degenerated ellipsoid. To unify all the

cases, we may simply call LV the intersection of ellipsoids,

allowing some of the ellipsoids to be degenerated.

For the special case where P1 > 0 and the rest Pj =
CT

jCj , j = 2, · · · , J, all have rank one, LV is part of the

ellipsoid E(P1) after truncated by the planes Cjx = ±1. For

simplicity, we call such an LV a truncated ellipsoid. It is

actually the intersection of an ellipsoid and a polytope.

The set LV is invariant for (3) if and only if ẋ points

inward of LV at each x ∈ ∂LV , for all possible w, wTw ≤ 1.

Since V is not everywhere differentiable, we need to use

directional derivative to describe this property. A general

result about the directional derivative of this type of functions

can be found in [11].

For a function V (x), the one sided directional derivative is

defined ([15], page 213) with respect to two variables: x and

a vector ζ specifying the direction of motion. In particular,

the one-sided directional derivative of V , at x along ζ is

defined as

V̇ (x; ζ) := lim
∆t→0,∆t>0

V (x + ζ∆t) − V (x)

∆t
.

For x ∈ R
n, let

Imax(x) := {j : xTPjx ≥ xTPkx ∀k}.

Then by [11], the directional derivative of V at x along ζ is

V̇ (x; ζ) = max{2xTPjζ : j ∈ Imax(x)}. (5)

With directional derivative, the set LV is invariant if and

only if,

V̇ (x; Ax + Ew) ≤ 0 ∀x ∈ ∂LV , wTw ≤ 1.

In what follows, we give a condition for the invariance of

LV in terms of some bilinear matrix inequalities.

Proposition 1: The level set LV is invariant for system

(3) if there exist λjk ≥ 0, βj ≥ 0, j, k = 1, · · · , J, such that
[

Mj PjE
ETPj −βjI

]

≤ 0, j = 1, · · · , J, (6)

where Mj = ATPj + PjA − ΣJ
k=1λjk(Pk − Pj) + βjP .

When J = 1, (6) reduces to one matrix inequality which is

the one appears in [4]. It becomes an LMI when β1 is fixed.

For the general case, we need to fix J × J scalar variables

λjk, βj , to make the J inequalities LMIs. (Notice that λjk

has no effect when j = k.)

In the next two sections, we will use the condition for the

invariance of the intersection of ellipsoids to address several

performance analysis problems. We will choose some of the

Pj’s as Pj = CT

jCj , where Cj is from the output matrix

C or a certain state constraint |Cx|∞ ≤ 1. By doing so,

we incorporate the structure of the output and/or constraint

into the Lypunov function V . Moreover, with some algebraic

manipulation, we can reduce the number of bilinear terms,

so that the matrix inequalities become LMIs when a few

variables are fixed. If we define the optimal value of the

performance index as the function of these few variables, we

can use Matlab function such as “fminbnd” or “fminsearch”

to optimize these variables. Thus the problem is reduced to

a low dimensional optimization via a certain LMI solvers.

III. ESTIMATION OF OUTPUT BOUND AND OVERSHOOT

In this section, we use the truncated ellipsoid and the max

function to estimate the bound of output due to a set of initial

conditions and a step input, respectively.

A. Output bound under a set of initial conditions

Consider the system (3) with the output y = Cx where

C is a row vector. If there are several output channels, we

may consider each one separately. Assume that the initial

condition belongs to a set X0 = co{x1, x2, · · · , xK}. Our

objective is to estimate an upper bound of |y(t)| for all

possible w(·), wT(t)w(t) ≤ 1 and x(0) ∈ X0. This will be
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achieved by using a truncated ellipsoid, which is the 1-level

set of

V (x) = max{xT(CTC/γ2)x, xT(P/γ2)x}.
If LV is invariant and contains X0, then we have

xT(t)CTCx(t) ≤ γ2, i.e., |y(t)| ≤ γ for all t. The condition

for invariance of LV follows from Proposition 1 by taking

P1 = CTC/γ2, P2 = P/γ2: there exist λ1, λ2 ≥ 0, β̄1, β̄2 ≥
0, such that

[

M1 CTCE
ETCTC −β̄1γ

2

]

≤ 0,

[

M2 PE
ETP −β̄2γ

2

]

≤ 0,

where

M1 = ATCTC + CTCA − λ1(P − CTC) + β̄1C
TC

M2 = ATP + PA − λ2(C
TC − P ) + β̄2P.

The objective is to minimize γ2 subject to the above in-

equalities and that X0 ⊂ LV , i.e., xT

iPxi ≤ γ2, xT

iC
TCxi ≤

γ2, i = 1, · · · , K . It seems that we need to fix 4 variables,

λ1, λ2, β̄1, β̄2 to make all the constraint LMIs. However,

with a change of variables, we can turn the problem into

a standard “gevp” problem by fixing two variables. Let

α1 = 1/λ1, α2 = λ2, β1 = β̄1γ
2/λ1 and β2 = β̄2γ

2, the

two matrix inequalities can be rearranged as:
[

β1C
TC 0

0 0

]

≤γ2

[

−α1(A
TCTC+ CTCA)+P−CTC α1C

TCE
α1E

TCTC β1

]

(7)

[

β2P 0
0 0

]

≤ γ2

[

−ATP − PA + α2(C
TC − P ) PE

ETP β2

]

(8)

Note that the two matrices in (7) are linear with respect

to all variables and the two matrices in (8) are linear in P
for fixed α2 and β2. When α2, β2 are fixed, the minimal γ
can be obtained by solving a “gevp” problem. If we define

the minimal γ for the “gevp” problem as a function of α 2

and β2, γ1(α2, β2), we may use “fminsearch” in Matlab to

find the minimal γ1 over α2, β2 ∈ [0,∞).
Also note that the optimization problem reduces to the

corresponding problem in [4] if α1 = α2 = β1 = 0.

In the absence of disturbance, i.e., w = 0 or E = 0, we

can take β1 = β2 = 0 and the two inequalities reduce to

α1(C
TCA+ATCTC)≤ P − CTC,

PA + ATP ≤ α2(C
TC − P )

which become LMIs when α2 is fixed.

We use two simple examples to demonstrate the improve-

ment.

Example 1: Consider a second-order system with

A =

[

0 1
−0.1 −1

]

, C =
[

1 0
]

, x0 =

[

0
1

]

. (9)

The maximal output estimated with invariant ellipsoid is

1.2252. Using the truncated ellipsoid, we obtain a smaller

bound as 0.9161. The actual value for the maximal output is

0.8374.

Example 2: Consider a third-order system with distur-

bance, where

A=





0 1 0
0 0 1

−3 −2 −4



 , E=





0
0
1



 , C =
[

1 0 1
]

,

and x0 = 0. The bound on the output obtained via invariant

ellipsoid is 0.9023. The bound obtained via the truncated

ellipsoid (constraints (7) and (8)) is 0.6789. The actual

maximal output for this case equals the L1 norm of the

system, which is
∫

∞

0
|CeAtE|dt = 0.6.

B. Estimation of the maximal output and overshoot under

step input

Consider the system

ż = Az + Bu + Ew, y = Cz, z0 = 0, (10)

where z ∈ R
n is the state, y ∈ R is a scalar output, u ∈ R

m

is a step input with final value uf and w is the disturbance

bounded by wTw ≤ 1 . Assume A is Hurwitz and w is

piecewise continuous. We’d like to estimate the maximal y
that will be reached during the transient response. To do this,

we shift the origin to the steady state value of z for w = 0
by defining x = z + A−1Buf . Then

ẋ = Ax + Ew, y = Cx − CA−1Buf , x0 = A−1Buf .
(11)

Let y1(t) = Cx(t) and y∞ be the steady state value of the

output y in case of w = 0, i.e., y∞ = −CA−1Buf . For

simplicity, assume y∞ > 0. Then y1(0) = −y∞ < 0. Denote

y1,max = sup{y1(t) : t ≥ 0, wTw ≤ 1}.

It is clear that y1,max ≥ 0 since y1(∞) = 0 with w = 0.

If y1,max > 0, then the original output y has an overshoot

equaling this value and the maximal value of y is y1,max +
y∞. Unlike the problem of estimating the maximal absolute

value of the output |y(t)| in Section III-A, we intend to

estimate the maximal value of y1(t).
Suppose that we have an invariant set LV including x0

for (11). The maximal value of y1(t) for all t ≥ 0 can be

estimated by evaluating the maximal Cx over the entire LV .

This might be too conservative since it is the same as the

maximal |Cx| over LV (a symmetric set), which is probably

reached at t = 0 with the negative value y1(0) = −y∞.

Since y1,max is clearly reached at a certain t > 0 instead of

t = 0, we can restrict our attention to a subset of LV , where

a local extreme of y1 is possible in the presence of w.

Proposition 2: Let V (x) = max{xTPjx : j = 1, · · · , J}
and suppose that LV is an invariant set for (11) that includes

x0. If there exist αj ≥ 0, j = 1, · · · , J , αw ≥ 0 and αc ∈ R

such that
[

M1 −αcA
TCTCE

−αcE
TCTCA −αcE

TCTCE − αwI

]

≤ 0, (12)
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where

M1 = CTC − ΣJ
j=1αjPj − αcA

TCTCA,

then y1(te)
2 ≤ α1 + · · · + αJ + αw for every te > 0 where

a local extreme of y1 is reached. Thus y1,max ≤ α1 + · · ·+
αJ + αw.

Remark 1: The main idea in Proposition 2 is to exclude

t = 0, since |y1(0)| is usually the maximal value of |y1(t)|
but y1(0) is not the maximal value of y1(t). If we extend

the time to t < 0, y1(0) may not be a local extreme of y1(t)
since there may exist no w such that C(Ax0 + Ew) = 0. ◦

Remark 2: The matrix inequality (12) can be replaced

with
[

M2 −αcF
TCE

−αcE
TCTF −αwI

]

≤ 0,

where

M2 = CTC − ΣJ
j=1αjPj − αc(F

TCA + ATCTF )

and F ∈ R
1×n is any row vector. This can be shown by

following the same procedure as the proof of Proposition 2.

Instead of using (Ax + Ew)TCTC(Ax + Ew) = 0 as a

consequence of C(Ax+Ew) = 0, we can use xTF TC(Ax+
Ew) = 0. This would introduce an additional variable F
for optimization. We may pick F = C for simplicity. The

resulting matrix inequality would be linear in A and the result

can be extended to handle linear differential inclusions. ◦
Combining the above discussion and the condition for the

invariance of the set LV in Section II, we can formulate

an optimization problem to estimate a bound on the local

extrema of y1:

α∗ = inf α1 + · · · + αJ + αw (13)

s.t. (6), (12)

xT

0Pjx0 ≤ 1; j = 1, · · · , J,

αw ≥ 0, αj , βj ≥ 0, λjk ≥ 0, j, k = 1, · · · , J,

Pj = P T

j > 0, j = 1, · · · , J,

where (6) ensures that LV is an invariant set. Then all the

local extrema of y1 and y1,max are bounded by
√

α∗.

For the special case where V (x) = xTPx, the constraints

(6), (12) reduce to
[

ATP + PA + β1P PE
ETP −β1I

]

≤ 0,

[

CTC−α1P−αcA
TCTCA −αcA

TCTCE
−αcE

TCTCA −αcE
TCTCE−αwI

]

≤0.

When α1 and β1 are fixed, the constraint becomes LMIs.

So we can use “fminsearch” to perform a two dimensional

optimization on α1 and β1. In the absence of disturbance

(E = 0), with a change of variable, α1P → P , the

optimization problem can be further reduced to

inf
P>0,αc

α,

s.t. CTC − P − αcA
TCTCA ≤ 0;

ATP + PA ≤ 0;

xT

0Px0 ≤ α.

where all the constraints are linear.

Example 3: A second-order system is described as

ż =

[

0 1
−3 −1

]

z +

[

1
1

]

u +

[

0.1
−0.1

]

w,

y = [1 0]z, z(0) = 0.

Under a unit step input, the steady state output for w = 0 is

y∞ = 0.6667. When transformed to the state x = z+A−1B,

we have x0 =

[

−0.6667
1

]

and y1(0) = −0.6667.

We first consider the case where w = 0. With a quadratic

function, a bound for the maximal y1(t) is obtained as 0.5971

(89.5%). With V (x) = max{xTP1x, xTP2x}, the bound is

reduced to 0.5268 (79%). The resulting invariant sets are

plotted in Fig. 1, where the outer curve is the boundary

of the invariant ellipsoid from quadratic function and the

inner closed curve in dash-dotted curve is the boundary of

the invariant set as the intersection of two ellipsoids. The

horizontal dotted line is CAx = 0, where the local extreme

of y1 is obtained. The actual overshoot determined from

simulation is 0.3718 (55.8%). Fig. 1 plots the trajectory x
starting from the initial condition x0. It should be noted that

−0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x
2

x
0

Cx=0.597

Cx=0.527

Fig. 1. Two invariant sets for estimating overshoot for w = 0.

a method for estimating the overshoot is briefly mentioned in

[4] on page 97. With that method, a bound for the maximal

y is obtained as 2.0399, corresponding to a bound for y 1 as

1.3732.

Next we consider the case where wTw ≤ 1. With V (x) =
max{xTP1x, xTP2x}, a bound for the maximal y1(t) is

obtained as 0.5757. The actual y1,max is obtained as follows.

Denote y1,w,max(t) as the maximal y1 that can be reached

at t due to w only (zero initial condition and zero input u).

Then

y1,w,max(t) =

∫

T

0

|CeA(t−τ)E|dτ

can be numerically computed. Note that y1,w,max(t) is not an

actual response due to any w(·), but the worst value of y1(t)
for each t. Let y1,w,0(t) = CeAtx0 be the response under

x0. Then y1,max = supt>0 y1,w,max(t)+ y1,w,0(t) = 0.4288.

The three functions y1,w,0, y1,w,max and y1,w,0+y1,w,max are
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plotted in Fig. 2 with dash-dotted, dashed and solid curves,

respectively. It should be mentioned that the maximal y1 due

0 2 4 6 8 10

−0.6

−0.4

−0.2

0

0.2

0.4

t (sec)

y
1 y

w,0

y
w,max

Fig. 2. Estimation of overshoot for w
T
w ≤ 1.

to w only is y1,w,max(∞) = 0.1278, which is much greater

than the increase of output bound (0.4288-0.3718=0.057)

and the increase of the estimate of output bound (0.5757-

0.5268=0.0498). It is expected that the estimate of y 1,max

can be improved by using V composed from more quadratic

functions, at the cost of increased numerical complexity.

IV. MAXIMAL INVARIANT SET UNDER STATE

CONSTRAINT

Consider the linear system

ẋ = Ax + Ew, y = Cx, (14)

where x ∈ R
n, w ∈ R

q , y ∈ R
p and wTw ≤ 1. Each output

is constrained within a given bound. For simplicity, assume

that the bound for each output is 1, i.e., |y i(t)| ≤ 1 for all

i = 1, 2, · · · , p. Denote the corresponding state constraint set

as

Xc = {x ∈ R
n : |Cix| ≤ 1, i = 1, · · · , p.}.

A set X0 ⊂ Xc is said to be admissible if all trajectories

starting from X0 will stay within Xc for all t > 0. We

would like to determine an admissible set which is as large as

possible. Such a problem has been extensively studied under

the constrained control framework (e.g., [2], [8], [14]). In

this section, we focus on the analysis aspect of the problem

where the control is not explicitly involved. Although the

method can be used for constructing a linear state feedback

by replacing A with A + BK .

The problem of determining the largest admissible set is

usually converted into one of finding the largest invariant

set inside Xc. A simple solution is to find a maximal

invariant ellipsoid inside the constraint set Xc, which can be

formulated as an LMI problem. To reduce the conservatism,

the recent work [14] proposed an interesting invariant set as

the intersection of Xc and an invariant ellipsoid. Condition

for the invariance of the intersection is derived as nonlin-

ear matrix inequalities and the size of the invariant set is

maximized with a modified Newton’s method.

Here we consider the same type of invariant set as in [14].

It is actually the 1-level set of the Lyapunov function

V (x) = max{xTPx, xTCT

jCjx : j = 1, 2, · · · , p}. (15)

As we mentioned earlier, the 1-level set LV = {x ∈ R
n :

V (x) ≤ 1} is formed by truncating the ellipsoid E(P ) with

planes Cix = ±1 and thus lies within the state constraint

Xc.

In this paper, we will take a quite different approach to

ensure the invariance of LV as compared to the method in

[14]. An important relaxation is that we don’t require the

ellipsoid E(P ) to be invariant. Instead, we directly give a

condition for the invariance of LV by using Proposition 1,

which can be considered as the result of the S procedure.

Moreover, our method can be used to handle persistent

disturbances.

By Proposition 1, a sufficient condition for LV to be

invariant is: there exist λjk ≥ 0, βj ≥ 0, j, k = 0, · · · , p
such that

[

M0 PE
ETP −β0I

]

≤ 0,

[

Mj PjE
ETPj −βjI

]

≤ 0, j = 1, · · · , p,

where

M0 =ATP + PA −
p

∑

k=1

λ0kPk +

(

p
∑

k=1

λ0k

)

P + β0P

Mj =ATPj +PjA−λj0(P−Pj)−
p

∑

k=1

λjk(Pk−Pj)+βjPj

and Pj = CT

jCj . The above become LMIs when Σp
k=1λ0k, β0

and λj0 are fixed. In the absence of w or E = 0, we can set

βj = 0. With some manipulation, the condition can be further

reduced to: there exist aj > 0, bjk ≥ 0, α0 ≥ 0, αj ≥ 0,

j, k = 1, 2, · · · , p, such that Σp
j=1αj = α0, and

ATP + PA ≤ −α0P +

p
∑

j=1

αjC
T

jCj , (16)

aj(A
TCT

jCj +CT

jCjA) ≤ P−CT

jCj

+

p
∑

k=1

bjk(CT

kCk−CT

jCj), j = 1, 2, · · · , p. (17)

The invariant set LV can be maximized with respect to

a certain shape reference set XR such that ηXR ⊂ LV for

the maximal η. The set inclusion condition ηXR ⊂ LV can

be stated as LMIs if XR is a polytope or an ellipsoid. For

example, consider XR = co{xi : i = 1, 2, · · · , K}. Then

ηXR ⊂ LV if and only if

xT

iPxi ≤ 1/η2, xT

iC
T

jCjxi ≤ 1/η2,

∀ i = 1, · · · , K, j = 1, · · · , J. (18)

An optimization problem can be formulated to maximize η
satisfying (16), (17) and (18). Note that all the conditions in

(16) are LMIs and the condition (17) is LMI for a fixed α 0.

The method can be easily extended to linear differential

inclusions by duplicating the matrix inequalities for each ver-

tex matrix Ak, with respective coefficients aik, bijk, α0k, αjk.

This is because LV is a convex set. It is invariant for the

linear differential inclusion if and only if it is invariant for

each vertex system.
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Example 4: Consider a third-order system in [14]:

ẋ = (A − BK)x,

where

A =





−1 0 0
1 −2 −1
0 1 0



 , B =





0
0
1





and K = [0.360 −0.053 −0.671]. The state constraint set

is

Xc = {x ∈ R
3 : |xi| ≤ 1, i = 1, 2, 3, |Kx| ≤ 1}.

The truncated ellipsoid obtained in [14] is S1 = Xc ∩ {x :
xTPx ≤ 1}, where

P =





0.130 0.127 −0.030
0.127 0.228 0.198

−0.030 0.198 1.007



 .

The surface of the set S1 is plotted in Fig. 3.

Fig. 3. Invariant set obtained in [14]

The truncated ellipsoid obtained in this paper is S2 =
Xc ∩ {x : xTP1x ≤ 1} where

P1 =





0.0342 0.0679 0.0109
0.0679 0.1368 0.0638
0.0109 0.0638 0.8427



 .

The surface of the set S2 is plotted in Fig. 4.

Using digital integration, the volume of S1 and S2 are

obtained as, 7.3082 and 7.9252, respectively. The later is

very close to the volume of the state constraint set Xc, which

is 7.9847.

V. CONCLUSIONS

This paper uses truncated ellipsoids as simple tools for the

analysis of several performance indices for linear systems

subject to persistent disturbances. The performance indices

include the maximal output under a set of initial condi-

tions, the overshoot under a step input and the size of the

maximal invariant set within state constraints. Condition for

the invariance of intersections of ellipsoids is presented and

used for different analysis purposes. The performance indices

Fig. 4. Invariant set obtained with this paper’s method

are estimated via optimization problems whose constraints

become LMIs when a few scalar variables are fixed.
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