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Abstract— This paper deals with the class of continuous-time
stochastic systems with totally known and totally unknown,
but bounded with some known bounds, transition jump rates.
The guaranteed cost control problem of this class of systems is
tackled. New sufficient conditions for guaranteed cost are de-
veloped. A design procedure for the guaranteed cost controller
which guarantees that the closed-loop dynamics will be stable is
proposed. It is shown that the addressed problems can be solved
if the corresponding developed convex optimization problems
are feasible. A numerical example is employed to show the
usefulness of the proposed results.
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I. INTRODUCTION

Stochastic systems represent an important class of systems
that has attracted a lot of researchers from mathematics and
control communities. For more details of what it has been
done on this topics we refer the reader [8] and the references
therein. Many problems for this class of systems either
in the continuous-time and discrete-time have been tackled
and interesting results have been reported in the literature.
Among these contributions we quote those of [4] where the
authors have considered the optimal stabilizing controller
for a discrete-time version of the stochastic systems we are
treating in this paper. In [2], the authors consider a discrete-
time version with constant time-delay and apply the fuzzy
theory to deal with some problems in the networked control
systems with dropout. The continuous-time version has been
considered in [1], [3], [5]. In [1] the authors have dealt
with the output feedback stabilization of the continuous-
time stochastic systems. In [3], the H∞ control for the
stochastic time-delay systems with Markovian switching is
tackled. The authors in [5] considered the continuous-time
class of stochastic systems and proposed a way to compute
the controller that guarantees the optimal decaying rate. The
stabilizing controllers in all these studies are computed using
convex optimization problems.

On the other hand the class of Markovian jump systems
has been found more appropriate to describe practical sys-
tems with random abrupt changes in their structures such as
components failures or repairs, sudden environment distur-
bance, interconnections changing and operating in different
point of a nonlinear plant. This fact was the cause of the
tremendous interest to the Markovian jump systems. For
more details of this class of systems or on what has been
done of the different problems, we refer the reader to [8],
[10], [9] and the references therein.

Guaranteed cost control is one of the approaches that have
been proposed in the literature to robustly stabilize dynamical
uncertain systems. For deterministic systems and Markov
jump systems, this control problem has been studied by many
authors see [9] and the references . This paper deals with
the class of continuous-time stochastic systems with random
abrupt changes and which combines the two previous classes
of systems. Two cases will be considered. The first one
treats the case where the transition jump rates are totally
known while the second one tackles the case where the
transition jump rates are totally unknown but bounded with
some known bounds in each mode. For these two cases,
we will consider the guaranteed cost control problem and
design the stabilizing controller that provides the minimum
cost. To the best of the author’s knowledge this class of
systems has not been fully investigated so far. Our goal in
this paper is to establish conditions that permit the design
of a state feedback controller that makes the closed-loop
system stochastically stable and at the same time assures
the guaranteed cost. The conditions we will develop will be
tractable if a corresponding convex optimization is feasible.

The rest of this paper is organized as follows. In Section
2, the problem is stated and the goal of the paper is given. In
Section 3, the main results are developed and they include
results on the design of an optimal guaranteed cost controller
that makes the closed-loop system stochastically stable for
the totally known and totally unknown, but bounded with
some known bounds, transition jump rates. Section 4 pro-
vides a numerical example to show the usefulness of the
proposed results for the two cases.
Notation: Throughout this paper, Rn and Rn×m denote,
respectively, the n dimensional Euclidean space and the set
of all n×m real matrices. The superscript “T” denotes matrix
transposition and the notation X ≥ Y (respectively, X > Y )
where X and Y are symmetric matrices, means that X − Y
is positive semi-definite (respectively, positive definite). I is
the identity matrices with compatible dimensions.

II. PROBLEM STATEMENT

Consider a linear stochastic system with random abrupt
changes that has N modes, i.e., S = {1, 2, . . . , N}. The
mode switching is assumed to be governed by a continuous-
time Markov process {rt, t ≥ 0} taking values in the state
space S and having the following infinitesimal generator

Λ = [λij ] , i, j ∈ S ,

where λij ≥ 0,∀j 6= i, λii = −
∑

j 6=i λij .
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The mode transition probabilities are described as follows:

Pr[rt+h = j|rt = i] =

{
λijh+ o(h), j 6= i

1 + λiih+ o(h), j = i
(1)

where limh→0 o(h)/h = 0.
Let the state equation of this class of systems be defined in

a fundamental probability space (Ω,F ,P) and assume that its
behavior is described by the following stochastic differential
equations:

dx(t) = [A(rt, t)x(t) +B(rt, t)u(t)] dt
+W (rt)x(t)dω(t),

x(s) = x0

(2)

where x(t) ∈ Rn is the system state at time t, u(t) ∈ Rm

is the control input of the system at time t, ω(t) ∈ R is a
standard Wiener process that is assumed to be independent
of the Markov process {rt, t ≥ 0}, A(rt, t) ∈ Rn×n and
B(rt, t) ∈ Rn×m are assumed to have uncertainties, i,e.:
A(rt, t) = A(rt) + DA(rt)FA(rt)EA(rt) and B(rt, t) =
B(rt) +DB(rt)FB(rt)EB(rt) with A(i) ∈ Rn×n, DA(i) ∈
Rn×nD , EA(i) ∈ RnE×n, B(i) ∈ Rn×m, DB(i) ∈ Rn×mD

and EB(i) ∈ RmE×n are known real matrices with appro-
priate dimensions for each i ∈ S and FA(rt) ∈ RnD×nE

and FB(rt) ∈ RmD×mE satisfy F>A (i)FA(i) ≤ I and
F>B (i)FB(i) ≤ I for each i ∈ S , and W (i) is a known
matrix with appropriate dimension.

Remark 2.1: When the uncertainties are equal to zero the
system will be referred to as nominal system. The ones that
satisfies the previous conditions are referred to as admissible.
The uncertainties we are considering in this paper are known
in the literature as norm bounded uncertainties.

More often the transition jump rates can not be easily
obtained and an alternate to overcome this case is required.
The following assumption will be used in this paper to
develop new results for the case of totally known and totally
unknown, but bounded with some known bounds, transition
jump rates.

Assumption 2.1: The jump rates are assumed to satisfy the
following:

0 < λi ≤ λij ≤ λ̄i,∀i, j ∈ S , j 6= i (3)

where λi and λ̄i are known parameters for each mode or may
represent the lower and upper bounds when all the jump
rates are known, i.e.: 0 < λi = minj∈S {λij 6= 0, i 6= j},
0 < λ̄i = maxj∈S {λij , i 6= j}, with λi ≤ λ̄i.

Remark 2.2: We have to mention that some alternatives
have been proposed to handle such case by considering
uncertainties on the jump rates (see [6], [7], [11], [12],
[13]). Our approach is totally different and requires only two
bounds in each mode to establish the results we propose in
this paper.

For the system (2), we have the following definitions:
Definition 2.1: ([8], [9]) Nominal free system (2) is said

to be stochastically stable if there exists a constant M(x0, r0)
such that

E
[∫ ∞

0

‖x(t)‖2dt
∣∣∣∣x0, r0

]
≤M(x0, r0); (4)

Definition 2.2: ([8], [9]) Uncertain free system (2) is said
to be robust stochastically stable if there exists a constant
M(r0, x0) such that (4) holds for all admissible uncertainties.

let R1(i) and R2(i), i ∈ S be two given symmetric
and positive-definite matrices and consider the following cost
function:

J(x0, r0) = E
[∫ ∞

0

x̃>(t)M(rt)x̃(t)dt
]

(5)

where M(rt) =
[
R1(rt) 0

0 R2(rt)

]
, x̃>(t) =[

x>(t) u>(t)
]
, x0 and r0 are respectively the initial

state and the initial mode of the system.
Definition 2.3: If there exist a control law, u(.) and a

positive scalar % representing the upper bound of the cost (5)
such that the closed-loop system is stochastically stable, and
the cost (5) is bounded by %, then % is called the guaranteed
cost, also referred to as the optimal guaranteed cost, and u(.)
is the associated guaranteed cost control law.

The goal of this paper is to design a controller of the
following form:

u(t) = K(rt)x(t) (6)

where K(i) is a design parameter that has to be determined
for every i ∈ S .

The guaranteed cost problem can be stated as follows:
given two symmetric and positive-definite matrices find a
state feedback controller of the form (6) such that the closed-
loop system is stochastically stable and at the same time the
cost (5) is bounded for all admissible uncertainties.

The aim of this paper is to develop LMI conditions that
can be used to design a state feedback controller which
guarantees that the closed-loop system of the uncertain
system is robust stochastically stable and the cost (5) is
bounded for all admissible norm bounded uncertainties when
the transition jump rates are either totally known or totally
unknown but bounded with some known bounds for each
mode. The conditions we will develop here will be in terms
of the solutions of convex optimization problems that can be
easily solved using existing tools.

Lemma 2.1: ([8]) The free uncertain stochastic system (2)
(u(t) = 0 for all t ≥ 0) is stochastically stable if there
exist a set of symmetric and positive-definite matrices P =
(P (1), · · · , P (N)), with P (i) ∈ Rn×n and a set of positive
scalars εA = (εA(1), · · · , εA(N)) such that the following set
of coupled LMIs holds for each i ∈ S and for all admissible
uncertainties: J1(i) P (i)DA(i) W>(i)P (i)

D>A(i)P (i) −εA(i)I 0
P (i)W (i) 0 −P (i)

 < 0, (7)

where

J1(i) = P (i)A(i) +A>(i)P (i) + εA(i)E>A (i)EA(i)

+
N∑

j=1

λijP (j).
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Lemma 2.2: Let Z,E,∆, F be matrices with appropriate
dimensions. Suppose Z is symmetric and ∆>∆ ≤ I, then

Z + E∆F + F>∆>E> < 0

if and only if there exists scalar ε > 0 satisfying

Z + εEE> +
1
ε
F>F < 0.

In the rest of this paper we will assume that we have
complete access to the system modes and states at each time
t for feedback purpose.

III. MAIN RESULTS

Let us consider that the control is equal to zero for all
t ≥ 0 and see under which conditions the systems (2) will
have a bounded cost (5). When the control is equal to zero
for all t ≥ 0, the cost (5) becomes:

J(x0, r0) = E
[∫ ∞

0

[
x>(t)R1(rt)x(t)

]
dt

]
.

It is trivial that we should satisfy some conditions to
guarantee the existence of the solution and the stochastic
stability to assure that the cost function is bounded. The
following theorem gives the desired results:

Theorem 3.1: If there exist a set of symmetric and
positive-definite matrices P = (P (1), · · · , P (N)), P (i) ∈
Rn×n and a set of positive scalars εA = (εA(1), · · · , εA(N))
such that the following set of coupled matrix inequalities
holds for each i ∈ S : J(i) P (i)DA(i) W>(i)P (i)

D>A(i)P (i) −εA(i)I 0
P (i)W (i) 0 −P (i)

 < 0 (8)

where

J(i) = P (i)A(i) +A>(i)P (i) + εA(i)E>A (i)EA(i)

+R1(i) +
N∑

j=1

λijP (j),

then the system (2) is stochastically stable and the cost (5)
satisfies the following for all admissible uncertainties:

J(x0, r0) ≤ tr
[
P (r0)x0x

>
0

]
(9)

Proof: Since R1(i) > 0, for all i ∈ S , from the inequality
(8) of the theorem, we get: J1(i) P (i)DA(i) W>(i)P (i)

D>(i)P (i) −εA(i)I 0
P (i)W (i) 0 −P (i)

 < 0 (10)

with

J1(i) = P (i)A(i) +A>(i)P (i) + εA(i)E>A (i)EA(i)

+
N∑

j=1

λijP (j).

Using Lemma 2.1 we conclude that the free uncertain
stochastic system with random abrupt changes (2) is stochas-
tically stable.

Let (x, i) denote respectively the state of the vector state,
x(t), and the mode, rt, at time t and consider the following
Lyapunov function:

V (x(t), rt) = x>(t)P (rt)x(t)

The weak infinitesimal operator, L V (.) emanating from
(x, i) at time t is given by (see [8]):

L V (x, i) = x>(t)
[
P (i)A(i) +A>(i)P (i)

+P (i)DA(i)FA(i)EA(i) + E>A (i)F>A (i)D>A(i)P (i)

+W>(i)P (i)W (i) +
N∑

j=1

λijP (j)
]
x(t)

Based on the Lemma 2.2 we get:

L V (x, i) ≤ x>(t)
[
P (i)A(i) +A>(i)P (i)

+εA(i)E>A (i)EA(i) + ε−1
A (i)P (i)DA(i)D>A(i)P (i)

+W>(i)P (i)W (i) +
N∑

j=1

λijP (j)
]
x(t)

which gives

L V (x, i) + x>(t)R1(i)x(t) ≤ x>(t)
[
P (i)A(i) +A>(i)P (i)

+εA(i)E>A (i)EA(i) + ε−1
A (i)P (i)DA(i)D>A(i)P (i)

+R1(i) +W>(i)P (i)W (i) +
N∑

j=1

λijP (j)
]
x(t)

Combining this with the theorem conditions and Schur
complement, the following holds for any T > 0:∫ T

0

L V (x(t), rt)dt+
∫ T

0

x>(t)R1(rt)x(t)dt < 0

Using now the Dynkin formula and the fact that the system
is stochastically stable, we get:

E
[∫ ∞

0

x>(t)R1(rt)x(t)dt
]
≤ E

[
x>0 P (r0)x0

]
which implies that the cost function is bounded and this ends
the proof of the theorem. 2

For the totally unknown, but bounded with some known
bounds, transition jump rates, using the Assumption 2.1 we
get the following relations:

N∑
j=1,j 6=i

λijP (j) ≤ λ̄i

N∑
j=1,j 6=i

P (j)

λiiP (i) = −
N∑

j=1,j 6=i

λijP (i) ≤ −(Ni − 1)λiP (i)

with Ni is the number of modes from the mode i including
itself.

Based on these realtions we have:
N∑

j=1

λijP (j) ≤ −(Ni − 1)λiP (i) + λ̄i

N∑
j=1,j 6=i

P (j)
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Combining this with the previous conditions we get the
following results.

Corollary 3.1: If there exist a set of symmetric and
positive-definite matrices P = (P (1), · · · , P (N)), P (i) ∈
Rn×n and a set of positive scalars εA = (εA(1), · · · , εA(N))
such that the following set of coupled matrix inequalities
holds for each i ∈ S : J(i) P (i)DA(i) W>(i)P (i)

D>(i)P (i) −εA(i)I 0
P (i)W (i) 0 −P (i)

 < 0 (11)

where

J(i) = P (i)A(i) +A>(i)P (i) + εA(i)E>A (i)EA(i) +R1(i)

− (Ni − 1)λiP (i) +
N∑

j=1,j 6=i

λ̄iP (j),

then the uncertain stochastic system with random abrupt
changes (2) is stochastically stable and the cost (5) satisfies
the following for all admissible uncertainties:

J(x0, r0) ≤ tr
[
P (r0)x0x

>
0

]
(12)

In the rest of this section we will deal with the design
of the state feedback controller that makes the closed-loop
system stochastically stable and at same time assures that
the cost function is bounded. For this purpose, notice that
the cost function with the control law (6) becomes:

J(x0, r0) = E
[∫ ∞

0

[
x>(t)R̃1(rt)x(t)

]
dt

]
with R̃1(i) = R1(i) +K>(i)R2(i)K(i) for all i ∈ S .

The closed-loop state equation is given by:

dx(t) = Acl(rt, t)x(t) +W (rt)x(t)dω(t)

with Acl(rt, t) = A(rt, t) +B(rt, t)K(rt).
Based on the results of Theorem 3.1, the closed-loop

system will be stochastically stable and the cost function is
bounded if there exist a set of symmetric and positive-definite
matrices P = (P (1), · · · , P (N)), P (i) ∈ Rn×n such that
the following hold:

A>cl(i, t)P (i) + P (i)Acl(i, t) + R̃1(i) +W>(i)P (i)W (i)

+
N∑

j=1

λijP (j) < 0.

Using the expression of Acl(i, t) and Lemma 2.2, we get:

A>(i)P (i) + P (i)A(i) +K>(i)B>(i)P (i) + P (i)B(i)K(i)
+εA(i)P (i)DA(i)D>A(i)P (i) + εB(i)P (i)DB(i)D>B(i)P (i)

+ε−1
A (i)E>A (i)EA(i) +W>(i)P (i)W (i) + R̃1(i)

+ε−1
B (i)K>(i)E>B (i)EB(i)K(i) +

N∑
j=1

λijP (j) < 0

where εA = (εA(1), · · · , εA(N)) and εB =
(εB(1), · · · , εB(N)) are sets of positive scalars.

This inequality matrix is nonlinear in the decision vari-
ables P (i) and K(i). To put it in the LMI setting, let

X(i) = P−1(i) and pre- and post-multiplying this inequality
by X(i), we get:

X(i)A>(i) +A(i)X(i) +X(i)K>(i)B>(i) +B(i)K(i)X(i)

+εA(i)DA(i)D>A(i) + εB(i)DB(i)D>B(i) +X(i)R̃1(i)X(i)
+ε−1

A (i)X(i)E>A (i)EA(i)X(i) +X(i)W>(i)X−1(i)W (i)X(i)
+ε−1

B (i)X(i)K>(i)E>B (i)EB(i)K(i)X(i) + λiiX(i)

+
N∑

j=1,j 6=i

λijX(i)X−1(j)X(i) < 0

Defining Xi(X) and Si(X) as follows:

Xi(X) = diag [X(1), · · · , X(i− 1), X(i+ 1), · · · , X(N)]

Si(X) =
[√

λi1X(i), · · · ,
√
λii−1X(i),

√
λii+1X(i),

· · · ,
√
λiNX(i)

]
and letting Y (i) = K(i)X(i), S1(i) = R

1
2
1 and S2(i) = R

1
2
2

we get the conditions (13).
The following theorem summarizes the results of this

development.
Theorem 3.2: There exists a state feedback controller

of the form (6) such that the closed-loop state equa-
tion of the stochastic system (2) is stochastically stable
and moreover the cost function (5) is bounded if there
exist a set of symmetric and positive-definite matrices
X = (X(1), · · · , X(N)), X(i) ∈ Rn×n a set of ma-
trices Y = (Y (1), · · · , Y (N)), Y (i) ∈ Rm×n and sets
of positive scalars εA = (εA(1), · · · , εA(N)) and εB =
(εB(1), · · · , εB(N)) such that the following set of coupled
LMIs holds for each i ∈ S :

Ĵ(i) X(i)E>A (i) Y >(i)E>B (i) X(i)S>1 (i)
EA(i)X(i) −εA(i)I 0 0
EB(i)Y (i) 0 −εB(i)I 0
S1(i)X(i) 0 0 −I
S2(i)Y (i) 0 0 0
W (i)X(i) 0 0 0
S>i (X) 0 0 0

Y >(i)S>2 (i) X(i)W>(i) Si(X)
0 0 0
0 0 0
0 0 0
−I 0 0
0 −X(i) 0
0 0 −Xi(X)


< 0, (13)

where

Ĵ(i) = A(i)X(i) +X(i)A>(i) +B(i)Y (i) +B>(i)Y >(i)
+λiiX(i) + εA(i)DA(i)D>A(i) + εB(i)DB(i)D>B(i)

Xi(X) = diag [X(1), · · · , X(i− 1), X(i+ 1), · · · , X(N)]

Si(X) =
[√

λi1X(i), · · · ,
√
λii−1X(i),

√
λii+1X(i),

· · · ,
√
λiNX(i)

]
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The stabilizing controller gain is given by K(i) =
Y (i)X−1(i), i ∈ S . Moreover the cost (5) satisfies the
following for all admissible uncertainties:

J(x0, r0) ≤ tr
[
X−1(r0)x0x

>
0

]
(14)

Remark 3.1: For the optimal cost, there exists a positive
scalar % such that:

x>0 X
−1(r0)x0 ≤ %

can be rewritten as follows:[
−% x>0 )
x0 −X(r0)

]
≤ 0 (15)

The following optimization problem can determine the
controller that assures the minimum cost:

P :


min %>0,

X=(X(1),··· ,X(N)),
Y =(Y (1),··· ,Y (N)),

εA=(εA(1),··· ,εA(N)),
εB=(εB(1),··· ,εB(N))

%

s.t : (13), (15)

For the totally unknown, but bounded with some known
bounds, transition jump rates case we can follow the same
steps as it was done before and we get the following result.

Corollary 3.2: There exists a state feedback controller
of the form (6) such that the closed-loop state equa-
tion of the nominal system (2) is stochastically stable
and moreover the cost function (5) is bounded if there
exist a set of symmetric and positive-definite matrices
X = (X(1), · · · , X(N)), X(i) ∈ Rn×n a set of ma-
trices Y = (Y (1), · · · , Y (N)), Y (i) ∈ Rm×n and sets
of positive scalars εA = (εA(1), · · · , εA(N)) and εB =
(εB(1), · · · , εB(N)) such that the following set of coupled
LMIs (13) holds for each i ∈ S , with

Ĵ(i) = A(i)X(i) +X(i)A>(i) +B(i)Y (i) +B>(i)Y >(i)
− (Ni − 1)λiX(i) + εA(i)DA(i)D>A(i) + εB(i)DB(i)D>B(i)
Xi(X) = diag [X(1), · · · , X(i− 1), X(i+ 1), · · · , X(N)]

Si(X) =
[√

λ̄iX(i), · · · ,
√
λ̄iX(i),

√
λ̄iX(i),

· · · ,
√
λ̄iX(i)

]
The stabilizing controller gain is given by K(i) =
Y (i)X−1(i), i ∈ S . Moreover the cost (5) satisfies the
following for all admissible uncertainties:

J(x0, r0) ≤ tr
[
X−1(r0)x0x

>
0

]
(16)

To compute the stabilizing controller that gives the optimal
cost the optimization problem P can be used with the
appropriate changes in the LMIs.

Remark 3.2: For the comparison purpose of the two cases
we considered in this paper, it is important to notice that more
knowledge we have on the transition jump rates, the less
conservatism will be. Therefore, it is evident that the results
for the case of totally unknown transition jump rates we have
some conservatism. But we should mention that without the
knowledge of the transition jump rates the literature results
will not help to get the solution and ours represent and
alternate to overcome this situation.

IV. NUMERICAL EXAMPLE

To illustrate the effectiveness of the proposed results, let
us consider a stochastic system of the form (2) with three
modes with the following data:
• mode # 1:

A(1) =

24 −1.0 0.0 1.0
0.0 0.0 1.0
0.0 −1.0 −1.0

35 , B(1) =

24 0.3 0.0
0.0 0.1
0.2 1.0

35 ,
DA(1) =

24 0.1
0.2
0.3

35 , EA(1) =
ˆ

0.3 0.2 0.1
˜
,

DB(1) =

24 0.2
0.3
0.1

35 , EB(1) =
ˆ

0.2 0.1
˜
,

R1(1) =

24 1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

35 , R2(1) =

»
2.0 0.0
0.0 4.0

–
,

W (1) =

24 0.1 0.0 0.0
0.0 0.2 0.0
0.0 0.0 −0.1

35
• mode # 2:

A(2) =

24 1.0 0.0 1.0
0.0 0.0 1.0
0.0 1.0 −1.0

35 , B(2) =

24 0.1 0.0
0.0 0.0
0.1 0.2

35 ,
DA(2) =

24 0.2
0.1
0.3

35 , EA(2) =
ˆ

0.3 0.2 0.1
˜
,

DB(2) =

24 0.3
0.1
0.2

35 , EB(2) =
ˆ

0.1 0.2
˜
,

R1(2) =

24 1.0 0.0 0.0
0.0 1.2 0.0
0.0 0.0 1.0

35 , R2(2) =

»
2.0 0.0
0.0 2.0

–
,

W (2) =

24 −0.1 0.0 0.0
0.0 −0.2 0.0
0.0 0.0 0.1

35
• mode # 3:

A(3) =

24 1.0 0.0 1.0
0.0 0.0 1.0
0.0 1.0 1.0

35 , B(3) =

24 0.1 0.0
0.0 0.0
0.1 −0.2

35 ,
DA(3) =

24 −0.2
0.1
0.3

35 , EA(3) =
ˆ

0.3 −0.2 0.1
˜
,

DB(3) =

24 0.3
0.1
−0.2

35 , EB(3) =
ˆ

0.1 0.2
˜
,

R1(3) =

24 1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.5

35 , R2(3) =

»
4.0 0.0
0.0 2.0

–
,

W (3) =

24 −0.1 0.0 0.0
0.0 −0.2 0.0
0.0 0.0 −0.1

35
The transition jump rates matrix is given by:

Λ =

24 −1 1 0
0 −1.1 1.1
1 1 −2

35 .
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Solving the LMIs (13) of Theorem 3.2, we get:

εA(1) = 0.2981, εA(2) = 0.0078, εA(3) = 0.0041,

εB(1) = 0.3872, εB(2) = 0.0078, εB(3) = 0.0079,

X(1) =

24 0.0489 0.0499 −0.0661
0.0499 0.0703 −0.0882
−0.0661 −0.0882 0.1537

35 ,
X(2) =

24 0.0183 0.0301 −0.0389
0.0301 0.0570 −0.0705
−0.0389 −0.0705 0.1011

35 ,
X(3) =

24 0.0163 0.0290 −0.0247
0.0290 0.0596 −0.0483
−0.0247 −0.0483 0.0469

35 ,
Y (1) =

»
−0.1430 0.0004 −0.0889
0.0018 −0.0249 −0.2473

–
,

Y (2) =

»
−0.0494 −0.0000 −0.0469
0.0012 −0.0001 −0.0939

–
,

Y (3) =

»
−0.0248 0.0000 −0.0236
−0.0006 −0.0001 0.0946

–
,

which give the following gains:

K(1) =

»
−11.4000 4.3692 −2.9726
−0.2199 −8.3511 −6.4950

–
,

K(2) =

»
−24.6693 4.9882 −6.4804
−4.7004 −6.6619 −7.3871

–
,

K(3) =

»
−28.1027 5.4128 −10.2224
−6.3626 −7.4688 −13.0352

–
.

For the totally unknown transition jump rate, if we assume
that we have the following bounds:

mode # 1: λ1 = 0.8, λ̄1 = 1.2,

mode # 2: λ2 = 0.9, λ̄2 = 1.3,

mode # 3: λ3 = 0.9, λ̄3 = 1.3.

and solving the LMIs of Corollary 3.2, we get:

εA(1) = 3.1378 10−4, εA(2) = 3.1187 10−4,

εA(3) = 1.4261 10−4, εB(1) = 0.0042,

εB(2) = 5.2255 10−4, εB(3) = 3.0930 10−4,

X(1) =

24 0.0011 −0.0001 −0.0004
−0.0001 0.0001 0.0001
−0.0004 0.0001 0.0049

35 ,
X(2) =

24 0.0006 0.0001 −0.0001
0.0001 0.0001 −0.0003
−0.0001 −0.0003 0.0014

35 ,
X(3) = 10−3

24 0.3782 0.0354 −0.0603
0.0354 0.0752 −0.1649
−0.0603 −0.1649 0.7205

35 ,
Y (1) =

»
−0.0375 0.0094 0.0687
0.0281 −0.0227 −0.2078

–
,

Y (2) =

»
−0.0414 0.0000 −0.0072
0.0171 0.0000 −0.0143

–
,

Y (3) =

»
−0.0227 0.0000 −0.0039
−0.0094 −0.0000 0.0157

–
,

which give the following gains:

K(1) =

»
−25.9610 66.6521 10.8253

2.4000 −180.5475 −39.4168

–
,

K(2) =

»
−73.2249 6.7024 −9.6712
32.2511 −98.7444 −30.6965

–
,

K(3) =

»
−113.9071 22.0483 −14.4114

49.4368 −115.8798 −42.2448

–
.

V. CONCLUSION

This paper dealt with the guaranteed cost control prob-
lem of the stochastic class of systems with random abrupt
changes. The transition jump rates are considered to be
totally known and totally unknown but bounded with some
known bounds in each mode. Sufficient conditions to com-
pute the state feedback controller which guarantees that
the closed-loop system is stochastically stable and give the
optimal cost is designed using convex optimization problems.
Results were developed for the two cases. The conditions
we developed in this paper are tractable using commercial
convex optimization tools.
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