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Abstract— In this work we focus on iterative learning control
(ILC) for iteratively varying reference trajectories which are
described by a high-order internal model. The high-order
internal model (HOIM) is formulated as a polynomial between
two consecutive iterations. The classical ILC with iteratively
invariant reference trajectories, on the other hand, is a special
case of HOIM where the polynomial renders to a unity
coefficient, in other words, the 0th order internal model. By
inserting the polynomial (HOIM) into the past control input of
the ILC law, and designing appropriate learning control gains,
the learning convergence in the iteration axis can be guaranteed
for continuous-time linear time varying (LTV) systems. The
initial condition, P-type and D-type ILC, and possible extension
to nonlinear cases are also explored.

I. INTRODUCTION

In the past few years, iterative learning control (ILC)

methods have been extended to tracking tasks with iteratively

varying reference trajectory, for instance see [1] - [4]. To deal

with the iteratively varying reference, an effective approach

is to incorporate a high-order internal model (HOIM), which

produces the iteratively varying reference trajectory, into the

iterative learning law. A survey on HOIM applications to a

variety of ILC problems was given in [5].

It should be noted that most HOIM-based ILC methods

were proposed to deal with discrete-time linear time varying

(LTV) processes. By lifting or supervector transformation,

the discrete-time LTV process in a finite time interval can be

remodeled as an augmented matrix P between the input and

output vectors (u,y), that is y = Py, where every element

in the matrix P has a fixed value. As such, the input-output

relationship of the LTV process becomes a static mapping. A

direct benefit from the static mapping is the simplicity of ILC

design, which can not only focus on the learning performance

along the iteration axis, but also eliminate the needs for initial

state resetting (or identical initialization condition) and λ-

norm that are two fundamental ILC issues in the time domain

[6], [7], [5]. As a consequence, the HOIM-based ILC can be

designed and analyzed using transfer function approach.

However, the lifting or supervector methods are not appli-

cable to continuous-time LTV processes. The aim of this

work is to explore the implementation of HOIM in the
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ILC design for continuous-time processes, and provide the

analysis of ILC convergence with HOIM. Through analysis

and discussions, we make three conclusions.

First,HOIM can be achieved simply by a stable polyno-

mial, and the same polynomial applies to both the iteratively

varying reference trajectory and the ILC law. The classical

ILC with iteratively invariant reference trajectory is a special

case of HOIM where the polynomial renders to a unity

coefficient, in other words, the classical ILC uses a 0th order

internal model.

Second, the identical initialization condition, under which

the initial state values are kept the same for all iterations, are

no longer adequate or suitable. Instead, the initial resetting

condition, under which the initial state values are set to zero

for all iterations, would be adequate.

Third, the λ-norm is needed in the analysis of HOIM-

based ILC, analogous to classical ILC. The λ-norm, or time-

weighted norm, is used in ILC to eliminate the influence of

the state dynamics. As a result, the reference trajectory can

be defined on an interval of arbitrary length.

In continuous time, the HOIM-based ILC is in essence

a high-order ILC. The focus of this work is to extend the

classical time-domain ILC design and analysis methods to

iteratively varying reference trajectory generated by a known

HOIM.

It is worth to mention, that HOIM-based ILC is different

from many existing high-order ILC schemes. HOIM-based

ILC can be viewed as a kind of high-order ILC in which the

past control inputs are specifically weighted accordingly to

the HOIM coefficients. On the other hand, many high-order

ILC methods are developed aiming to improve the learning

performance with iteratively invariant reference trajectories

[8], [9]. Therefore those high-order ILC schemes either only

employ a single past control input, or assigns weights for

multiple past control inputs in terms of a particular control

objective, such as the transient response along the iteration

axis.

The paper is organized as follows. In Section II, the

ILC problem with HOIM is formulated. In Section III,

the convergence analysis of HOIM-based P-type ILC is

conducted for continuous-time LTV systems. In Section IV,

we explore the extension to HOIM-based D-type ILC, and

possible extension to plants with nonlinear factors. In Section

V, two numerical examples are given. Finally in Section VI,

we given a conclusion.
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II. PROBLEM FORMULATION

Consider a class of LTV systems
{

ẋi(t) = A(t)xi(t) + B(t)ui(t)
yi(t) = C(t)xi(t) + D(t)ui(t)

(1)

where the subscript “i” denotes the ith learning iteration,

t ∈ [0, T ], A(t) ∈ C([0, T ],Rn×n), B(t) ∈ C([0, T ],Rn×q),
C(t) ∈ C([0, T ],Rq×n), D(t) ∈ C([0, T ],Rq×q), u and y

are input and output vectors, respectively.

Denote yr,i(t) the iteratively varying reference trajectory.

The tracking error is defined to be ei(t) = yr,i(t) − yi(t).
Now we give the HOIM that generates the iteratively vary-

ing reference trajectory yr,i(t). First, following the notations

of [5], introduce a new shift operator, w, with the property

w−1ui(t) = ui−1(t). (2)

Definition 1: The iteratively varying reference trajectory

is generated by the following HOIM

yr,i+1 = H(w−1)yr,i (3)

where H(w−1) is the internal model described by a polyno-

mial

H(w−1) = h1 + h2w
−1 + · · · + hmw−m+1 (4)

hj are coefficients of a stable polynomial wm − h1w
m−1 −

· · · − hm,and this mth order stable polynomial is the char-

acteristic equation of the HOIM (3).

From (3) and (4), the reference trajectory with the HOIM

is

yr,i+1(t) =h1yr,i(t) + h2yr,i−1(t)

+ · · · + hmyr,i−m+1(t).
(5)

Note that m initial trajectories yr,0(t), · · · , yr,1−m(t) are

required to determine the regressor (5).

Remark 1: The interatively invariant reference trajectory

is a special case of HOIM (5)

yr,i+1(t) = h1yr,i(t)

where h1 = 1, hence is a first order HOIM, as the charac-

teristic polynomial between yr,i+1 and yr,i is w − h1.

Remark 2: In fact, yr,i+1 = H(w−1)yr,i is a general ex-

pression for HOIM. In existing works, a HOIM is expressed

as a rational function [2]

yr,i+1 =
N(w−1)

F (w−1)
yr,i (6)

where N(w−1) = n1w
−1 + n2w

−2 + · · · + nlw
−l and

F (w−1) = 1 + f1w
−1 + f2w

−2 + · · · + fmw−m(l < m).
Rewrite (6) as

F (w−1)yr,i+1 = N(w−1)yr,i, (7)

we have

(1 + f1w
−1 + f2w

−2 + · · · + fmw−m)yr,i+1

= (n1w
−1 + n2w

−2 + · · · + nlw
−l)yr,i.

(8)

Collecting terms according to the power of w, and using the

factor w−1yr,i+1 = yr,i, we obtain

yr,i+1 =
[

− f1 + (n1 − f2)w
−1 + · · ·

+ (nl − fl+1)w
l − fl+2w

−l−1 − · · ·

− fmw−m+1
]

yr,i

=H(w−1)yr,i

(9)

which is the same as (5) by defining h1 = −f1, h2 = n1−f2,

· · · , hm = fm.

Now we consider the initial condition. For HOIM, we need

the initial resetting condition defined below

Assumption 1:

xi(0) = 0 for i = 1, 2, · · · . (10)

Note the difference between the initial resetting condition

(10) and the identical initialization condition

xi+1(0) = xi(0) for i = 1, 2, · · · .

The latter is widely assumed and accepted in ILC problems.

The control objective is to design an iterative learning law,

ui(t), such that as i → ∞, the system output yi(t) in (1)

tracks the desired output trajectory yr,i(t)(5) as closely as

possible ∀t ∈ [0, T ]. To achieve this control objective, the

simplest ILC law is a P-type ILC with mth-order internal

model

ui+1(t) =h1ui(t) + h2ui−1(t) + · · ·hmui−m+1(t)

+ γ1ei(t) + γ2ei−1(t) + γmei−m+1(t)
(11)

or equivalently

ui+1 = H(w−1)ui + Γ(w−1)ei (12)

where Γ(w−1) = γ1 +γ2w
−1 + · · ·+γmw−m+1, and γj are

learning gains.

Remark 3: The ILC law (11) is similar to the high-order

ILC law. In most high-order ILC, the coefficients of H(w−1)
is chosen such that [8], [9]

m
∑

j=1

hj = 1. (13)

This relation is necessary for ILC to track iteratively invariant

reference. In the ideal case when the past tracking errors

ej are zero and the past control inputs uj converge to the

designed one ur for j up to i, then from (11)

ui+1 =
m

∑

j=1

hjur = ur

and the ideal control input retains for the new iteration. As

for the HOIM-based ILC, the relation (13) does not hold in

general.

Before analyzing the ILC law (11) in next section, let us

give the definition and property of the λ-norm.

Definition 2: We define the λ norm as

‖f(·)‖λ = sup
t∈[0,t]

e−λt‖f(t)‖

A useful property associated with the λ-norm the following

inequality
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Property 1: λ norm has the next property

sup
t∈[0,T ]

e−λt

∫ t

0

||f(·)|| ea(t−τ)dτ

= sup
t∈[0,T ]

∫ t

0

e−λτ‖f(·)‖ e(a−λ)(t−τ)dτ

≤
1 − e(a−λ)T

λ − a
‖f(·)‖λ

III. CONVERGENCE ANALYSIS

In this section, we discuss the ILC convergence.

Theorem 1: For the plant (1) and reference trajectory (5),

apply the P-type ILC with mth-order internal model (11).

The learning convergence, ‖yr,i − yi‖ → 0 as i → ∞, is

guaranteed, provided the learning gains γj are chosen such

that for ηj , ‖hjI −γjD‖, j = 1, 2, · · · ,m, the polynomial

R(z) = zm − η1z
m−1 − · · · − ηm

is asymptotically stable.

Proof:

Let us start from

ei+1 =yr,i+1 − yi+1

=H(w−1)yr,i − H(w−1)yi − yi+1

+ H(w−1)yi

=H(w−1)ei − ((Cxi+1 + Dui+1)

− H(w−1)(Cxi + Dui))

=H(w−1)ei − D(ui+1 − H(w−1)ui)

− C(xi+1 − H(w−1)xi).

(14)

Using relationship (5) and (11), we obtain

ei+1 =h1ei + h2ei−1 + · · · + hmei−m+1

− D(γ1ei + γ2ei−1 + · · · + γmei−m+1)

− C([xi+1 − H(w−1)xi]

=(h1I − γ1D)ei + (h2I − γ2D)ei−1 + · · ·

+ (hmI − γmD)ei−m+1

− C[xi+1 − H(w−1)xi].

(15)

Taking norms on both sides of (15) we obtain

‖ei+1‖ ≤‖h1I − γ1D‖ ‖ei‖ + ‖h2I − γ2D‖ ‖ei−1‖

+ · · · + ‖hmI − γmD‖ ‖ei−m+1‖

+ ‖C‖ ‖xi+1 − H(w−1)xi‖.

(16)

To evaluate the state-dependent term xi+1 − H(w−1)xi in

(16), integrating ẋi+1 − H(w−1)ẋi and applying the state

dynamics (1), we have, for t ∈ [0, T ],

‖xi+1(t) − H(w−1)xi(t)‖
= ‖xi+1(0) − H(w−1)xi(0)‖

+
∫ t

0
[(Axi+1 + Bui+1)

−H(w−1)(Axi + Bui)]dτ‖
≤ ‖xi+1(0) − H(w−1)xi(0)‖

+

∫ t

0

[‖A‖ ‖xi+1 − H(w−1)xi‖

+‖B‖ ‖ui+1 − H(w−1)ui‖]dτ.

(17)

According to Assumption 1 on the initial resetting condition,

we have

xi+1(0) − H(w−1)xi(0) = 0.

Applying the Bellman-Gronwall Lemma to (17), we have

‖xi+1 − H(w−1)xi‖

≤
∫ t

0
‖B‖ ‖ui+1 − H(w−1)ui‖e

a(t−τ)dτ

≤
∫ t

0
‖B‖ [‖γ1‖ ‖ei‖ + ‖γ2‖ ‖ei−1‖ + · · ·

+ ‖γm‖ ‖ei−m+1‖]e
a(t−τ)dτ

(18)

for all t ∈ [0, T ], where a = ‖A‖∞.

Substituting (18) into (16), and noticing ηj = ‖hjI −
γjD‖, it is easy to derive

‖ei+1‖
≤ η1‖ei‖ + η2‖ei−1‖ + · · · + ηm‖ei−m+1‖

+ ρ1

∫ t

0
‖ei‖ ea(t−τ)dτ + ρ2

∫ t

0
‖ei−1‖ ea(t−τ)dτ

+ · · · + ρm

∫ t

0
‖ei−m+1‖ ea(t−τ)dτ

(19)

where ρj , ‖γjCB‖, ∀k = 1, · · · ,m.

Next taking λ-norm on both sides of (19), and applying

Property 1, we have supt∈[0,T ] e
−λtρj

∫ t

0
‖ej‖ ea(t−τ)dτ ≤

1−e(a−λ)T

λ−a
ρj‖ej‖λ , δj(λ), where δj(λ) is a function of λ

and can be made arbitrarily small or far below ηi with a

sufficiently large λ.

Consequently we can derive the following relation from

(19)

‖ei+1‖λ ≤ (η1 + δ1)‖ei‖λ + (η2 + δ2)‖ei−1‖λ

+ · · · + (ηm + δm)‖ei−m+1‖λ.
(20)

Since δj are arbitrarily small with sufficiently large λ,

the learning convergence of the error sequence ei (20) is

dominated by the polynomial

R(z) = zm − η1z
m−1 − · · · − ηm

which is asymptotically stable if all eigenvalues of R(z) = 0
are within the unit circle. As i → ∞, ei → 0 implies yi →
yr,i.

Remark 4: The ILC law (12) is in essence a high-order

ILC. The HOIM is achieved through incorporating it in

between ui+1 and ui. Controller gains γj are chosen to

guarantee the learning convergence. Clearly, to implement

an mth order HOIM, we need mth order ILC.

Remark 5: A more conservative design is to choose

m
∑

i=1

ηi < 1, (21)

which ensures the learning convergence [10].

Remark 6: In general the identical initialization condition

xi+1(0) = xi(0) does not meet the initial condition of HOIM

xi+1(0)−H(w−1)xi(0) = 0 which is required by (17). The

identical initialization condition implies the initial condition

of HOIM if
∑m

i hj = 1. Thus, for HOIM based ILC, the

initial setting condition defined in Assumption 1 is required.

IV. EXTENSIONS

In this sesction we consider two possible extensions of

HOIM based ILC.
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A. Extension to D-type ILC

Consider a class LTV dynamics system with the relative

degree of 1

{

ẋi(t) = A(t)xi(t) + B(t)ui(t)
yi(t) = C(t)xi(t),

(22)

when CB is of full rank. It is well known in ILC that a

D-type learning law is required

ui+1(t) = h1ui(t) + h2ui−1(t) + · · · + hmui−m+1(t)

+ γ1ėi(t) + γ2ėi−1(t) + · · · + γmėi−m+1(t).
(23)

The learning convergence can be derived analogous to the

P-type.

Theorem 2: For the plant (22) and reference trajectory (5),

apply the D-type ILC with mth-order internal model (22).

The learning convergence, ‖yr,i − yi‖ → 0 as i → ∞, is

guaranteed, provided yr,i(0) = 0, and the learning gains

γj are chosen such that for ηj , ‖hjI − γjCB‖, j =
1, 2, · · · ,m, the polynomial R(z) = zm − η1z

m−1 − · · · −
ηm1 is asymptotically stable.

Proof: Let us first prove the convergence of ėi. Dif-

ferentiating ei, and substituting the state dynamics (22) and

control law (23), we can derive

ėi+1 = ẏr,i+1 − ẏi+1

= H(w−1)ẏr,i − H(w−1)ẏi − ẏi+1 + H(w−1)ẏi

= H(w−1)ėi − C[A(xi+1

− H(w−1)xi) + (ui+1 − H(w−1)ui)]

= (h1I − γ1CB)ėi + (h2I − γ2CB)ėi−1 + · · ·

+ (hmI − γmCB)ėi−m+1 − CA
[

xi+1 − H(w−1)xi

]

.

(24)

Taking norms on both sides of (24) we obtain

‖ėi+1‖ ≤‖h1I − γ1CB‖ ‖ėi‖

+ ‖h2I − γ2CB‖ ‖ėi−1‖

+ · · · + ‖hmI − γmCB‖ ‖ėi−m+1‖

+ ‖CA‖ ‖xi+1 − H(w−1)xi‖.

(25)

Comparing the relation (25) with the relation (16), we can

see the analogy except for the substitution of quantity ei

with ėi. The convergence of sequence ėi can be concluded

straightforward.

Next we investigate the convergence condition for ei.

Since ėi(t) → 0 ∀t ∈ [0, T ] as i → ∞, ei(t) = 0 if ei(0) =
0. From the initial resetting condition, yi(0) = Cxi(0) = 0.

Thus it is necessary to have yr,i(0) = 0 in order to achieve

perfect tracking. In the case the given reference trajectory

yr,i(0) 6= 0, we can apply an appropriate filter to yr,i(t)
such that the filtered reference trajectory starts from zero,

and after a short interval approaches the original trajectory.

One such design was given by [11].

B. Possible Extension with Nonlinear Factors

To date, all HOIM works focus on LTI or LTV. It would

be meaningful to explore possible extension to plants with

nonlinear factors. Consider the following plant
{

ẋi(t) = f(xi(t)) + Bui(t)
yi(t) = C(t)xi(t) + D(t)ui(t)

(26)

Assumption 2: The nonlinear function f(xi(t)) satisfies

the Lipschitz continuity condition

‖f(xi+1)−f(H(w−1)xi)‖ ≤ Lf‖xk+1−H(w−1)xi‖ (27)

where Lf is the Lipschitz constant.

Comparing the plants (1) and (26), the only difference is

the replacement of Axi with f(xi) in the state dynamics.

Therefore, following the derivation procedure in Theorem 1,

we obtain the relation (16).

To evaluate the state-dependent term xi+1−H(w−1)xi in

(16), using Assumption 1 we have

‖xi+1 − H(w−1)xi‖

= ‖
∫ t

0

[

(f(xi+1) + Bui+1) − H(w−1)
·(f(xi, t) + Bui)

]

dτ‖

= ‖
∫ t

0

{

[

f(xi+1) − f(H(w−1)xi)
]

+
[

f(H(w−1)xi) − H(w−1)f(xi)
]

+B(ui+1 − H(w−1)ui)

}

dτ‖

≤
∫ t

0
‖f(xi+1, t) − H(w−1)f(xi, t)‖dτ

+
∫ t

0
‖B‖‖ui+1 − H(w−1)ui‖dτ

+
∫ t

0
‖f(H(w−1)xi) − H(w−1f(xi))‖dτ

(28)

Applying Bellman-Gronwall Lemma and Lipschitz conti-

nuity condition, we have

‖xi+1 − H(w−1)xi‖

≤Lf

∫ t

0

[

‖xi+1 − H(w−1)xi‖dτ

+ ‖B‖ ‖ui+1 − H(w−1)ui‖
]

dτ + ǫ

≤

∫ t

0

‖B‖‖ui+1 − H(w−1)ui‖e
Lf (t−τ)dτ + ǫ

≤

∫ t

0

‖B‖
(

‖γ1‖ ‖ei‖ + ‖γ2‖ ‖ei−1‖ + · · ·

+ ‖γm‖ ‖ei−m+1‖
)

eLf (t−τ)dτ + ǫ,

(29)

where ǫ ,
∫ T

0
‖f(H(w−1)xi) − H(w−1)f(xi)‖dt.

Comparing (29) with (18), we note a is replaced with Lf ,

and additional term δ. Thus, analogous to the derivations in

(19) and (20) by applying the λ-norm, we obtain

‖ei+1‖λ ≤ (η1 + δ1)‖ei‖λ + (η2 + δ2)‖ei−1‖λ

+ · · · + (ηm + δm)‖ei−m+1‖λ + ǫλ,
(30)

where

δj(λ) =
1 − e(Lf−λ)T

λ − Lf

ρj , ελ = sup
t∈[0,T ]

e−λtεi

and ρj is defined the same as in Theorem 1. When ǫλ = 0,

the above relation (30) is exactly the same as (20), thus the

1637



gain design and learning convergence condition are the same

as Theorem 1.

When ǫλ 6= 0, there could be a steady state error as i →
∞. The magnitude of the error depends on the choice of the

control gains or the parameters ηj . For instance, by choosing

gains γj to meet the convergence condition (21), then the

steady state error is linearly dependent on ǫλ

lim
i→∞

‖ei‖λ ≤
ǫλ

1 −
∑m

j=1 ηj

.

It is worth to explore the conditions such that ǫλ is ei-

ther zero or sufficiently small. First, from the definition of

ǫλ,a sufficient condition for ǫλ = 0 is f(H(w−1)xi) −
H(w−1)f(xi) = 0. By observation, the condition holds if

f(·) is a linear function, that is, f(xi) = xi. Second f(xi)
could be globally nonlinear but its Taylor series expansion

may give much smaller higher order terms around xi ,for

instance,f(xi) can be expressed by

f(xi) = xi + δi

where ||δi|| ≪ ||xi||. In such circumstance, the ILC will still

be effective and produce small steady state errors.

Finally, the influence of ǫλ could be sufficiently small

after applying the λ-norm. Let us evaluate ǫλ. According

to Property 1,

ελ = sup
t∈[0,T ]

e−λtLf

∫ T

0

‖f(H(w−1)xi)

− H(w−1)f(xi)‖dt

≤
1 − e−λT

λ
Lf‖f(H(w−1)xi) − H(w−1)f(xi)‖λ.

On the other hand, note the GLC condition of f(·),

‖f(H(w−1)xi) − H(w−1)f(xi)‖λ

≤
m

∑

j=1

2Lf |hj |‖xi−j+1‖λ.

Let σ denote the upper bound of the sequence ‖xj‖λ for

j = 1, · · · , i, then

ελ ≤
1 − e−λT

λ
2mL2

fσ

m
∑

j=1

|hj | = O(λ−1)

which can be arbitrarily small by a sufficiently large λ. The

boundedness of ‖xj‖λ can be derived by the induction. The

boundedness of the control inputs uj for j ≤ i is obvious

because uj is the finite sum of previous control inputs and

tracking errors. The boundedness of ‖xi‖λ is the result of

the boundedness of the input ‖ui‖ and the GLC condition of

the dynamics (26). The boundedness of the ‖ui‖ and ‖ei‖
ensures the boundedness of the new control input ‖ui+1‖,

in the sequel the boundedness of the states ‖xi+1‖λ.

Fig. 1. Iteratively varying reference trajectory

V. NUMERICAL EXAMPLES

A. LTV System

Consider the linear time-varying system

ẋ(t) =

[

0 1
−1 − 10−3t −2 − 10−3t

]

x(t) +

[

0
1

]

u(t)

y(t) =
[

1 1
]

x(t) + u(t).

(31)

The original reference trajectory yr(t) and internal model

are given by

yd(t) = sin3 0.5t 0 ≤ t ≤ 2π

H(w−1) = h1 + h2w
−1 = 2 cos(10Ts) − w−1

(32)

where Ts = 0.01 is a sample period , and h1 = 2 cos(10Ts)
and h2 = −1 are internal model coefficients.

Note that the reference trajectory with HOIM is in fact an

oscillatory one because from

yr,i+1(t) = H(w−1)yr,i(t) (33)

its characteristic equation is w2 − 2w cos(10Ts) + 1, which

has two poles on the unit circle.Fig.1 demonstrates the

reference trajectory in 3D.

Case 1: We first use traditional iterative learning control

. The learning algorithm is constructed by only one past

control data,i.e.,ui+1(t) = ui(t) + γė(t).We choose the

learning operator γ = 0.9 so that η = ||1−γCB|| = 0.1 < 1.

Case 2: We now design a high order ILC controller

ui+1(t) = K1ui(t) + K2ui−1(t) + γ1ei(t) + γ2ei−1(t).

where K1 and K2 satisfied following conditions K1 +K2 =
I and ||K1−γ1D||∞+ ||K2−γ2D||∞ < 1. Here,the control

gains are chosen as K1 = 1.1,K2 = −0.1, γ1 = 1.4 and

γ2 = −0.15.

Case 3: In this case, we use the HOIM control. The

controller is

ui+1(t) = h1ui(t)+h2ui−1(t)+γ1ei(t)+γ2ei−1(t). (34)
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Fig. 2. The tracking error profile with various algorithm for LTV plant.

In close-loop system,the learning operators are designed as

γ1 = 1.24 and γ2 = −1.085 so that η1 = ||h1I − γ1D|| =
0.75 and η2 = ||h2I − γ2D|| = 0.085, and hence,the

polynomial R(z) = z2 − 0.75z − 0.085 = 0 has two roots

z1,2 = 0.85,−0.1 inside the unit circle.

The absolute maximum tracking error profile along the

iteration domain is shown in Fig.2.

50th Trial Case 1 Case 2 Case 3

Max Error 0.1552 0.0363 0.0031

We can see the fast learning convrgence rate, desptite the

iteratively varying reference.

B. LTV with Nonlinear Factors and Disturbances

Consider the following nonlinear continuous-time system






















[

ẋ1i(t)
ẋ2i(t)

]

=

[

sin(x2i(t)) 1 + sin(x1i(t))
−2 − 5t −3 − 2t

] [

x1i(t)
x2i(t)

]

+ui(t)

yi(t) =
[

1 1
]

[

x1i(t)
x2i(t)

]

+ ui(t)

where time t ∈ [0, 1]. The original reference tracking

trajectory is

yr(t) = 6t5 − 15t4 + 10t3, t ∈ [0, 1].

Consider the same internal model H(w−1) as (23). Chosen

the same parameters as Section V-A. As shown in Fig.3, the

HOIM-based ILC achieves satisfactory tracking performance

in the presence of nonlinear factors .

VI. CONCLUSIONS

In this paper, a new ILC algorithm with HOIM is devel-

oped for a kind of iteratively varying reference trajectory.

The problem with HOIM is first formulated in a simple

and straightforward form. The learning convergence property

and associated conditions are analyzed and made clearly.

Both P-type and D-type ILC are discussed. The analytic and
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ILC

HOILC
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Fig. 3. The tracking error profile with various algorithm for nonlinear
plant.

simulation results verify the learning convergence, that is the

effectiveness of the proposed HOIM based ILC.
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