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Abstract— In this paper, adaptive control is studied for a class
of nonlinear discrete-time systems in parameter-strict-feedback
form with both parametric and non-parametric uncertainties.
The non-parametric uncertainty function is assumed to sat-
isfy the Lipschitz condition. To achieve asymptotical tracking
performance, estimation of both uncertainties is constructed.
Future states are predicted to overcome the noncausal problem.
Based on future states prediction and uncertainties estimation,
a novel adaptive control is proposed. An augmented tracking
error of equal growth order of the output tracking error is used
in the parameter estimation law. The proposed adaptive control
achieves asymptotical tracking performance and guarantees the
boundedness of all closed-loop signals. The effectiveness of the
proposed control law is demonstrated in the simulation.

I. INTRODUCTION

Adaptive control of continuous-time systems has been ex-

tensively studied for many years. Compared with continuous-

time systems, adaptive control design for discrete-time sys-

tems is much more difficult. One reason is that there are less

mathematical tools available for discrete-time systems and

the other one may lie in the limitation of feedback mech-

anism in discrete-time. As shown in [1], when the growth

rate of the uncertain nonlinearity is larger than a certain

number, even a simple first order discrete-time system cannot

be globally stabilized. Due to these difficulties, only a few

discrete-time counterparts of continuous-time systems have

been explored. One example is the strict-feedback nonlinear

system which has been extensively studied in continuous-

time with backstepping design. Its discrete-time counterpart

has also attracted much research interests recently.

In [2], [3], [4], discrete-time backstepping has been studied

for a class of strict-feedback systems in which control gains

are all ones. However, for more general strict-feedback

systems with unknown control gains, the coordinate transfor-

mation based backstepping mentioned above is not directly

applicable. Therefore, future states prediction based adaptive

control using discrete Nussbaum gain to deal with unknown

control directions has been developed in [5] where prediction

errors was made of smaller growth order of the tracking

error. In [6], the prediction based adaptive control has also

been exploited for controlling output-feedback systems. The

prediction based adaptive control was inspired by our earlier

research results in [7], [8], [9], where strict-feedback systems

with unknown nonlinear system functions have been studied

The authors are with the Social Robotics Lab, Interactive Digi-
tal Media Institute and the Department of Electrical and Computer
Engineering, National University of Singapore, Singapore 117576. (E-
mail: cgyang82@gmail.com, dslwm@yahoo.com.cn, samge@nus.edu.sg,
eleleeth@nus.edu.sg).

using neural network (NN) control and prediction function

have been proposed to avoid noncausal problem in control

design.

In adaptive control of discrete-time systems, robustness

has been the subject of much research. By employment

of projection algorithm in the parameter update law which

guarantees the boundedness of parameter estimates, robust

adaptive control of strict-feedback systems perturbed by

small growth nonlinear uncertainties was presented in [3],

[4]. Due to the universal approximation ability of neural

network (NN), many control designs have been carried on by

using NN to compensate for the nonlinear uncertainties. By

modeling a class of nonlinear systems as a linear part with

an additive nonlinear part, multi-model adaptive control has

been proposed in [10] with NN employed to compensate

for the unknown nonlinear part which is considered to be

bounded, while in [11], by assuming the nonlinear part is

of small growth rate, generalized minimum variance (GMV)

control was presented using NN to deal with the nonlinearity.

It is well known that sliding model control results in

invariance properties to matched uncertainties and offers

robustness to the closed-loop controlled system. Slide mode

control of discrete-time linear system with nonlinear uncer-

tainties have been well studied in [12], [13] and later, in [14],

[15], adaptive control have been combined with slide mode

to deal with parametric uncertainties in the linear model. It is

noted that in these discrete-time sliding mode control results,

to guarantee global stability, the nonlinear uncertainties are

also required to bounded or of small growth rate. On the

contrary, it is easy to construct a sliding mode control in

continuous-time to eliminate the effect no matter how large

growth rate it has.

The above mentioned results in robust adaptive control

may only partially eliminate the effect of the nonparametric

uncertainty. For system perturbed by nonlinear nonparamet-

ric uncertainties, most of the existing robust adaptive control

results are not able to achieve asymptotic tracking. However,

from the view point of academic exploration, it is of great

research interest in discrete-time adaptive control to fully

compensate the nonparametric nonlinear uncertainty such

that asymptotic tracking performance can be obtained. One

recent successful attempt to eliminate a class of nonpara-

metric nonlinear uncertainty was made in [16] for a simple

first order system. Later, an extension has been developed

for general minimum phase linear system [17]. Based on

the previous results, in this paper we are going to further

study the fully compensation of nonparametric nonlinear

uncertainty in adaptive control of a class of strict-feedback
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system.

The main contributions of the paper lie in:

(i) A novel lemma for nonparametric uncertainty estima-

tion is proposed.

(ii) Both parametric and non-parametric uncertainties are

estimated.

(iii) A novel adaptive control is constructed based on future

states prediction and estimation of both uncertainties.

Throughout this paper, the following notations are used.

• ‖ ·‖ denotes the Euclidean norm of vectors and induced

norm of matrices.

• Z+
0 represents the set of all nonnegative integers.

• 0[p] stands for p-dimension zero vector.

• (̂ ) and (̃ ) denote the estimate of unknown parameter

and estimation error, respectively.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. System Representation

Consider a class of parameter-strict-feedback nonlin-

ear discrete-time systems with both parametric and non-

parametric uncertainties in the following form:














ξi(k + 1) = ΘT
i Φi(ξ̄i(k)) + ξi+1(k)

i = 1, 2, . . . , n − 1
ξn(k + 1) = ΘT

nΦn(ξ̄n(k)) + u(k) + ν(ξ̄n(k))
y(k) = ξ1(k)

(1)

where ξ̄j(k) = [ξ1(k), ξ2(k), . . . , ξj(k)]T are system states,

Θj ∈ Rpj , j = 1, 2, . . . , n, are parametric uncertainties

(pj’s are positive integers), Φj(ξ̄j(k)) : Rj → Rpj are

known vector-valued functions, and ν(ξ̄n(k)) is nonparamet-

ric uncertainty function. The control objective is to make the

output y(k) track a bounded reference trajectory yd(k) and

to guarantee the boundedness of all the closed-loop signals.

Remark 1: It is noted that the nonparametric nonlinear

uncertainty appear in the control range, i.e., the uncertainty

is matched. Though matched uncertainties have been ex-

tensively studied in the robust control literature [12], [13],

[14], [15], few results completely eliminate the effect of

nonlinear nonparametric uncertainty and achieve asymptotic

output tracking.

Assumption 1: The nonparametric uncertain function ν(·),
is Lipschitz function, i.e., ‖ν(ε1) − ν(ε2)| ≤ L‖ε1 − ε2‖,

∀ε1, ε2 ∈ Rn, where L < γ∗ with γ∗ be defined later in

(31). The system functions Φi(·), i = 1, 2, . . . , n, are also

Lipschitz functions with Lipschitz coefficients Li.

Remark 2: It is usual in discrete-time control to assume

that the nonparametric nonlinear uncertainty is of small

growth rate [18], [13], [3], [14], [11], [15] or globally

bounded [10], [19]. The Lipschitz uncertainty function

ν(ξ̄n(k)) has been addressed in the nonlinear systems litera-

ture, e.g. [1], [20], which can be used to describe a class of

nonlinear dynamics of control systems. As shown in [1], it is

impossible to obtain global stability results for discrete-time

control system in the presence of nonparametric nonlinear

uncertainty with large growth rate. Differing from the robust

control where uncertainty is not estimated, the uncertainty

Lipschitz coefficient L will be estimated in the paper.

B. Preliminaries

Definition 1: [10] Denote PC[0,∞) the set of all real

piecewise continuous functions with bounded discontinuities

defined on [0,∞). Let x1(k) : R → R ∈ PC[0,∞), and

x2(k) : R → R ∈ PC[0,∞).

• We denote x1(k) = O[x2(k)], if there exist posi-

tive constants m1, m2 and k0 such that ‖x1(k)‖ ≤
m1 maxτ≤k ‖x2(τ)‖ + m2, ∀k > k0.

• We denote x1(k) = o[x2(k)], if there exists a

discrete-time function α(k) satisfying limk→∞ α(k) →
0 and a constant k0 such that ‖x1(k)‖ ≤
α(k)maxτ≤k ‖x2(τ)‖, ∀k > k0.

• We denote x1(k) ∼ x2(k) if they satisfy x1(k) =
O[x2(k)] and x2(k) = O[x1(k)].

Lemma 1: [21] For some given real scalar sequences s(k),
b1(k), b2(k) and vector sequence σ(k), if the following

conditions hold:

(i) limk→∞
s2(k)

b1(k)+b2(k)σT (k)σ(k)
= 0,

(ii) 0 < b1(k) < K and 0 ≤ b2(k) < K, ∀k ≥ 1, with a

finite K,

(iii) σ(k) = O[s(k)].

Then, we have

(a) limk→∞ s(k) = 0, and (b) σ(k) is bounded.

Lemma 2: Under Assumption 1, the states and input of

system (1) satisfy

ξ̄i(k + j) = O[ξ̄n(k)], j = n − i

ξ̄i(k) = O[y(k + i − 1)], i = 1, 2, . . . , n − 1

u(k) = O[y(k + n)] (2)

Proof: See Appendix A.

Lemma 3: Given two bounded sequences X(k), Y (k) ∈
Rm satisfying limk→∞ ‖X(k) − Y (k)‖ = 0, where m can

be any positive integer, and a fixed positive integer τ . Define

lk = arg min
l≤k−τ

‖X(k) − Y (l)‖ (3)

Then, we have

lim
k→∞

‖X(k) − Y (lk)‖ = 0

lim
k→∞

‖Y (k) − Y (lk)‖ = 0

Proof: See Appendix B.

C. Future States Prediction

In this subsection, prediction of future states ξ̄i(k + j),
i = 1, 2, . . . , n−1, j = 1, 2, . . . , n−i, which are independent

of control input u(k), are proceeded based on estimation of

parameters. For convenience, we denote Φi(ξ̄i(k)) as Φi(k)
and ν(ξ̄n(k)) as ν(k) without ambiguity.

Let Θ̂i(k) denote the estimate of Θi and Θ̃i(k) = Θ̂i(k)−
Θi as estimation error.

Define one-step ahead prediction ξ̂i(k + 1|k), i =
1, 2, . . . , n − 1, as the estimation of ξi(k + 1) at the k-th

step

ξ̂i(k + 1|k) = Θ̂T
i (k − n + 2)ΦT

i (k) + ξi+1(k) (4)
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Define
¯̂
ξi(k+j|k) = [ξ̂1(k+j|k), . . . , ξ̂i(k+j|k)]T , where j-

step prediction ξ̂i(k+j|k) (2 ≤ j ≤ n−1), i = 1, 2, . . . , n−
j, as the estimation of ξi(k + j) at the k-th step, is defined

as

ξ̂i(k + j|k) = Θ̂T
i (k − n + j + 1)Φ̂T

i (k + j − 1|k)

+ξ̂i+1(k + j − 1|k) (5)

where Φ̂T
i (k + j − 1|k) are defined on the (j − 1)-step

predictions:

Φ̂T
i (k + j − 1|k) = ΦT

i (
¯̂
ξi(k + j − 1|k)) (6)

The estimated parameters are obtained by the following

update law:

Θ̂i(k + 1) = Θ̂i(k − n + 2) −
ξ̃i(k + 1|k)Φi(k)

1 + ‖Φi(k)‖2

ξ̃i(k + 1|k) = ξ̂i(k + 1|k) − ξi(k + 1) (7)

i = 1, 2, . . . , n − 1

Remark 3: The parameter update law (7) is presented at

the (k + 1)-th step when ξ̄n(k + 1) are all available. The

control input u(k) is designed at the k-th step and only

depends on Θ̂i(j), j ≤ k.

Considering the future states prediction in (4), and (5) and

parameter update law (7), we have the following lemma:

Lemma 4: [5] The parameter estimates Θ̂i(k) in (7) are

bounded and ‖
¯̃
ξi(k + j|k)‖ = o[O[y(k + i + j − 2)]], i =

1, 2, . . . , n − 1, j = 1, 2, . . . , n − i, where
¯̃
ξi(k + j|k) =

¯̂
ξi(k + j|k) − ξ̄i(k + j).

III. ADAPTIVE CONTROL DESIGN

Let us rewrite system (1) as


























ξ1(k + n) = ΘT
1 Φ1(ξ̄1(k + n − 1)) + ξ2(k + n − 1)

ξ2(k + n − 1) = ΘT
2 Φ2(ξ̄2(k + n − 2)) + ξ3(k + n − 2)

...

ξn(k + 1) = ΘT
nΦn(ξ̄n(k)) + u(k) + ν(ξ̄n(k))

y(k) = ξ1(k)

and then we combine the n equations above together by

iterative substitution and we obtain

y(k + n) = ΘT Φ(k + n − 1) + u(k) + ν(ξ̄n(k)) (8)

where

Θ = [ΘT
1 , . . . ,ΘT

n ]T

Φ(k + n − 1) = [ΦT
1 (ξ̄1(k + n − 1)),ΦT

2 (ξ̄2(k + n − 2)),

. . . ,ΦT
n (ξ̄n(k))]T (9)

Using the predicted future states, the future states depen-

dent function Φ(k + n − 1) defined in (8) can be estimated

as

Φ̂(k + n − 1|k) = [ΦT
1 (ξ̂1(k + n − 1|k)),

ΦT
2 (

¯̂
ξ2(k + n − 2|k)), . . . ,ΦT

n (ξ̄n(k))]T (10)

According to Lemma 3, let us define

X(k) = [ξ̂1(k + n − 1|k),
¯̂
ξ2(k + n − 2|k), . . . ,

¯̂
ξn−1(k + 1|k), ξ̄n(k)]

Y (k + n − 1) = [ξ1(k + n − 1), ξ̄2(k + n − 2), . . . ,

ξ̄n−1(k + 1), ξ̄n(k)] (11)

and

lk = arg min
l≤k−1

‖X(k) − Y (l)‖ (12)

Then, from (8), we define an auxiliary output ya(k) as

ya(k + n − 1) = ΘT Φ(k + n − 1) + ν(k) (13)

which leads to

y(k + n) = ya(k + n − 1) + u(k) (14)

Then, it is easy to derive

ya(k + n − 1)

= ya(k + n − 1) − ya(lk) + ya(lk)

= ΘT [Φ(k + n − 1) − Φ(lk)] + ν(k) − ν(lk − n + 1)

+ya(lk) (15)

Let us introduce the estimate of unknown parameter Θ,

Θ̂(k), which will be calculated in (22). Then, we define the

following estimate of ya(k + n − 1)

ŷa(k+n−1) = Θ̂T (k)[Φ̂(k+n−1|k)−Φ(lk)]+ya(lk) (16)

where lk is defined in (12). It should be noted that the

estimation of ya(k + n − 1) includes the estimation of both

parametric uncertainty and nonparametric uncertainty based

on the predicted future states.

Then, by certainty equivalent principle, the adaptive con-

trol is designed as

u(k) = −ŷa(k + n − 1) + yd(k + n) (17)

Defining the output tracking error e(k) = y(k) − yd(k)
and combining adaptive control in (17), estimate of auxiliary

output in (16) and system described in (14) together, we

obtain the error dynamics as

e(k + n) = −Θ̃T (k)[Φ(k + n − 1) − Φ(lk)] + ν(k)

−ν(lk − n + 1) − β(k + n − 1) (18)

where

β(k + n − 1) = Θ̂T (k)[Φ̂(k + n − 1|k) − Φ(k + n − 1)]

Θ̃(k) = Θ̂(k) − Θ (19)

According to Assumption 1, we have

|ν(k) − ν(lk − n + 1)| ≤ 2Lmax
k′≤k

{‖ξ̄n(k′)‖} + 2cν (20)

where cν = |ν(0)|. Now define

ĉ(k) = 2λ max
k′≤k

{‖ξ̄n(k′)‖} + 2ĉν(k) (21)

where λ can be any constant satisfying L ≤ λ < λ∗, with

λ∗ defined later in (31).
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The estimated parameters in the control law are updated

by the following adaptation law

ǫ(k) = e(k) + β(k − 1)

Θ̂(k) = Θ̂(k − n) + γ
a(k)ǫ(k)[Φ(k − 1) − Φ(lk−n)]

D(k − n)

ĉν(k) = ĉν(k − n) +
a(k)γ|ǫ(k)|

D(k − n)
(22)

D(k) = 1 +
1

2
‖Φ(k + n − 1) − Φ(lk)‖2

where 0 < γ < 1 and the deadzone is defined as

a(k) =

{

1 − ĉ(k−n)
|ǫ(k)| if |ǫ(k)| ≥ ĉ(k − n)

0 otherwise
(23)

IV. STABILITY ANALYSIS

This subsection is devoted to the stability analysis of the

closed-loop system. Firstly, the main result of the paper is

summarized in the following theorem.

Theorem 1: Consider the adaptive closed-loop system

consisting of system (1), states prediction laws defined in

(4) and (5) with parameter estimation law (7), control (17)

and parameters adaptation law (22). All the signals in the

closed-loop system are bounded and the tracking error e(k)
is made to converge to zero.

Proof: Substituting the error dynamics (18) into the

augmented error ǫ(k), we have

ǫ(k) = −Θ̃T (k − n)[Φ(k − 1) − Φ(lk−n)]

+ν(k − n) − ν(lk−n − n + 1) (24)

Choose a positive definite function V (k) as

V (k) =
n

∑

j=1

Θ̃T (k − n + j)Θ̃(k − n + j) + 2
n

∑

j=1

c2
ν(k)

we have the difference equation of V (k) as follows:

∆V (k) = V (k) − V (k − 1)

= Θ̃T (k)Θ̃(k) − Θ̃T (k − n)Θ̃(k − n)

+2[c̃2
ν(k) − c̃2

ν(k − n)]

=
a2(k)γ2ǫ2(k)‖Φ(k − 1) − Φ(lk−n)‖2

D2(k − n)

+Θ̃T (k − n)[Φ(k − 1) − Φ(lk−n)]

×ǫ(k)
2a(k)γ

D(k − n)

+
2a2(k)γ2ǫ2(k)

D2(k − n)
+

4a(k)γ|c̃ν(k − n)ǫ(k)|

D(k − n)

Noting L ≤ λ, from inequality (24), we have

Θ̃T (k − n)[Φ(k − 1) − Φ(lk−n)]ǫ(k)

= −ǫ2(k) + ǫ(k)[ν(k − n) − ν(lk−n − n + 1)]

≤ |ǫ(k)|[2L max
k′≤k−n

‖ξ̄n(k′)‖ + 2cν ] − ǫ2(k)

≤ |ǫ(k)|[2λ max
k′≤k−n

‖ξ̄n(k′)‖ + 2cν ] − ǫ2(k) (25)

From the definition of deadzone in (23), we have

2a(k)[ĉ(k − n)|ǫ(k)| − ǫ2(k)] = −2a2(k)ǫ2(k) (26)

Noting (25), (26), and

1 +
1

2
‖Φ(k − 1) − Φ(lk−n)‖2 ≤ D(k − n)

Then, we have

∆V (k) ≤
2a2(k)γ2ǫ2(k)

D(k − n)
−

2a(k)γǫ2(k)

D(k − n)

+
2a(k)γ|ǫ(k)|[2Lmaxk′≤k−n ‖ξ̄n(k′)‖ + 2cν ]

D(k − n)

+
2a(k)γ|ǫ(k)|2c̃ν(k − n)

D(k − n)

=
2a(k)γ

D(k − n)
[|ǫ(k)|ĉ(k − n) − ǫ2(k)]

+
2a2(k)γ2ǫ2(k)

D(k − n)

≤ −
2γ(1 − γ)a2(k)ǫ2(k)

D(k − n)
(27)

Noting that 0 < γ < 1 and taking summation on both hand

sides of (27), we obtain

∞
∑

k=0

2γ(1 − γ)
a2(k)ǫ2(k)

D(k − n)
≤ V (0) − V (∞)

which implies

lim
k→∞

a2(k)ǫ2(k)

D(k − n)
= 0 (28)

and the boundedness of Θ̂(k) and ĉν(k). Now considering

the definition of β(k) in (19), the definition of Φ̂(k+n−1|k)
in (10), Lemma 4 and Assumption 1, we have β(k − 1) =
o[O[y(k)]]. Considering y(k) ∼ e(k), we have β(k − 1) =
o[O[e(k)]] and ǫ(k) ∼ e(k) ∼ y(k) and further according to

Lemma 2, we have

‖ξ̄n(k − n)‖ ≤ C1[max
k′≤k

{|ǫ(k′)|} + C2, k > k0

where C1 and C2 are some constants. From the definition of

deadzone in (23), when |ǫ(k)| ≥ ĉ(k − n), we have

a(k)|ǫ(k)| = |ǫ(k)| − ĉ(k − n) ≥ 0

when |ǫ(k)| < ĉ(k − n), we have

a(k)|ǫ(k)| = 0 > |ǫ(k)| − ĉ(k − n)

In summary, we have |ǫ(k)|−ĉ(k−n) ≤ a(k)|ǫ(k)|. Together

with Lemma 4, we have

‖ξ̄n(k − n)‖

≤ C1[max
k′≤k

{|ǫ(k′)|} + C2

= C1[max
k′≤k

{|ǫ(k′)| − ĉ(k′ − n) + ĉ(k′ − n)} + C2

≤ C1[max
k′≤k

{a(k′)|ǫ(k′)|} + C2

+C1[max
k′≤k

{ĉ(k′ − n)}, k > k0 (29)
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According to the definition of ĉ(k) in (21) and the bound-

edness of ĉν(k), we have

max
k′≤k−n

{‖ξ̄n(k′)‖} ≤ C1[max
k′≤k

{a(k′)|ǫ(k′)|} + C3

+2λC1 max
k′≤k−n

{‖ξ̄n(k′)‖}, k > k0 (30)

which implies the existence of a small positive constant

λ∗ =
1

2C1
(31)

such that

max
k′≤k−n

{‖ξ̄n(k′)‖} ≤
C1

1 − 2λC1
max
k′≤k

{a(k′)|ǫ(k′)|}

+
C3

1 − 2λC1
, k > k0 (32)

holds ∀λ < λ∗, where C3 is a finite number. It implies

‖ξ̄n(k − n)‖ = O[a(k)ǫ(k)]. According to Lemma 4 and

Assumption 1, we have Φ(k − 1) = O[‖ξ̄n(k − n)‖] =
O[a(k)ǫ(k)] and further we have

‖Φ(k − 1) − Φ(lk−n)‖ = O[a(k)ǫ(k)] (33)

Then, applying Lemma 1 to (28), we have

lim
k→∞

a(k)ǫ(k) = 0 (34)

which guarantees the boundedness of ξ̄n(k) according to

(32), and thus, the bounedness of output y(k) and tracking

error e(k). According to Lemma 4, we have limk→∞ ‖ ˜̄ξi(k+
j|k)(k)‖ = 0, j = n − i, which implies limk→∞ ‖X(k) −
Y (k + n − 1)‖ = 0. According to Lemma 3, we see

limk→∞ ‖Y (k + n − 1) − Y (lk)‖ = 0 which leads to

limk→∞ ‖Φ(k +n−1)−Φ(lk)‖ = 0 and limk→∞ ‖ξ̄n(k)−
ξ̄n(lk − n + 1)‖ = 0, and further limk→∞ |ν(ξ̄n(k)) −
ν(ξ̄n(lk − n + 1))| = 0 according to Assumption 1. In

(18), we see limk→∞ ǫ(k + n − 1) = 0 which leads to

limk→∞ e(k) = 0.

V. SIMULATION RESULTS

The following second order nonlinear plant is used for

simulation.


























ξ1(k + 1) = 0.1ξ1(k) cos(ξ1(k)) + 0.3ξ1(k) sin(ξ1(k))
+ ξ2(k)

ξ2(k + 1) = 0.5ξ2(k) ξ1(k)
1+ξ2

1
(k)

+ 0.4
ξ3

2
(k)

2+ξ2

2
(k)

+ u(k)

+ ν(ξ̄2(k))
y(k) = ξ1(k)

where ν(ξ̄2(k)) = 0.01(cos(0.05k))(ξ1(k) + ξ2(k)). The

control objective is to make the output y(k) track the desired

reference trajectory yd(k) = 1.5 sin(π
5 kT ) + 1.5 cos( π

10kT ),
where T = 0.1. The initial system states are ξ̄2(0) =
[0, 0]T . The control parameter is chosen as γ = 0.09 and

λ = 0.1. The simulation results are presented in Figs. 1–3.

Fig. 1 depicts the reference signal yd(k) and system output

y(k); Fig. 2 illustrates the boundedness of the control input

u(k); Fig. 3 demonstrates the boundedness of the estimated

parameters ĉµ(k) and ‖Θ̂(k)‖. From Fig. 1, it can been seen

that system output y(k) asymptotically tracks the reference

signal yd(k).
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Fig. 1. Reference signal and system output
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Fig. 2. Control signal
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Fig. 3. Boundedness of parameter estimates

VI. CONCLUSION

In this paper, adaptive control based on future state predic-

tion and estimation of both parametric and nonparametric un-

certainties has been studied for a class of nonlinear discrete-

time systems in parameter-strict-feedback form. To com-

pletely compensate for the uncertainties, an auxiliary output

including both parametric and nonparametric uncertainties

has been introduced and predicted in the control design. All

the signals in the closed-loop system are uniformly bounded

and the output tracking error is made to be zero ultimately.

APPENDIXES

A: Proof of Lemma 2.

From system description (1), we can see that

ξ2(k) = ξ1(k + 1) − ΘT
1 Φ1(ξ1(k))

Noting Assumption 1, we have ξ2(k) = O[ξ1(k + 1)] and

further ‖ξ̄2(k)‖ = O[ξ1(k + 1)].
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In the same way, we can deduce that ξ3(k) = O[‖ξ̄2(k +
1)‖] and further ‖ξ̄3(k)‖ = O[ξ1(k + 2)] and so on. In

summary, we have

‖ξ̄i(k)‖ = O[ξ1(k + i − 1)], i = 1, 2, . . . , n

and ξn(k + 1) = O[ξ1(k + n)]. For the control input, we

have

|u(k)| ≤ |ξn(k + 1)| + |ΘnΦ(ξ̄n(k))| + |ν(ξ̄n(k))|

Together with Assumption 1, it implies u(k) = O[ξ1(k+n)]
Let us rewrite system (1) as

ξ1(k + n − 1) = ΘT
1 Φ1(ξ̄1(k + n − 2)) + ξ2(k + n − 2)

...

ξn−2(k + 2) = ΘT
n−2Φn−2(ξ̄n−2(k + 1)) + ξn−1(k + 1)

ξn−1(k + 1) = ΘT
n−1Φn−1(ξ̄n−1(k)) + ξn(k)

From the first equation from bottom, we obtain ξn−1(k +
1) = O[‖ξ̄n(k)‖]. Then, from the second equation from

bottom, we obtain ξn−2(k + 2) = O[‖ξ̄n(k)‖]. Continuing

backwardly, it follows ξn−i(k + j) = O[‖ξ̄n(k)‖] and

‖ξ̄n−i(k + j)‖ = O[‖ξ̄n(k)‖], i = 1, 2, . . . , n− 1, j = n− i.

This completes the proof.

B: Proof of Lemma 3.

We will prove it by seeking a contradiction in a similar

way as in [1]. Firstly, let us suppose that

¯limk→∞‖X(k) − Y (lk)‖ = ǫ > 0 (35)

where ¯lim denotes the upper limit. Then we can take from

X(k) a subsequence {X(kj), j ≥ 1} such that

‖X(kj) − Y (lkj
)‖ >

ǫ

2
, kj − lkj

≥ τ

According to the definition in (3), we have

‖X(kj) − Y (k′)‖ >
ǫ

2
, ∀0 ≤ k′ ≤ kj − τ

which implies

‖X(kj) − X(k′)‖ + ‖X(k′) − Y (k′)‖

≥ ‖X(kj) − Y (k′)‖ >
ǫ

2
, ∀0 ≤ k′ ≤ kj − τ

According to limk→∞ ‖X(k) − Y (k)‖ = 0, there exists a

finite number N such that ‖X(k) − Y (k)‖ < ǫ
4 , ∀k > N ,

which leads to

‖X(kj) − X(k′)‖ >
ǫ

4
, ∀N < k′ ≤ kj − τ

Then, for N < ki ≤ kj − τ , i < j, we have ‖X(kj) −
X(ki)‖ > ǫ

4 , or equivalently ‖X(kj) − X(ki)‖ > ǫ
4 , which

means that {X(kj), j ≥ 1} is unbounded. This contradicts

to the boundedness of X(k). Consequently (35) cannot hold

and thus we have

limk→∞‖X(k) − Y (lk)‖ = ¯limk→∞‖X(k) − Y (lk)‖ = 0

where lim denotes the lower limit. Then, we have

lim
k→∞

‖X(k) − Y (lk)‖ = 0

and

0 ≤ lim
k→∞

‖Y (k) − Y (lk)‖

≤ lim
k→∞

‖Y (k) − X(k)‖ + lim
k→∞

‖X(k) − Y (lk)‖ = 0

which leads to limk→∞ ‖Y (k)−Y (lk)‖ = 0. This completes

the proof.
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