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Abstract— This paper investigates the problem of designing
a linear memoryless state feedback control to stabilize a class
of linear uncertain systems with state delays. Each uncertain
parameter and each delay under consideration may take
arbitrarily large values. In such a situation, the locations of
uncertain entries in the system matrices play an important
role. It has been shown that it is a necessary and sufficient
condition for the stabilization of time-varying or time-invariant
uncertain systems without delays to have a particular geometric
configuration called an ASC or a GASC, respectively. However,
those results are inapplicable to systems that contain delays
in the state variables. The objective of this paper is to show
that if time-varying uncertain systems with time-varying delays
or time-invariant uncertain systems with time-invariant delays
have an ASC or a GASC, respectively, then the systems
are stabilizable no matter how large the bounds of delays
and uncertain parameters may be. However, we restrict our
attentions to 3-dimensional systems for simplicity. The results
shown here imply that the stabilizability conditions are not
deteriorated by the existence of time delays.

I. INTRODUCTION

This paper examines the stabilization problem of uncertain
delay systems by means of linear memoryless state feedback
control. It is useful to classify the existing results on the
stabilization of uncertain systems into two categories. The
first category includes several results which provide the sta-
bilizability conditions depending on the bounds of uncertain
parameters. The results in the second category provide the
stabilizability conditions that are independent of the bounds
of uncertain parameters but which depend on their locations.
This paper specifically addresses the second category.

In the second category, the stabilization problem of linear
uncertain systems without delays was studied by Wei [1] [2].
The stabilizability conditions have a particular geometric
configuration with respect to the permissible locations of
uncertain entries. Using the concept of antisymmetric step-
wise configuration (ASC) [1] and generalized antisymmetric
stepwise configuration (GASC) [2], Wei proved that a linear
time-varying or time-invariant uncertain system is stabiliz-
able independently of the given bounds of uncertain varia-
tions using linear state feedback control if and only if the
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system has an ASC or a GASC, respectively. The allowable
uncertainty locations of GASC are more numerous than those
of ASC, which means that the stabilizability conditions of
linear time-varying uncertain systems are stricter than those
of linear time-invariant uncertain systems. Wei derived the
successful results on the stabilization problem of systems
without delays, however, his both methods in [1] and [2]
are inapplicable to systems that contain delays in the state
variables.

On the one hand, based on the properties of an M -
matrix, Amemiya [3] developed the conditions called a
triangular configuration for the stabilization of linear time-
varying uncertain systems with time-varying delays using
linear memoryless state feedback control. The conditions
obtained in [3] show a similar configuration to an ASC,
but the allowable uncertainty locations are fewer than in
an ASC by one step. In [4], the conditions of a triangular
configuration [3] were further developed into the conditions
of a triangular ASC. It was shown in [4] that if a linear time-
varying uncertain delay system has a triangular ASC, then the
system is stabilizable via linear memoryless state feedback
control. Namely, the allowable uncertainty locations for the
stabilization of the systems with delays were increased to
those for the stabilization of the systems without delays.
However, so far obtained results are valid in only the case
where the uncertainty configurations are restricted to the
triangular forms.

Our objective is to show that if a linear time-varying
uncertain delay system has all admissible ASCs including not
only triangular ASCs but also all other ASCs, then the system
is stabilizable. In [4], the stabilization problem discussed
here has been reduced to finding the proper manners of
constructing the Vandermonde matrix as a variable transfor-
mation. To achieve our objective, we must find the proper
variable transformation for each form of ASCs. The difficulty
of solving this problem is the diversity of the classification
of the proof. For simplicity, it is shown in this paper that
if 3-dimensional linear time-varying uncertain delay systems
have an arbitrary ASC, then the systems are stabilizable via
linear control.

So far, we have discussed the stabilization problem of lin-
ear time-varying uncertain systems with time-varying delays.
However, the stabilization problem of linear time-invariant
uncertain systems with time-invariant delays still has not
been addressed in the second category. For that reason,
this paper also investigates the stabilization problem of
linear time-invariant uncertain delay systems. The previous
approach such as M -matrix method is useless for developing
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the stabilizability conditions for this problem. Then, a novel
approach is provided here, which is meaningful progress.

The objective in this paper is to show that a linear time-
varying or time-invariant uncertain delay system with an
arbitrary ASC or GASC is stabilizable, respectively, using
linear memoryless state feedback control. That means the
stabilizability conditions of linear uncertain delay systems
are not degraded by the existence of delays that are allowed
to take unlimited large values. In this paper, an ASC and a
GASC under consideration are free from the restriction of
triangular configuration, but the systems addressed here are
restricted to 3-dimensional systems. However, the intrinsic
nature of high dimensional structures is adequately reflected
to that of 3-dimensional structures.

This paper is organized as follows. Some notations and
terminology are given in Sec. II. The systems considered here
are defined in Sec. III. In Sec. IV, some preliminary results
are introduced to state the present problem. The main results
are provided in Sec. V. Sec. VI and Sec. VII are devoted
to the proof of the main results. In Sec. VIII, we discuss
the difference of the control design process between LMI
approach [5]-[7] and our approach, and compare the property
of the controller designed by each approach. Finally, some
concluding remarks are presented in Sec. IX.

II. NOTATIONS AND TERMINOLOGY

First, some notations and terminology used in the subse-
quent description are given. For a, b ∈ R

m or A, B ∈ R
n×m,

every inequality between a and b or A and B such as a > b
or A > B indicates that it is satisfied componentwise by a
and b or A and B. If A ∈ Rn×m satisfies A ≥ 0, A is called a
non-negative matrix. The transpose of A ∈ Rn×m is denoted
by A′. For a = (a1, ..., am)′ ∈ Rm, |a| ∈ Rm is defined
as |a| = (|a1|, .., |am|)′. Also for A = (aij) ∈ Rn×m,
|A| denotes a matrix with |aij| as its (i, j) entries. Let
diag{· · ·} denote a diagonal matrix. Let [a, b], a,b ∈ R be
an interval in R. The set of all continuous or piecewise
continuous functions with domain [a, b] and range Rn is
denoted, respectively, by Cn[a, b] or Dn[a, b]. We denote it
simply by Cn or Dn if the domain is R.

The notation for a class of functions is introduced below.
Let ξ(μ) ∈ C1 and let m ∈ R be a constant. If ξ(μ) satisfies
the conditions

limsup
|μ|→∞

∣∣∣ ξ(μ)
μm

∣∣∣ < ∞, lim sup
|μ|→∞

∣∣∣ ξ(μ)
μm−a

∣∣∣ = ∞ (1)

for any positive scalar a ∈ R, then ξ(μ) is called a function
of order m, and we denote this as follows:

Ord(ξ(μ)) = m. (2)

The set of all C1 functions of order m is denoted by O(m),

O(m) =
{
ξ(μ)|ξ(μ) ∈ C1, Ord(ξ(μ)) = m

}
. (3)

A real square matrix all of whose off-diagonal entries are
non-positive is called an M -matrix if it is non-singular and
its inverse matrix is non-negative. The set of all M -matrices
is denoted by M.

III. SYSTEM DESCRIPTION

Let n be a fixed positive integer. The system considered
here is given by a delay differential equation defined on x ∈
R

n for t ∈ [t0,∞) as follows:

ẋ(t) = A0x(t) + ΔA1(t)x(t) +
r∑

i=1

ΔA2i(t)x(t − τi(t))

+(b + Δb(t))u(t) (4)

with an initial curve φ ∈ Dn[t0− τ0, t0]. Here, A0, ΔA1(t),
ΔA2i(t) (i = 1, ..., r) are all real n × n matrices, where
r is a fixed positive integer; also, A0 is a known constant
matrix. Furthermore, ΔA1(t) and ΔA2i(t) (i = 1, ..., r) are
uncertain coefficient matrices and may vary with t ∈ [t0,∞).
Other variables are as follows: u(t) ∈ R is a control variable,
b ∈ Rn is a known constant vector, and Δb(t) ∈ Rn is an
uncertain coefficient vector which may vary with t ∈ [t0,∞).
In addition, all τi(t) (i = 1, ..., r) are piecewise continuous
functions and are uniformly bounded, i.e., for a non-negative
constant τ0 they satisfy

0 ≤ τi(t) ≤ τ0 (i = 1, ..., r) (5)

for all t ≥ t0. The upper bound τ0 can be arbitrarily large
and is not necessarily assumed to be known.

It is assumed that all entries of ΔA1(t), ΔA2i(t), and
Δb(t) are piecewise continuous functions and are uniformly
bounded, i.e., for a non-negative constant matrices ΔA10,
ΔA2i0 ∈ Rn×n, and for a non-negative constant vector
Δb0 ∈ Rn, they satisfy∣∣ΔA1(t)

∣∣ ≤ ΔA10,
∣∣ΔA2i(t)

∣∣ ≤ ΔA2i0, |Δb(t)| ≤ Δb0

(6)
for all t ≥ t0. The upper bound of each entry can indepen-
dently take an arbitrarily large value, but each is assumed to
be known.

Assumption 1: Because the system must be controllable,
we assume that the pair (A0, b) of the nominal system is a
controllable pair and is in the controllable canonical form.

A0 =

⎛
⎜⎜⎜⎝

0 1 0 0

0
. . .

. . . 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎟⎠ , b =

⎛
⎜⎜⎜⎝

0
...
0
1

⎞
⎟⎟⎟⎠ . (7)

Definition 1: We call system (4) defined above a linear
time-varying uncertain delay (LTVUD) system. When all
entries of ΔA2i0 (i = 1, ..., r) are equal to zero, that is, the
system contains no delays, we call this system a linear time-
varying uncertain (LTVU) system. When all time-varying
uncertain entries and time-varying delays of LTVUD system
are time-invariant, we call this system a linear time-invariant
uncertain delay (LTIUD) system. When all time-varying
uncertain entries of LTVU system are time-invariant, we call
this system a linear time-invariant uncertain (LTIU) system.
We call the system satisfying Assumption 1 a standard
system. Note that all LTVUD, LTVU, LTIUD, and LTIU
systems belong to a class of standard systems.

Definition 2: An LTVUD system is said to be time-
varying delay-independently stabilizable via linear control
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if there exists a linear memoryless state feedback control
u(t) = g′x(t), g ∈ Rn such that the equilibrium point
x = 0 of the resulting closed-loop system is uniformly and
asymptotically stable for all admissible uncertain delays and
uncertain parameters.

Definition 3: An LTVU system is said to be quadratically
stabilizable via linear control if there exists a linear state
feedback control u(t) = g′x(t), a positive definite matrix
Q ∈ R

n×n, and a positive constant α ∈ R such that
the following condition holds: for all admissible uncertain
parameters,

L(x) = x′[A′(t)Q + QA(t)]x + 2x′Qb(t)g′x
≤ −α ‖x‖2

, (8)

where L(x) is the time derivative of the quadratic Lyapunov
function V (x) = x′Qx along the trajectories of the closed-
loop system, and A(t), b(t) are defined as A(t) = A0 +
ΔA1(t), b(t) = b + Δb(t).

Definition 4: An LTIUD system is said to be time-
invariant delay-independently stabilizable via linear control if
there exists a linear state feedback control u(t) = g′x(t) such
that the characteristic equation of the closed-loop system,

det

(
sI − A0 − ΔA1 −

r∑
i=1

ΔA2ie−sτi − (b + Δb)g′
)

= 0

(9)
is Hurwitz invariant, i.e., all the roots of (9) are in the strict
left half of the complex plane for all admissible uncertain
delays and uncertain parameters.

Definition 5: An LTIU system is said to be stabilizable via
linear control if there exists a linear state feedback control
u(t) = g′x(t) such that the characteristic equation of the
closed-loop system,

det
(
sI − A0 − ΔA1 − (b + Δb)g′

)
= 0 (10)

is Hurwitz invariant, i.e., all the roots of (10) are in the strict
left half of the complex plane for all admissible uncertain
parameters.

Let D ∈ Rn×(n+1) be defined as follows:

D =
(

ΔA30 Δb0
)
, (11)

where ΔA30 = ΔA10 +
∑r

i=1 ΔA2i0.
Definition 6: A standard system is said to have an anti-

symmetric stepwise configuration (ASC) if D satisfies the
following condition:

1) If h ≥ k +2 and dkh �= 0, then duv = 0 for all u ≥ v,
u ≤ h − 1 and v ≤ k + 1.

Note that dkh(h ≥ k + 2) is the entry which exists in the
upper part of the superdiagonal entries.

Definition 7: A standard system is said to have a gener-
alized antisymmetric stepwise configuration (GASC) if D
satisfies all the following conditions:

1) If h ≥ k +2 and dkh �= 0, then duv = 0 for all u ≥ v,
u ≤ h − 1 and v ≤ k.

2) det (Dr) = d12d23 · · ·dnn+1, where Dr is the right
submatrix of D defined as follows:

Dr :=

⎡
⎢⎢⎢⎣

d12 d13 · · · d1n+1

d22 d23 · · · d2n+1

...
...

...
...

dn2 dn3 · · · dnn+1

⎤
⎥⎥⎥⎦ . (12)

Definition 8: Let k be an integer satisfying 0 ≤ k ≤ n.
For this k, let Ωl(k) = {E = (eij) ∈ R

n×(n+1)} be a set of
matrices with the following properties:

(i) If 1 ≤ j ≤ k +1, then eij = 0 for j − 1 ≤ i ≤ 2k− j;
(ii) If k + 2 ≤ j ≤ n + 1, then eij = 0 for 2k − j + 1 ≤

i ≤ j − 1.
Similarly, let Ωu(k) = {F = (fij) ∈ Rn×(n+1)} be a set of
matrices with the following properties:

(i) If 1 ≤ j ≤ k+1, then fij = 0 for j−1 ≤ i ≤ 2k−j+1;
(ii) If k + 2 ≤ j ≤ n + 1, then fij = 0 for 2k − j + 2 ≤

i ≤ j − 1.
A standard system is said to have a triangular antisymmetric
stepwise configuration (TASC) if D satisfies the following
condition: for fixed k,

D ⊂ Ωl(k) or D ⊂ Ωu(k). (13)

IV. PROBLEM STATEMENT

The stabilization problem of linear uncertain systems
without delays was studied in [1], [2]. The stabilization
problem of LTVUD systems was studied in [4].

Lemma 1 ([1]): An LTVU system is quadratically stabi-
lizable via linear control if and only if the system has an
ASC.

Lemma 2 ([2]): An LTIU system is stabilizable via linear
control if and only if the system has a GASC.

Lemma 3 ([4]): An LTVUD system is time-varying
delay-independently stabilizable via linear control if the
system has a TASC.

The stabilization problem of LTIUD systems still has not
been addressed. Our purpose is to show that if an LTVUD
system has an ASC, then the system is time-varying delay-
independently stabilizable via linear control and that if an
LTIUD system has a GASC, then the system is time-invariant
delay-independently stabilizable via linear control. To obtain
our goal, we must find the proper manners of constructing
the variable transformations for all possible ASCs or GASCs.
The difficulty of solving this problem is the diversity of the
classifications for each configuration. For that reason, we
restrict our attention to 3-dimensional systems. Let ∗ denote
the permissible location of an uncertain entry. For D ∈ R3×4,
all possible ASCs are as follows:

(i)

⎛
⎝ ∗ 0 0 0

∗ ∗ 0 0
∗ ∗ ∗ 0

⎞
⎠ (ii)

⎛
⎝ 0 0 ∗ ∗

0 0 0 ∗
0 0 0 0

⎞
⎠

(iii)

⎛
⎝ 0 0 ∗ 0

0 0 0 0
∗ ∗ ∗ 0

⎞
⎠ (iv)

⎛
⎝ 0 0 ∗ ∗

0 0 0 0
0 0 ∗ 0

⎞
⎠

Moreover, for D ∈ R3×4, all possible GASCs are as follows:
In addition to ASCs (i)-(iv),

(v)

⎛
⎝ 0 0 0 ∗

0 ∗ 0 0
0 0 0 0

⎞
⎠ .
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The objective of this paper is to show that if 3-dimensional
LTVUD or LTIUD system has an ASC or a GASC, then the
system is time-varying or time-invariant delay-independently
stabilizable via linear control, respectively.

V. MAIN RESULTS

In this section, we state our main results.
Theorem 1: All LTVUD systems with ASCs (i)-(iv) are

time-varying delay-independently stabilizable via linear con-
trol.

Proof: The proof is found in Sec. VI.
Theorem 2: All LTIUD systems with GASCs (i)-(v) are

time-invariant delay-independently stabilizable via linear
control.

Proof: The proof is found in Sec. VII.
We see that the number of permissible uncertainty locations
for the stabilizable LTIUD systems is more than that for the
stabilizable LTVUD systems. For 3-dimensional systems, it
was shown that the stabilizability conditions of systems with-
out delays are sufficient conditions for the stabilization of
systems with delays. Therefore, we see that the stabilizability
conditions of systems with time-varying or time-invariant
delays are not degraded by the existence of time-varying or
time-invariant delays, respectively. From this point of view,
the main results are important. It can be considered that the
intrinsic nature of high dimensional structures is adequately
reflected to that of 3-dimensional structures.

VI. STABILIZATION OF LTVUD SYSTEMS

This section is devoted to the proof of Theorem 1. Because
of Assumption 1, it is possible to choose g ∈ Rn so that
all the eigenvalues of (A0 + bg′) are real, negative and
distinct. Let g be as such. In addition, let λ1, λ2, · · · , λn

be such eigenvalues of (A0 + bg′). Let T ∈ Rn×n be the
Vandermonde matrix constructed using λ1, λ2, · · · , λn such
that

T =

⎛
⎜⎜⎜⎜⎝

1 1 . . . 1
λ1 λ2 . . . λn

λ 2
1 λ 2

2 . . . λ 2
n

. . . . . .
λ n−1

1 λ n−1
2 . . . λ n−1

n

⎞
⎟⎟⎟⎟⎠ . (14)

This T is well known to be non-singular in view of the above
assumption. Then, let P ∈ Rn×(n+1) be defined as follows:

P = −Λ − ∣∣T−1
∣∣ΔA30 |T | − ∣∣T−1

∣∣Δb0 |g′| |T | , (15)

where

Λ = T−1(A0 + bg′)T = diag{λ1, λ2, · · · , λn}. (16)

The following lemma has been shown in [4].
Lemma 4 ([4]): If there exists T in (14) which assures

P ∈ M, (17)

then an LTVUD system is time-varying delay-independently
stabilizable via linear control.
Note that our problem has been reduced to finding T that
enables P to satisfy condition (17). For LTVUD systems (i),

(ii), and (iv), it has been shown in [4] that there exists T that
assures P ∈ M, because systems (i), (ii), and (iv) belong to
Ωu. In the subsequent discussion, we consider the possibility
of choosing T that assures P ∈ M for system (iii).

Here, let μ be a positive number and let αi(i=1,2,3) be
all negative numbers that are different from one another. Let
μ be much larger than all entries of ΔA30 and Δb0. Let
αi(i=1,2,3) be used for distinguishing eigenvalues from one
another.

For system (iii), the proper way of choosing λi(i=1,2,3) are
shown below. ⎧⎨

⎩
λ1 = α1μ

−1 ∈ O(−1),
λ2 = α2μ

1 ∈ O(1),
λ3 = α3μ

2 ∈ O(2).
(18)

To complete the proof, it must be shown that if we choose
λi(i=1,2,3) as in (18), then T constructed by such λi(i=1,2,3)

assures P ∈ M.
T and T−1 are given as follows:

T =

⎛
⎝ O(0) O(0) O(0)

O(−1) O(1) O(2)
O(−2) O(2) O(4)

⎞
⎠ , (19)

T−1 =

⎛
⎝ O(0) O(−1) O(−3)

O(−2) O(−1) O(−3)
O(−4) O(−3) O(−4)

⎞
⎠ . (20)

Considering Δb0 = 0 for system (iii), we obtain

P = −Λ − ∣∣T−1
∣∣
∣∣∣∣∣∣
⎛
⎝ 0 0 O(0)

0 0 0
O(0) O(0) O(0)

⎞
⎠
∣∣∣∣∣∣ |T |

= −Λ −
∣∣∣∣∣∣
⎛
⎝ O(−2) O(2) O(4)

O(−3) O(0) O(2)
O(−4) O(−2) O(0)

⎞
⎠
∣∣∣∣∣∣ . (21)

For the evaluation of condition P ∈ M, Proposition 3 in [4]
is useful. Considering that Λ is a diagonal matrix whose
entries belong to O(−1), O(1), and O(2), we have

−1 > −2,

1 > 0,

2 > 0,

−1 > 4 − 2 + (−4) = −2, (22)

1 > 2 − 2 + (−2) = −2,

−1 > max{2, (4− 2 − 2)} − 1
+max{−3, (2− 4 − 2)} = −2.

Hence, we see from inequalities (22) that P ∈ M.
Therefore, the proof of Theorem 1 is completed.

VII. STABILIZATION OF LTIUD SYSTEMS

This section is devoted to the proof of Theorem 2. First,
we present a stabilizability criterion for LTIUD systems in a
general setting. Next, we consider the possibility of choosing
the feedback gain g such that the closed-loop system satisfies
such a stabilizability criterion.
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Let C+ be the closed right half of the complex plane. It
is well known [8] that (9) is Hurwitz invariant if and only if

det

(
I − (sI − A)−1(ΔA −

r∑
i=1

ΔA2ie−sτi)

)
�= 0 (23)

for all s ∈ C+, where A := A0 + bg′ and ΔA := ΔA1 +
Δbg′. Without loss of generality, (23) is rewritten as follows:

1 +
Y (s)
X(s)

�= 0, (24)

where X(s) = det(sI − A). Note that the order of X(s)
with respect to s is higher than that of Y (s). Because of
Assumption 1, it is possible to choose g ∈ Rn so that all the
roots of X(s) are set in the strict left half plane. In such a
situation, it is obvious from Nyquist stability criterion [9] that
condition (23) holds if and only if the plot of Y (jω)/X(jω)
with ω varying from 0 to ∞ has no counter-clockwise
encirclement of the point (−1 + j0), where j2 = −1. Then,
we obtain the following lemma.

Lemma 5: An LTIUD system is time-invariant delay-
independently stabilizable via linear control if and only if
there exists g ∈ Rn such that all the roots of X(s) are set in
the strict left half plane and the following condition holds:∣∣∣∣Y (jω)

X(jω)

∣∣∣∣ < 1, for all ω ∈ R. (25)

Proof: Sufficiency: If condition (25) is satisfied, then
the trajectory of nyquist plot is strictly inside the unit circle.
Hence, there is no counter-clockwise encirclement of the
point (−1 + j0). Clearly, it follows that an LTIUD system
is time-invariant delay-independently stabilizable via linear
control under the assumption that all the roots of X(s) are
set in the strict left half plane.

Necessity: If X(s) has an unstable root, then the trajectory
of nyquist plot must cross over the unit circle, because
the nyquist plot must have at least one counter-clockwise
encirclement of the point (−1+j0) for the stability of closed-
loop system. If there exists ω such that |Y (jω)/X(jω)| > 1,
then the nyquist plot cross over the unit circle. In these
case, due to the term e−jωτi , the nyquist plot can have
the arbitrary number of counter-clockwise encirclement of
the point (−1 + j0). Hence, all the roots of X(s) must
be in the strict left half plane, and |Y (jω)/X(jω)| ≤ 1
must be satisfied. Moreover, if there exists ω such that
|Y (jω)/X(jω)| = 1, then (23) has the root on the imaginary
axis, that is, the system is unstable. Therefore, an LTIUD
system is time-invariant delay-independently stabilizable via
linear control only if all the roots of X(s) are set in the strict
left half plane and condition (25) is assured.

Using Lemma 5, we next consider the stabilizability
of LTIUD systems (i)-(v). It is apparent from Theo-
rem 1 that LTIUD systems (i)-(iv) are time-invariant delay-
independently stabilizable via linear control. Then, it remains
to show system (v) is also time-invariant delay-independently
stabilizable via linear control. In fact, we can show that it
is impossible to find the proper g that assures P ∈ M for
system (v). In the following, we show that there exists the

feedback gain g such that the closed-loop system satisfies
condition (25).

For system (v), X(s) and Y (s) are given as follows:

X(s) = s3 − g3s
2 − g2s− g1, (26)

Y (s) = −b1g1s
2 + {−s2 + (g3 + b1g1)s}

×
(
a1
22 +

∑r

i=1
a2i
22e

−sτi

)
. (27)

Therein, b1 denotes the first entry of Δb. a1
22 and a2i

22

represent the (2, 2) entry of ΔA1 and ΔA2i, respectively.
Let a22 be defined as follows:(

a1
22 +

∑r

i=1
a2i
22e

−jωτi

)
≤
(
|a1

22|+
∑r

i=1
|a2i

22||e−jωτi|
)

≤
(
|a1

22|+
∑r

i=1
|a2i

22|
)

:= a22. (28)

Then, we have the followings:

|Y (jω)| ≤ ∣∣b1g1ω
2 + {ω2 + (g3 + b1g1)jω}a22

∣∣
=

∣∣(b1g1 + a22)ω2 + (g3 + b1g1)a22ωj
∣∣ ,(29)

|X(jω)| =
∣∣−jω3 + g3ω

2 − g2jω − g1

∣∣
=

∣∣(g3ω
2 − g1) − (ω2 + g2)ωj

∣∣ . (30)

From (29) and (30), it follows that∣∣∣∣Y (jω)
X(jω)

∣∣∣∣
2

≤ (b1g1 + a22)2ω4 + (g3 + g1b1)2a2
22ω

2

(g3ω2 − g1)2 + (ω2 + g2)2ω2

=
(b1g1 + a22)2ω4 + (g3 + g1b1)2a2

22ω
2

ω6 + (g2
3 + 2g2)ω4 + (g2

2 − 2g1g3)ω2 + g2
1

(31)

Noting the coefficients of ω4 and ω2, it is apparent that if

(b1g1 + a22)2 ≤ (g2
3 + 2g2), (32)

(g3 + g1b1)2a2
22 ≤ (g2

2 − 2g1g3), (33)

then (numerator) < (denominator) for all ω ∈ R, i.e.,
condition (25) holds.

Now, we show the proper way of choosing the eigenvalues
λi(i=1,2,3) of (A0 + bg′) as follows:{

λ1 = α1μ
−2 ∈ O(−2),

λi = αiμ
1 ∈ O(1) (i = 2, 3). (34)

From the relations between the roots and the coefficients of
the characteristic equation det(A0 +bg′), g′ is found to have
the following order structure:

g′ =
[

O(0) O(2) O(1)
]
. (35)

Note that the right hand sides of (32) and (33) are

(g2
3 + 2g2) ∈ O(2) and (g2

2 − 2g1g3) ∈ O(4), (36)

respectively, and both terms have positive values. Also, note
that the left hand sides of (32) and (33) are

(b1g1 +a22)2 ∈ O(0) and (g3 +g1b1)2a2
22 ∈ O(2), (37)
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respectively. Comparing (36) with (37), we see that con-
ditions (32) and (33) hold for sufficiently large μ. It is
apparent that sufficiently large μ such that condition (25)
holds always exists however large the given upper bounds of
uncertainties b1 and a22 might be. Therefore, using Lemma 5,
we can conclude that system (v) is time-invariant delay-
independently stabilizable via linear control.

Consequently, the proof of Theorem 2 is completed.

VIII. DESIGN OF CONTROLLER

In this section, we discuss the property of both methods in
the first category and in the second category for designing
a stabilizing controller. For examples of the first category
method and the second category method, we adopt the LMI
approach and our approach presented here, respectively.

For a class of linear uncertain delay systems, the LMI
condition derived from the Lyapunov-Krasovskii functional
approach is a commonly used tool. In the following, we show
the result obtained by LMI condition [5] for system (i)-(v)
via example. For simplicity, let r = 1 in the subsequent
discussion.

In most papers using the Lyapunov-Krasovskii approach,
the uncertain parameters are assumed to satisfy the following
condition:[

ΔA1(t) ΔA21(t) Δb(t)
]

= HΔ(t)
[

A10 A20 b0
]
,

(38)
where H , A10, A20, and b0 are constant matrices such that
Δ′(t)Δ(t) ≤ I is satisfied.

It has been shown in [5] that the systems can be stabilized
if there exist symmetric positive-definite matrices X, Z, a
matrix Y , and a positive scalar γ such that⎡

⎣ Σ11 0 Σ13

0 −(1 − τd)Z XA20′

Σ′
13 A20X −γI

⎤
⎦ < 0, (39)

where

Σ11 = A0X + XA0′ + bY + Y ′b′ + Z + γHH ′,

Σ13 = XA10′ + Y ′b0′.

The above inequality is exceptionally used to denote a neg-
ative definite matrix. τd is assumed to be a positive constant
such that τ̇ (t) ≤ τd < 1. Here, we assume that τd = 0.5
for systems (i)-(iv) and τd = 0 for system (v), although the
method proposed here is free from the restriction of τ̇ (t).

We also assume that all the given upper bounds of
uncertain entries ∗ in systems (i)-(v) take the same value,
and we denote that value by ε. Using our method, we can
design a stabilizing controller however large ε might be.
However, LMI solver becomes infeasible, when the value of
ε exceeds a certain value. Then, for comparing our method
with LMI method, we first check the feasibility on LMI
solver repeatedly with ε decreasing so that we identify
the maximum value εmax . Using the obtained solution in
the case of εmax , we have a stabilizing feedback gain by
calculating g′ = Y X−1. Next, for the given εmax , we design
a stabilizing feedback gain by our method. Both stabilizing

LMI method (i) (ii) (iii) (iv) (v)
εmax 0.32 0.37 0.29 0.28 0.49

g1 183.3 24.90 17.01 130.1 7.380
g2 213.4 1351 34.62 3631 48.05
g3 51.69 1194 18.50 1603 34.98

Our method (i) (ii) (iii) (iv) (v)
g1 156.7 0.0001 2.880 0.0002 0.3360
g2 131.2 0.0033 24.16 0.0834 5.340
g3 22.40 0.1143 19.33 7.511 4.567

feedback gains obtained using LMI method and our method
are shown in the above Table. We see that the stabilizing
feedback gain obtained using our method is much less than
that obtained using LMI method.

IX. CONCLUSION

The stabilization problem of linear uncertain delay sys-
tems using linear memoryless state feedback control was
investigated in this paper. Each uncertain parameter and each
delay under consideration may take arbitrarily large values. It
was shown that linear time-varying uncertain delay systems
having all admissible ASCs are stabilizable, irrespective
of the given bounds of uncertain entries and delays. For
time-invariant systems, a novel stabilizability criterion was
derived using Nyquist stability criterion. Moreover, it was
shown that linear time-invariant uncertain delay systems
having all admissible GASCs are stabilizable. However,
the systems under consideration here are restricted to 3-
dimensional linear uncertain delay systems. Nevertheless,
we found a significant fact that the stabilizability conditions
of systems with time-varying or time-invariant delays are
not deteriorated by the existence of time-varying or time-
invariant delays, respectively. It is highly desired that the
obtained results for 3-dimensional systems are generalized
to the ones for high-dimensional systems. This is a problem
to be considered in the future.
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