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Abstract— Knowledge of the current system state is crucial
to many discrete event systems (DESs) applications such as
control, diagnosis and prognosis. Due to limited sensing capa-
bilities, the current state information is generally not available
and needs to be estimated. In this paper, we propose a novel
distributed state estimation algorithm for discrete event plants.
According to the proposed algorithm, local sites maintain and
update local state estimates based on their local observations of
the plant behavior and the observations of the plant behavior
sent from the other sites over communication channels with
delays. For efficiency of storage, redundant history information
about the possible plant evolution is truncated each time a local
state estimate is updated. At each local site, the truncation is
performed independently requiring no synchronization among
the sites. The state estimate maintained at each of the local sites
is shown to remain finite regardless of whether the system can
execute an unbounded sequence of unobservable events. It is
also shown that the proposed algorithm is sound and complete,
i.e., each local estimate always contains the true current states
(soundness), and it only contains the reachable states of the
traces which give rise to a same history of observations (as
received from the plant and the other local sites) as does the
one executed by the plant (completeness). Also the proposed
algorithm can support an architecture in which there is no
communication from a certain site to certain other sites. An
illustrative example is provided to demonstrate the proposed
distributed state estimation algorithm.
Keywords: Discrete event systems, distributed state estimation,
communication delay.

I. INTRODUCTION

In many on-line applications of discrete event systems
(DESs) such as control, diagnosis and prognosis, it is crucial
to know the current state of the system. Due to limited
sensing capabilities, the current state information is generally
not available and needs to be estimated.

The task of state-estimation for DESs has received con-
siderable attention (see for example [1], [2], [3], [4]). The
state estimation problem has also been studied in the setting
of Petri nets, where the goal is to find the set of markings
consistent with the observation sequence (see for example
[5], [6], [7], [8], [9]). There are also some work on state
estimation in the max-plus setting (see for example [10])
and for stochastic DESs (see for example [11], [12], [13]).

In [14], distributed state estimation problem for DESs was
proposed. Each estimator updates its local estimate each
time an observation occurs or an estimate sent by another
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estimator arrives. Due to the delay of communication, the
local estimate and the received estimate may be “out of
sync”, and care was taken in fusing the two estimates to
ensure the correctness of the estimation process. A key idea
was that each estimator maintains not only an estimate of
the most recent states, but also of the past states. To cope
with the issue that the history of the estimates of the current
and the past states could continue to grow unboundedly, a
distributed synchronized truncation strategy was devised to
discard the older portion of the state estimates on an ongoing
basis. The algorithm ensured that only the unwanted portion
of the older history got discarded, and the truncation was
performed in a fashion so that a same amount of history got
discarded by all estimators.

There are two problems with the distributed state estima-
tion algorithm proposed in [14]. First, each site communi-
cates the entire local state estimate to all the other sites.
This burdens the communication network. In our proposed
algorithm only the new observations are transmitted by one
site to the others. Secondly, the algorithm presented in
[14] requires a complex distributed synchronization strategy
for the truncation of the unwanted history of local state
estimates. No such synchronization is required in our pro-
posed algorithm. Each site performs the truncation locally
independently of the other sites.

We introduce the notions of soundness and completeness
for a state estimation algorithm. Soundness refers to the
property that at each time a local estimate contains the true
current system states, whereas completeness refers to the
property that a local estimate only contains the reachable
states of the traces which give rise to a same history of
observations (as received from the plant and the other sites)
as does the one executed by the plant. It is shown that
the proposed new algorithm possesses these properties. An
important feature of the proposed algorithm is that the state
estimate history maintained at each of the local sites can be
represented using a finite graph regardless of whether the
plant can execute an unbounded sequence of unobservable
events. An example is provided to illustrate the proposed
distributed state estimation algorithm.

II. NOTATION AND PRELIMINARIES

Given an event set Σ, we use Σ∗ to denote the set of
all event-traces over Σ, including the zero-length trace ε,
and Σ to denote the set Σ∪ {ε}. A subset L ⊆ Σ∗ is called
a language over Σ. A trace s ∈ Σ∗ is a prefix of a trace
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t ∈ Σ∗ if for some trace u ∈ Σ∗, t = su. The prefix-
closure of L ⊆ Σ∗, denoted pr(L), is the set of all prefixes
of the traces in L. L is called prefix-closed or simply closed
if pr(L) = L. Given Σ̂ ⊆ Σ, the operation ↑Σ̂ is used to
denote the projection of a trace over Σ̂, and is inductively
defined as follows:

ε ↑Σ̂:= ε; ∀s ∈ Σ∗, σ ∈ Σ : sσ ↑Σ̂:=
{

s ↑Σ̂ σ if σ ∈ Σ̂
s ↑Σ̂ otherwise

A discrete event system is modeled as an untimed au-
tomaton G that is a tuple (X, Σ, α, X0), where X is a set of
states, Σ is a finite set of events, α : X ×Σ → 2X is a state
transition function, and X0 ⊆ X is a set of initial states. The
language generated by G consists of the traces executable in
G and is denoted L(G). It is obvious that L(G) is nonempty
and closed.

A path of G is a sequence of transitions in form of
x1σ1x2 · · ·σnxn ∈ X(ΣX)∗, where xi+1 ∈ α(xi, σi) for
i = 1, · · · , n − 1. We use Π(G) to denote the set of
all the paths of G. Given a path π = x1σ1x2 · · ·σnxn,
tr(π) := σ1 · · ·σn denotes the event sequence associated
with π. first(π) := x1 (resp., last(π) := xn) is used to
denote the first state (resp., last state) of π. A path π′ ∈
X(ΣX)∗ is a prefix (suffix and subpath, respectively) of π
if there exist i, j : 1 ≤ i, j ≤ n such that π′ = x1σ1 · · ·σixi

(π′ = xiσi · · ·σnxn and π′ = xiσi · · ·σjxj , respectively).
We use pr(π) (suff(π) and sub(π), respectively) to denote
the set of all prefixes (suffixes and subpaths, respectively) of
π. Note that sub(π) = suff(pr(π)) = pr(suff(π)).

Let I = {1, . . . , m} denote the index set of all sites. The
event sequences executed by the plant are observed at the ith
site through its observation mask: Mi : Σ → ∆i∪{ε}, where
∆i is the set of observed symbols at site-i. The observation
mask can be inductively extended to a sequence of events
as: Mi(ε) = ε; ∀s ∈ Σ∗, σ ∈ Σ, Mi(sσ) = Mi(s)Mi(σ).

III. DISTRIBUTED STATE ESTIMATION ALGORITHM

In this section, we introduce the basic idea of the
proposed distributed state estimation algorithm and also give
its formal presentation.

Fig. 1. Architecture of distributed state estimation

The architecture of the distributed state estimation is
shown in Figure 1. Each local site consists of a state
estimation algorithm (a state estimator) that computes the
local state estimate based on the local observations of the

plant behavior together with the observations of the plant
behavior received from the other sites over loss-free, order-
preserving channels that can introduce delay. Thus by the
time the observation of an event is communicated by site-
j to site-i, the plant may execute additional events. If the
number of such events executed by the plant is bounded,
then this is referred to as bounded-delay communication. It
is assumed that each site knows the mask function of all
the sites, and all local observations are communicated in the
order of their occurrence. Also the proposed algorithm can
support an architecture in which there is no communication
from a certain site to certain other sites.

A. Basic Idea

We give the basic idea of the proposed distributed state
estimation algorithm before giving its formal presentation.
Each local site maintains the state estimate information
consisting of a set of subpaths in the plant in form of a
state estimate graph. The paths of such graph keep track
of the recent relevant execution history of the plant, and
are updated according to the local observations of the plant
behavior together with the communicated observations of the
plant behavior as sent by the other sites. The nodes of the
state estimate graph are labeled by a subset of site indices
to indicate the extent to which the plant history has evolved
according to the information received from the plant and the
other sites.

The update operations consist of:
• Extending the state estimate graph when a new obser-

vation from plant arrives,
• Relabeling the nodes of the state estimate graph when a

new observation from plant or another site arrives, and
• Reducing and truncating the state estimate graph when

a new observation from another site arrives.
The following example serves to illustrate the proposed

algorithm.

Fig. 2. Automaton model of plant

Example 1: Consider the plant G = (X, Σ, α, X0) shown
in Figure 2. Suppose there are two local sites, i.e., I = {1, 2}
with observation masks:

M1(a) = a, M1(b) = b,M1(c) = c, M1(d) = ε,M1(f) = ε;

M2(a) = a,M2(b) = ε,M2(c) = c,M2(d) = d,M2(f) = ε.

Suppose G executes the trace abdc.
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It suffices to illustrate the state estimate information main-
tained by one of the sites, say site-1. Prior to any observation,
site-1 initializes its state estimate graph to consist of all paths
that produce no observation at site-1. The last state of each
such path is labeled by an index i ∈ I if the entire path
produces no observation at site-i. A state labeled i ∈ I
corresponds to a possible current state of the plant according
to the information received from site-i. Figure 3 shows the
initial state estimate graph at site-1, which consists of the
unobservable paths that can reach states 1 or 3. Since all
paths are unobservable to both sites, all nodes of the state
estimate graph are labeled with both site indices.

Fig. 3. Initial state estimate graph of site-1

When a new local observation arrives at site-1 directly
from the plant, starting from the nodes labeled with the
index-1, the state estimate graph of site-1 is extended by the
traces that are indistinguishable from the new observation.
Also, those site-1 labeled nodes where no such extension
is possible are removed from site-1 state estimate graph.
Then the index-1 labels are updated by propagating from
the current locations to the last states of the extended paths.

For instance, when site-1 observes plant execution a, site-
1 extends its state estimate graph with the traces observed
as a. This consists of the trace a at state 1, and the traces
a, ad, add, addd at state 3, and is shown in Figure 4(a). Next
the index-1 labels are propagated to nodes 2, 5, 9, 4, and 7
as shown in Figure 4(b).

Due to the communication delay between site-1 and 2,
site-1 may observe the next plant execution b prior to
receiving the first communication of a from site-2. When
the local observation b is received, starting from the index-
1 labeled nodes, site-1 extends its state estimate graph by
the traces indistinguishable from b. It turns out that such
extensions are not possible at states 4, 7, and 9, and thus
these nodes are removed as shown in Figure 5(a), whereas
the extension by b is possible at state 2 and the extensions
by b, bd, bdd are possible at state 5, which are shown in
Figure 5(b). Then index-1 labels are propagated to the last
states of the extended paths, namely to states 4, 7, and 9.

Fig. 4. Site-1 state estimate after local observation a

Fig. 5. Site-1 state estimate after local observation ab

When a delayed observation from another site j arrives,
starting from the states labeled by the index-j, the paths of
the state estimate graph that produce the same observation
as reported by site-j are identified. Those j-labeled states
where no such paths exist are removed from the local state
estimate graph, and the index-j labels are propagated to the
last states of the identified paths.

For instance, suppose after the local observation ab that
came directly from plant, the communicated observation a
from site-2 arrives at site-1. Note that state 1 and 3 are
labeled with index-2, and at both states the possible paths
that correspond to the received observation are the paths
on the traces a and ab (recall b is unobservable to site-2).
Accordingly, the index-2 labels are propagated to states 2, 4,
5, and 9 as shown in Figure 6(a). Now states 1 and 3 carry no
labels since the estimate of the current state as determined by
the local and communicated observations has evolved beyond
those states. So maintaining such history in the state estimate
graph is redundant and consequently the state estimate graph
at site-1 is truncated by removing states 1 and 3 to obtain
the new state estimate graph as shown in Figure 6(b).

Fig. 6. Estimate after local obs. ab, and communicated obs. a

Remark 1: Note in the above, we have assumed that a
local observation of a plant execution arrives prior to its com-
municated observation. The implication of this assumption is
that the state estimate graph gets extended only when a new
local observation arrives, whereas such an extension is not
needed when a communicated observation arrives (only the
labels need to be propagated and the estimate graph needs to
be reduced and truncated). This set up can be easily modified
to allow the more general case in which a communicated
observation can arrive prior to a local observation.
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B. Formal Presentation

Now we give a formal presentation of the proposed
distributed state estimation algorithm.

Algorithm 1: Consider a plant G = (X, Σ, α, X0) and
a set of local sites I = {1, · · · ,m}, with Mi being the
observation mask for site-i, that communicate among each
other over loss-less and order-preserving channels. The state
estimate graph maintained at site-i is a labeled graph con-
sisting of a set of paths ℘i ⊆ Π(G) and a labeling function
lbli : X(℘i) → 2I that labels the states in ℘i, denoted
X(℘i), by a subset of indices in I . The distributed state
estimation algorithm defines the initial state estimate graph
and its update operation each time a new observation from
the plant or another site arrives.

1) Initialization:
• Initialize paths:

℘i = {π | first(π) ∈ X0,Mi(tr(π)) = ε}.
• Initialize labels:
∀x ∈ X(℘i), lbli(x) := {i ∈ I | ∃π ∈ pr(℘i) :
Mi(tr(π)) = ε, last(π) = x}.

2) Update when observation o ∈ ∆i from plant arrives:
• Update paths: ℘old

i = ℘i,
℘i = {πσπ′ | π ∈ ℘old

i , i ∈ lbli(last(π)),
Mi(σ) = o, Mi(tr(π′)) = ε}.

• Update labels:
∀π ∈ sub(℘i) : i ∈ first(π),Mi(tr(π)) = o,
lbli(first(π)) ← lbli(first(π))− {i},
lbli(last(π)) ← lbli(last(π)) ∪ {i}.

3) Update when observation o ∈ ∆j from site-j arrives:
• Update paths: ℘old

i = ℘i,
℘i = ℘old

i − {π | ∀π′ ∈ sub(π) : j ∈
lbli(first(π′)) ⇒ Mj(tr(π′)) 6= o}.

• Update labels:
∀π ∈ sub(℘i) : j ∈ first(π),Mj(tr(π)) = o,
lbli(first(π)) ← lbli(first(π))− {j},
lbli(last(π)) ← lbli(last(π)) ∪ {j}.

• Truncate paths: ℘old
i = ℘i,

℘i = {π ∈ suff(℘old
i ) | ∃π′σπ ∈ ℘old

i : ∀x ∈
π′, lbli(x) = ∅}.

The estimate of the current state at site-i, denoted X̂i ⊆ X ,
is given by

X̂i = {x ∈ X(℘i) | i ∈ lbli(x)}.
Remark 2: Compared with the distributed state estimation

algorithm of [14], the algorithm in this paper is much
simpler. First, each site communicates only its local observa-
tions. In contrast, in [14] each site communicated the entire
current estimate set. Secondly, the truncation at each site is
performed independently requiring no synchronization with
the other sites. In contrast, the algorithm presented in [14]
required a complex distributed synchronization strategy for
a truncation to be performed.

Remark 3: Note when the communication delay of the
channels among the sites is zero, each site will act as a
centralized state estimator. On the other hand when the

communication delay is infinite, each site will act as a
decentralized state estimator.

IV. ILLUSTRATIVE EXAMPLE

We revisit Example 1 to illustrate the distributed state
estimation algorithm proposed in Algorithm 1. Supposing as
before that the plant executes the trace abdc, we examine the
following sequence of observations and the corresponding
state estimate graphs.

1) Initialization: Since f is unobservable to both sites, the
initial state estimate graph of site-2 is the same as that
initialized at site-1 (as shown in Figure 3).

2) Both sites observe a from the plant: The state estimate
graphs of the two sites after the local observation a
are shown in Figure 4 and Figure 7 respectively. Note
since b is unobservable to site-2, the observation of
a is M2-indistinguishable from the observation of ab.
Notice that the index-2 labeled nodes in the site-2 state
estimate graph are the states 2, 4, 5, and 9.

Fig. 7. Site-2 state estimate after local observation a

3) Site-1 observes b from the plant: The state estimate
graph of site-1 after the local observation ab is shown
in Figure 5.

4) Site-2 observes d from the plant: The state estimate
graph of site-2 after the local observation ad is shown
in Figure 8. This is obtained by extending the state
estimate graph of Figure 7 by d or bd (both are M2-
indistinguishable to d) at index-2 labeled states 2, 4, 5,
and 9, and propagating the index-2 labels to their d or
bd reachable states. Note along the path 5d9, 9 acquires
the index-2 label, but along the path 5b9d4, 9 cannot
have the index-2 label (since along this path 9 is not
a d- or bd-successor of 5). Hence to correctly extend
the state estimate graph of Figure 7, two copies of 9
is required, only one of which is labeled by index-
2. This is shown in Figure 8 where the first copy 9
is drawn with solid line and the other copy 9′ with
dashed line. (Note the extension of the paths requires
a concatenation operation over two sets of paths, and
the execution of the said concatenation operation will
automatically create the necessary “copies” of the
states.)

5) Site-1 (resp., site-2) receives the communicated obser-
vation a from site-2 (resp., site-1): The state estimate
graph of site-1 after the local observation ab and the
communicated observation a is shown in Figure 6,
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Fig. 8. Site-2 state estimate after local observation ad

whereas the state estimate graph of site-2 after the local
observation ad and the communicated observation a is
shown in Figure 9. Note that at site-2 the index-1 labels
propagate from the states 1 and 3 (see Figure 8) to the
states 2 and 5, rendering the labels for the states 1 and
3 to be empty. So these two states get removed in the
truncation step, resulting in the state estimate graph of
Figure 9.

Fig. 9. Site-2 estimate after local obs. ad and communicated obs. a

6) Site-2 receives b from site-1: The state estimate graph
of site-2 after the local observation ad and the com-
municated observation ab is shown in Figure 10. Note
the observation of b is M1-indistinguishable from those
of b and bd. Accordingly the index-1 labels are propa-
gated from states 2, 5, and 9′ (see Figure 9) to the states
4, 7, and 9. Note no trace that is M1-indistinguishable
from b is defined at the index-1 labeled state 9′ and it
gets removed from the state estimate graph. Now states
2 and 5 carry empty labels and thus get removed in
the truncation step.

Fig. 10. Site-2 estimate after local obs. ad and communicated obs. ab

7) Both sites observe c from the plant: The state estimate
graph of site-1 after the local observation abc and the
communicated observation a, and the state estimate
graph of site-2 after the local observation adc and the
communicated observation ab are shown in Figure 11.

8) Site-1 receives d from site-2: The state estimate graph
of site-1 after the local observation abc and the com-
municated observation ad is shown in Figure 12. First
note that the states 2, 4, 5, and 9 are labeled by index-2
prior to the received observation (Figure 11). The trace
bd (with M2(bd) = M2(d)) is feasible at the states 2

Fig. 11. Site-1 and Site-2 estimates after local obs. abc and adc respectively

and 5, whereas the trace d is feasible at the states 4 and
9. Accordingly the index-2 labels are propagated to the
states 4 and 7. Then the states 2, 5, and 9 carry empty
labels and get removed in the truncation step. Also
note that no trace that is M2-indistinguishable from d
is defined along the path 5b9c10 that originates at an
index-2 labeled state, and so this path gets removed
from the state estimate graph. This yields the state
estimate graph of Figure 12.

Fig. 12. Site-1 estimate after local obs. abc and communicated obs. ad

9) Site-1 (resp., site-2) receives c from site-2 (resp., site-
1): The state estimate graph of site-1 after the local ob-
servation abc and the communicated observation adc,
and the state estimate graph of site-2 after the local
observation adc and the communicated observation abc
is shown in Figure 13.

Fig. 13. Site-1 and Site-2 estimates after communicated obs. c

As can be seen both sites have an identical state estimate
graph at this point. This is to be expected since no observa-
tions are pending to be received and so the estimate at each
site should become the same as the one that a centralized
estimator would construct.

V. PROPERTIES OF THE PROPOSED ALGORITHM

As mentioned above, the proposed distributed state esti-
mation algorithm is simpler compared to the one given in
[14]. We mention some of its additional properties in this
section. We first define the set of possible observations at a
site when a certain trace is executed by the plant. Without
loss of generality, we assume that the observation symbols
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{∆i, i ∈ I} are mutually disjoint. Otherwise we can rename
an observation symbol of ∆i by attaching to it a site-index (to
indicate the site which makes that observation) to ensure that
the observation symbols mutually disjoint. More precisely,
for each i ∈ I , let Γi := {δi|δ ∈ ∆i}. Then the renamed
observation symbols {Γi, i ∈ I} will be mutually disjoint.

We inductively define the function Oi : L(G) → 2(
⋃

i ∆i)
∗

that maps a plant trace to a set of possible observation
sequences at a site-i as follows (here s ∈ Σ∗, σ ∈ Σ):

Oi(ε) := {ε};
Oi(sσ) := {νMi(σ)µ | ν ∈ Oi(s), µ ∈ 2(

⋃
j∈I−{i}∆j)

∗
,

∀j ∈ I − {i} : (νµ) ↑∆j
∈ pr(Mj(sσ))}.

Note the observations of sσ at site-i are of the form
νMi(σ)µ, where ν is an observation of s at site-i, and the
projection of νµ over the observation symbols of a site-j
(j ∈ I − {i}) is simply a prefix of the local observations
Mj(sσ) of site-j.

We first show that the state estimate graph remains finite.
Theorem 1: Consider the setting of Algorithm 1. Then for

each i ∈ I , the set of paths of the state estimate graph in ℘i

is always a regular set.
Remark 4: The result of Theorem 1 is important since

unlike many of the prior works (such as [14], [8], [9]),
it does not require the absence of unbounded sequence of
unobservable events in G, which was used in the said prior
works to ensure the finiteness of the state estimate graph.

We next establish the soundness and completeness of the
proposed distributed state estimation algorithm. Algorithm 1
computes, at each site-i, an estimate of the current state X̂i,
depending on an observation sequence in Oi(L(G)) received
at site-i. Thus the estimate of the current state can be viewed
as a map X̂i : Oi(L(G)) → 2X . Then the soundness and
completeness of a state estimate are defined as follows.

Definition 1: Consider the setting of Algorithm 1. Then
for each s ∈ L(G) and ν ∈ Oi(s), X̂i(ν) is said to be
• sound if α(X0, s) ⊆ X̂i(ν), and
• complete if X̂i(ν) ⊆ ⋃

t∈L(G):ν∈Oi(t)
α(X0, t).

Note soundness refers to the fact that the true states are
always included in the estimate, whereas completeness refers
to the fact that no redundant states are included in the
estimate.

The following theorem shows that the distributed state
estimation algorithm of Algorithm 1 is sound and complete.

Theorem 2: Consider the setting of Algorithm 1. Then for
each i ∈ I and ν ∈ Oi(L(G)), the state estimate X̂i(ν) as
computed by Algorithm 1 is sound and complete.

The proof of Theorem 2 is omitted due to the limit of
space.

VI. CONCLUSION

In this paper we proposed a new distributed state estima-
tion algorithm for discrete event systems. Under the proposed
algorithm, each local site maintains a state estimate graph
consisting of a set of labeled plant subpaths that gets updated
based on the local observations of the plant behavior and the

observations of the plant behavior received from the other
sites communicated over channels with delay. Each time the
state estimate graph is updated, redundant estimation history
is discarded independently at each site without requiring any
synchronization with the other sites. The state estimate graph
remains finite regardless of whether the plant can execute
an unbounded sequence of unobservable events. It is also
shown that the proposed algorithm is sound and complete,
i.e., the true plant states are always included in the local
estimates, while only the states that are reachable by the
traces indistinguishable from the one observed are included
in the local estimates. Also the proposed algorithm can
support an architecture in which there is no communication
from a certain site to certain other sites.
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