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TABLE I

TERMINOLOGY

Symbol Meaning

m The number of finite states each agent has.

N A vector describing the number of agents in each state.
For example, there are Ni agents in state i.

NTotal The total number of agents in the ensemble being
controlled.

y A vector of measurements of the system. Each mea-
surement is a weighted sum of the number of agents in
each state.

yref A desired measured output for the controlled system.

A A matrix describing the Markov state transition prob-
abilities broadcast by the central controller. Aij rep-
resents the probability of transitioning from state j to
state i.

H A matrix relating the number of agents in each state to
the measured output y, in the form y = HN .

N̂ The Kalman filter estimate of the state distribution
vector N .

Q The covariance of the a priori one-step-ahead prediction
of N conditioned on the present value of N and the
broadcast command A.

R The covariance of the measurement y.

K The optimal observer gain calculated by the Kalman
filter.

P The estimation covariance calculated by the Kalman
filter.

Tij A discrete random variable describing the number of
agents transitioning to state i from state j.

Abstract— This paper addresses a problem in distributed
control: given a large number of identical hybrid-state agents,
control the ensemble behavior of the agents assuming that
only limited information is available about the agents’ states.
This process has relevance to a number of biologically-inspired
control problems, such as motor recruitment. In this paper,
we describe a stochastic control policy capable of achieving
convergent control of the distribution of an ensemble of finite
state agents in this way. Using techniques developed for the
observation of biological population dynamics, we show that
it is possible to observe the state distribution of agents under
our control policy using a Kalman filter. Look-ahead control
laws based on the Kalman filter estimates are used to achieve
a high degree of stability and robustness in systems exhibiting
large time delays. An example of control over a hybrid-state,
recruitment-like controller for an artificial muscle is presented.

I. INTRODUCTION

This paper is about a class of control problems for dis-

tributed systems that we call recruitment problems, inspired
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Fig. 1. An SMA actuator designed to function like skeletal muscle. The
actuator is made up of many small SMA elements in parallel, which contract
to exert force when activated.

by the example of motor recruitment in nature. Skeletal

muscles are an interesting case study in distributed control.

They are organized hierarchically into many small subsys-

tems called motor units, connected in parallel between two

tendons. To control the amount of force produced by a

muscle, the nervous system sends out an excitation that varies

in intensity. However, rather than causing all of the motor

units to produce a continuous response to this excitation,

each unit is “recruited” when the excitation reaches some

threshold value and contracts [1]. The active force produced

by the muscle is equal to the sum of the forces produced

by each motor unit, and consequently is proportional to

the number of recruited motor units. This is an example

of a natural system that exhibits hybrid-state behavior. The

activation dynamics of the motor units can be thought of as

the discrete portion of a hybrid-state model for the motor

unit. The force-length-velocity relationship of the motor unit

in each activation state can be thought of as the continuous-

state dynamics.

One can imagine artificial systems that function in a

similar way. The authors have been working specifically on

shape memory alloy (SMA) actuators that mimic this control

hierarchy in muscle, as shown in Fig. 1. These artificial

muscles are composed of many identical SMA motor units.

Each motor unit has a small finite state machine that controls

whether its SMA element is heated into its austenite state, or

cooled into its martensite state. The idea is to intentionally

hybridize the dynamics of each unit. To obtain some desired

force or displacement, a central controller must recruit some

number of units into the activated state. The phase transition

dynamics of SMA, which are difficult to control to produce

a continuous range of force and displacement, are dominated

by the discrete dynamics of the recruitment process, which

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

WeB10.1

978-1-4244-4524-0/09/$25.00 ©2009 AACC 997



Fig. 2. A schematic diagram of stochastic recruitment control. A central
controller chooses a state transition graph based on the observed state
distribution. This graph is broadcast to all agents, which respond randomly
and independently. Each agent has some small output depending on its state.
These outputs are summed to produce an ensemble output.

allow an output resolution equal to the number of motor units

[2].

The general problem of recruitment could be posed as the

problem of centrally controlling a large number NTotal of

identical or near-identical m-state agents so the ensemble

output of the agents, y, converges to some desired output

yref . Each agent generates a discrete output based on its

state. The only measurements that the central controller has

access to are ensemble outputs, which can be written as a

function of N , the number of agents in each state:

y(t) = HN(t) (1)

The matrix H defines the outputs of an agent in any state.

For example, consider an artificial muscle actuator composed

of small parallel mini-actuators controlled by finite state

agents. The output of a single agent in an artificial muscle

actuator may be the force produced, which takes a value of

fc when contracted and fr when relaxed. The summed total

force could be expressed as a 2 × 2 matrix H,

[ ∑

Fi(t)
∑

Ni(t)

]

=

[

fc fr

1 1

] [

Nc(t)

Nr(t)

]

(2)

The other known output of this system is the second row

of H, the total number of agents in both states. If the number

of agents is fixed and known, this row must always add up

to NTotal.

A. Stochastic Recruitment

Previously, the authors have shown that one novel and

scalable way to control this kind of system is to intentionally

randomize the behavior of the finite state agents using a local

pseudo-random number generator within each agent. The

central controller in this scheme publishes the state transition

probability graph with which all agents must respond, as

shown in Fig. 2. This broadcast state transition graph could

be written as a matrix A(t),

Pr{state(t + 1) = i| state(t) = j} = Aij(t) (3)

The number of agents that transition in response to such

a command is random, but approaches a central limit as

the number of agents becomes large. Intentionally stochastic

behavior of this kind is convenient because it does not

involve any communication between agents, nor does it

require much computation on the part of any agent. This

makes it suitable for integration into a micro-fabrication

process, such as lithographic production of many motor units

in an artificial muscle [3]. We have shown previously that

for systems with accurate and low-latency measurement,

this kind of control is possible using a variety of feedback

policies: linear feedback policies [3], dynamic programming-

based optimal policies [4], and one step look-ahead policies

[5]. The simplest and most effective control law the authors

have found is the one step look-ahead control law, which

chooses the state transition matrix A(t) so that the expected

output error one step ahead is zero:

A(t) = A : E{y(t + 1)|N̂(t),A} = yref (4)

This expectation is conditioned on the estimated state dis-

tribution at the present time, N̂(t), and the state transition

graph represented by A,

E{y(t + 1)|N̂(t),A} = HAN̂(t) (5)

The main topic of this paper is providing good estimates of

N̂ for formulating control laws. If the output data obtainable

from the system is rich enough, that H has rank equal to or

greater than m, then the estimated state distribution N̂(t)
can be calculated using an inverse or pseudo-inverse,

N̂(t) = H−1y(t) (6)

In the case described above in (2), a simple system made

up of two-state agents having one measured output, H is

full rank and this kind of algebraic estimate can be made.

However, it is unlikely in general that this is the case. It is

more likely for a higher number of states that a dynamic

observer must be used to produce a credible estimate N̂

for control. This is similar to ecological applications of

the Kalman filter to the problem of computing data-driven

estimates of fish populations and other animals [6] [7].

This paper outlines the process of approximating the

behavior of a system undergoing stochastic recruitment as a

linearized Gauss-Markov process, to which a Kalman filter

can be applied. First, a probabilistic model for the time

evolution of the agents’ state distribution and the measured
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outputs of the ensemble is introduced in Section II. Section

III discusses the application of the Kalman filter to this

linearized model, and the assumptions about covariance that

need to be made in order to produce a conservative estimate

of system behavior. Section IV shows how the one step look-

ahead policies of the authors’ prior work can be extended

using the Kalman filter to better compensate for time delays

and other difficult transient behaviors, with the specific ex-

ample of time delays in artificial muscle recruitment. Section

V displays computational results evaluating the performance

of the observer-based stochastic recruitment control policies.

II. APPROXIMATE MODELS FOR RECRUITMENT

BEHAVIOR

The derivation of the Kalman filter is well known, and

will not be repeated here [8]. It will suffice to state that the

Kalman filter can be used to produce correct Bayesian state

estimates of any linear, time-varying system with additive,

normally-distributed noise. Specifically we are interested in

a system with the following form:

x(t + 1) = F(t)x(t) + w(t)

y(t) = H(t)x(t) + v(t)
(7)

Here w(t) and v(t) are IID multivariate normal random vari-

ables having zero mean. To obtain a model in this form for

the dynamics of recruitment, some modeling approximations

must be made for both the time evolution and the output of

the recruitment process.

A. Approximating Time Evolution

The discrete dynamics of the ensemble of agents can be

put into a usable form by assuming that the distribution of

agents’ state transitions is well-described by the first two

moments,

N(t + 1) ≈ E{N(t + 1)} + w(t) ∼ MV N(0,Q(t)) (8)

Here Q(t) is the covariance of N(t + 1). When (8) is

evaluated, the result is a linear time-varying system with

Gaussian noise, defined in terms of N(t) and A(t):

N(t + 1) = A(t)N (t) + w(t) ∼ MV N(0,Q(t)) (9)

This can be shown by calculating N(t + 1) as a random

variable conditioned on the prior state distribution N(t) and

the prior command A(t). The one-step-ahead value of N is

equal to the sum of the number of agents transitioning into

each state,

Ni(t + 1) =

m
∑

k=1

Tik(t) (10)

The number of agents transitioning from some state j is

distributed multinomially. The probability of any set of

transitions away from state j, expressed as a vector T j(t),
can be directly evaluated:

Pr{T j(t) = X|N(t),A(t)} = Nj !

m
∏

k=1

AXk

kj

Xk!
(11)

The expected value of Tij(t) can be calculated based on this

distribution:

E{Tij(t)|N(t),A(t)} = Nj(t)Aij(t) (12)

The expected future value of N(t + 1) can consequently be

computed using (10),

E{Ni(t + 1)|N(t),A(t)} =

m
∑

j=1

Aij(t)Nj(t) (13)

This implies that the expected future value of N(t + 1) is

equal to A(t) multiplied by N(t), as shown in (9).

B. Time Evolution Covariance

The covariance of transitions Tij(t) and Tkj(t) can be

calculated using well-known formulas for the variance of a

multinomial distribution,

Cov{Tik(t), Tjk(t)|N (t),A(t)} = Nk(t)Aik(t)(δij−Ajk(t))
(14)

By summing the covariance between transitions to any two

states i and j, the covariance between the total number

transitioning into any particular state can be computed,

Cov{Ni(t + 1), Nj(t + 1), |N(t),A(t)} = Qij(t)

=
m

∑

k=1

Cov{Tik(t), Tjk(t)|N(t),A(t)} (15)

=

m
∑

k=1

Nk(t)Aik(t)(δij − Ajk(t))

This covariance matrix Q(t) can be used to approximate a

normally distributed additive “noise” in (9).

C. Approximating Output Variance

In addition to a dynamic model for recruitment, an esti-

mator will need a model for the uncertainty in the measured

output of the ensemble of agents, of the form:

y(t) = HN(t) + v(t) ∼ MV N(0,R(t)) (16)

This variability could be the result of many different ef-

fects. Sensor noise is one plausible source of variability

in measurement. More variation may result from individual

variability in the output of each agent. The i-th measured

output for an agent in state j is equal to the element Hij

from the output matrix H. If the output for each agent has

some variance rij due to manufacturing processes, then the

i-th measurement yi will have some corresponding variance,

Var{yi} = Rii =
m

∑

j=1

Njrij (17)

Recall that one “output” used to algebraically estimate the

state from the output in (6) was the sum of all the agents in

each state. This sum, known a priori, can also be used in an

observer. The variance assigned to this output is zero.
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III. USING A KALMAN FILTER TO PREDICT THE STATE

DISTRIBUTION

Now that a probabilistic state evolution and output model

have been formulated, it is possible to construct a Kalman

filter estimator to predict N̂(t), the number of agents in each

state at time t. The update model from (9) and the covariance

matrix from (15) can be used as a model for computing the a

priori expectation N̂(t +1|t) and the covariance P(t +1|t):

N̂(t + 1|t) = A(t)N̂ (t)

P(t + 1|t) = A(t)P(t|t)AT (t) + Q(t)
(18)

The output uncertainty model from (16) can be used to

compute the observer gain, K:

ỹ(t + 1) = y(t + 1) − HN̂(t + 1|t)

K(t + 1) = P(t + 1|t)HT [HP(t + 1|t)HT + R(t)]−1

N̂(t + 1|t + 1) = N̂(t + 1|t) + K(t)ỹ(t + 1)

P(t + 1|t + 1) = (I − K(t + 1)H)P (t + 1|t)
(19)

If the total number of agents is known, the measure-

ment vector y(t) will always contain at least one element,

corresponding to the total number of agents NTotal. This

prior knowledge is incorporated into the estimator as an

assumed measurement, and serves a very interesting purpose.

In a population model having a finite number of agents,

the actual output of the system will always be bounded.

As a consequence, the covariance of any estimate should

also be bounded if the linearized random process model

accurately describes the agents’ collective behaviors. Without

any measurements, one would normally expect a Kalman

filter’s covariance to grow without bound. However, by

assuming that the summed number of agents in all states is

constant and representing this knowledge as a measurement,

the Kalman filter covariance is much more likely to remain

bounded.

A. Conservative Covariance Estimates

The Kalman filter just derived has one moderate imple-

mentation difficulty. The covariance of the dynamic model,

derived in (15), is a function of the present state, N(t). This

information is not available to a Kalman filter. This difficulty

could be addressed either by assuming that N̂ is a reasonable

surrogate for N , or by attempting to find an upper bound on

covariance. Substitution yields the following result:

Qij(t) ≈

m
∑

k=1

N̂k(t)Aik(t)(δij − Ajk(t)) (20)

This method may work, but it is dissatisfying on a number

of levels. The filter is not guaranteed to have a good initial

value of N̂(t), so the covariance produced in transient state

may bear little resemblance to the true covariance matrix.

The alternative would be to seek to bound the covariance.

The trace of the covariance matrix predicted in (15) strictly

grows in magnitude with the assumed number of agents in

each state. One solidly conservative estimate would be to

assume that the estimated covariance is equal to a strict upper
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Fig. 3. An example of unmodeled continuous dynamics. A controller that
assumes that each motor unit has two states will not account for the physical
delay associated with activating the SMA.

bound. Such an estimate could be produced by substituting

NTotal for the number of agents in all states,

Qij(t) = NTotal

m
∑

k=1

Aki(t)(δij − Aki(t)) (21)

This method will significantly overestimate the estimation

covariance, but this is not necessarily a problem. It simply

means that the filter will rely less heavily on the dynamic

system model than it theoretically could.

IV. K STEP LOOK-AHEAD CONTROL

We will now demonstrate how state estimation can be

used to solve higher-order, complex recruitment problems,

using the example of a shape memory alloy actuator. One

cardinal assumption made in recruitment-based control of

hybrid-state agents is that the output due to any continuous-

state dynamics can be predicted by looking only at the value

of the discrete states, N̂(t), using an output matrix H. This

may not be true if the continuous state behavior of some

system includes large time delays or long settling times.

For example, a SMA actuator may produce as an output

a summed force from each motor unit, which takes one of

two states, state R (relaxed) and state C (contracted). The

predicted output y(t) consists of the summed force and the

total number of agents,
[ ∑

Fi(t)
∑

Ni(t)

]

= HN(t) =

[

0 1

1 1

]

N(t) (22)

The state transition matrix A(t) is a function of a probability

of contracting, ARC , and a probability of relaxing, ACR:

A(t) =

[

1 − ACR(t) ARC(t)

ACR(t) 1 − ARC(t)

]

(23)

This model assumes that the force produced by an SMA

unit is 0 in the relaxed state and 1 in the contracted state.

However, once the motor unit begins to contract, the phase

change in the SMA associated with this contraction will

take some time, as shown in Fig. 3. As a result, the output

may change in time although the discrete state has not

changed. Systems with this kind of behavior may need to

be augmented so that the discrete-state model better reflects
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Fig. 4. One way of addressing unmodeled dynamics is to introduce
additional states into each agent that can be used to produce a more fine-
grained model of the agent’s continuous-state behavior. This has the effect
of reducing the rank of the output matrix relative to the number of states,
m.

the continuous-state dynamics. Figure 4 shows a model of

the two-state recruitment dynamics for an SMA motor unit,

and an augmented state machine that introduces refractory

delays into the state transition dynamics. The augmented

output can assign partial output values based on the rate of

phase transition. For the 6-state augmented model, the output

could be defined based on the measured output of a single

agent:
[ ∑

Fi(t)
∑

Ni(t)

]

=

[

0 0.65 0.9 1 0.35 0.1

1 1 1 1 1 1

]

N(t)

(24)

A(t) =



















1 − ARC(t) 0 0 0 0 1

ARC(t) 0 0 0 0 0

0 1 0 0 0 0

0 0 1 1 − ACR(t) 0 0

0 0 0 ACR(t) 0 0

0 0 0 0 1 0



















(25)

This state evolution and output model will predict the

continuous-state behavior of the SMA with much greater

accuracy. However, it also increases the number of finite

states, m, in each agent, so that rank(H) < m. A Kalman

filter will be needed to estimate the state distribution of the

agents. Also, it is now impossible to specify all of the state

transition probabilities between all states, because the delay

states are constrained. This means that even if the central

controller commands all state transitions to cease, agents in

delay states will keep transitioning for two more time steps.

It is not enough in this case to choose A(t) such that the

one-step-ahead error is zero as in (4); it is necessary to set

the expected error to zero after the system has settled, when

a command to stop, A0, is given. For an augmented model of

the kind shown in Fig. 4, this means that the time horizon for

the look-ahead prediction must be extended to K − 1 steps,

where K − 1 is the number of time steps it takes all agents’

outputs to settle to a steady state value. Using (9), this K

step look-ahead predictor can be written for the estimated

state distribution N̂(t + K),

E{N̂(t + K)|N̂(t),A(t)} = AK−1

0
A(t)N̂(t) (26)

Using (26) and (1), the expected output K steps ahead can

be predicted,

E{y(t + K)|N̂(t),A(t)} = HAK−1

0
A(t)N̂(t) (27)

Notice that this can be written in the form similar to (5) with

a different output matrix, H∗, which is equal to HAK−1

0
:

E{y(t+K)−yref |N̂(t),A(t)} = H∗A(t)N̂(t)−yref (28)

The output matrix H∗ can be calculated offline. For example,

the augmentation proposed in the earlier problem of a

delayed SMA was to add two delay states, as depicted in

Fig. 4. If all active transitions cease (ARC = ACR = 0 in

A0), the agents will cease transitioning after 2 time steps:

H∗ = HA2

0
=

[

0 1 1 1 0 0

1 1 1 1 1 1

]

(29)

The value obtained for H∗ makes sense. The controller as-

sumes that all agents in the intermediate states will eventually

converge to the relaxed or the contracted state. Thus, all

agents in these intermediate states are assigned the output of

the relaxed or the contracted state, based on their eventual

destination.

V. COMPUTATIONAL PERFORMANCE COMPARISON

To demonstrate the effect that the Kalman filter-based,

K step look-ahead control policy has on performance and

stability, the time-delayed SMA model was implemented,

having a true output response equal to the H matrix from

(24). Two control policies were compared. The first policy

utilized the two state model whose output is defined in (22).

This model estimated N̂ by inverting the 2×2 output matrix

as in (6), then chose A(t) based on (4).

The second policy utilized the six state augmented discrete

model, whose output is defined in (24). Under this model,

the state estimates are not algebraically computable from

the output, so a Kalman filter was used. These two models

were simulated with NTotal = 50 agents, starting from

identical initial conditions, with all agents in the relaxed

state. The initial conditions on the estimator were set to

assume that all agents were relaxed. No simulated noise was

added to the feedback measurements. Both control systems

were commanded to hold the output force at 30.

A. Results

Figure 5 shows one simulated response of the two state

model without the Kalman filter. The long settling time and

the overshoot are symptomatic of the delayed response. The

controller keeps commanding agents to contract in response

to the error. It has no basis for believing that enough agents

are already responding to earlier commands. In contrast, Fig.

6 shows a simulated response of the six state augmented
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model with a Kalman filter. Notice the relatively small

overshoot and the fast settling time. The agents still converge

on the correct output over the course of several time steps.

However, because the desired output is calculated based on

(29), the controller does not command additional agents

to transition, because the filter keeps track of the agents

currently undergoing the transition.
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Fig. 5. The two-state model fails to correctly estimate the state of the
agents controlling each SMA element. The result is overshoot and long
settling times.
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Fig. 6. The six-state model with a Kalman filter has comparatively little
overshoot.

Ten thousand simulations of both control policies were run

to determine the distribution of the settling times. Settling

time was defined empirically as the time at which three

consecutive output measurements were recorded within 2

percent of the desired output. A histogram of the results,

plotted in Fig. 7 highlights the improvement made by the

introduction of the augmented model and the Kalman filter.

The peak of the settling time distribution is at a lower value

for the augmented model, and, perhaps more importantly, the

tail of the distribution approaches zero at a greater rate.

VI. CONCLUSIONS

In the future, biologically-inspired control architectures,

made up of many individual agents acting according to

simple rules, will be increasingly important. Stochastic re-

cruitment control provides a simple framework for obtaining

highly convergent ensemble behaviors from many small

agents that do not need to perform complex calculations

or communicate with each other. This paper has shown
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Fig. 7. A histogram of convergence times for many simulated experiments
shows the advantage of control based on dynamic estimation to compensate
for transient system behaviors.

that many of the informational problems associated with

centrally estimating state distributions can be overcome with

augmented models and probabilistic estimators. The tech-

niques described in this paper could be used to control the

ensemble dynamics of relatively complex, high-order hybrid-

state agents.

VII. FUTURE WORK

Work is underway to apply these control techniques to

a biologically-inspired variable impedance actuator. The au-

thors are also collaborating with biological engineers on the

problem controlling the ensemble migration behavior of cells

in vitro, using a similar observation and broadcast control

framework.

REFERENCES

[1] E. Henneman, G. Somjen, and D. Carpenter, “Functional significance
of cell size in spinal motoneurons,” Neurophysiology, vol. 28, no. 3,
pp. 560–580, May 1965.

[2] B. Selden, K. Cho, and H. Asada, “Segmented binary control of shape
memory alloy actuators using the peltier effect,” Proc. IEEE ICRA, pp.
4931–4936, 2004.

[3] J. Ueda, L. Odhner, S.-G. Kim, and H. Asada, “Distributed stochas-
tic control of mems-pzt cellular actuators with broadcast feedback,”
Biomedical Robotics and Biomechatronics, 2006. BioRob 2006. The

First IEEE/RAS-EMBS International Conference on, pp. 272–277, 0-0
0.

[4] L. Odhner, J. Ueda, and H. Asada, “Stochastic optimal control laws
for cellular artificial muscles,” Robotics and Automation, 2007 IEEE

International Conference on, pp. 1554–1559, 10-14 April 2007.
[5] ——, “Feedback control of stochastic cellular actuators,” Springer

Tracts in Advanced Robotics, pp. 481–490, 2008.
[6] P. J. Sullivan, “A kalman filter approach to catch-at-length analysis,”

Biometrics, vol. 48, no. 1, pp. 237–257, 1992. [Online]. Available:
http://www.jstor.org/stable/2532752

[7] C. Calder, M. Lavine, P. Muller, and J. S. Clark, “Incorporating
multiple sources of stochasticity into dynamic population models,”
Ecology, vol. 84, no. 6, pp. 1395–1402, 2003. [Online]. Available:
http://www.jstor.org/stable/3107957

[8] R. Kalman, “A new approach to linear filtering and prediction prob-
lems,” Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.

1002


