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Abstract— This paper presents the optimal filtering and
parameter identification problem for linear stochastic systems
over linear observations with unknown parameters, where the
unknown parameters are considered Wiener processes. The
original problem is reduced to the filtering problem for an
extended state vector that incorporates parameters as addi-
tional states. The resulting filtering system is bilinear in state
and linear in observations. The obtained optimal filter for the
extended state vector also serves as the optimal identifier for
the unknown parameters. Performance of the designed optimal
state filter and parameter identifier is verified for both, positive
and negative, parameter values.

I. INTRODUCTION

The problem of the optimal simultaneous state estimation

and parameter identification for stochastic systems with

unknown parameters has been receiving systematic treatment

beginning from the seminal paper [1]. The optimal result

was obtained in [1] for a linear discrete-time system with

constant unknown parameters within a finite filtering horizon,

using the maximum likelihood principle (see, for example,

[2]), in view of a finite set of the state and parameter

values at time instants. The application of the maximum

likelihood concept was continued for linear discrete-time

systems in [3] and linear continuous-time systems in [4].

Nonetheless, the use of the maximum likelihood principle

reveals certain limitations in the final result: a. the unknown

parameters are assumed constant to avoid complications

in the generated optimization problem and b. no direct

dynamical (difference) equations can be obtained to track

the optimal state and parameter estimates dynamics in the

”general situation,” without imposing special assumptions on

the system structure. Other approaches are presented by the

optimal parameter identification methods without simultane-

ous state estimation, such as designed in [5], [6], [7], which

are also applicable to nonlinear stochastic systems. Robust

approximate identification in nonlinear systems using various

approaches, such as H∞ filtering, is studied in a variety of

papers [8]–[21] for linear stochastic systems with bounded

uncertainties in coefficients or missing measurements. The

overall comment is that the optimal state filter and parameter

identifier in the form of a closed finite-dimensional system

of stochastic ODEs has not yet been obtained even in case

of linear observations with unknown parameters.

A practical example where an observation matrix contains

unknown parameters (matrix entries) can be encountered in
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the process of measuring some components of the ”seeming

velocity” of flying objects (see [22]). In this case, direct

linear observation of vertical components of the seeming

velocity is distorted by an unknown varying factor, which

itself depends on the velocity fluctuations. Given that the

velocity fluctuations behave similarly to Wiener processes,

the modeling of unknown parameters in the observation

matrix as Wiener processes is very appropriate.

This paper presents the optimal joint filtering and param-

eter identification problem for linear stochastic systems with

unknown parameters over linear observations. The solution

starts with reduction of the original identification problem

to the optimal filtering problem for linear system states over

bilinear (second degree polynomial) observations, upon con-

sidering the unknown parameters as additional system states

satisfying linear stochastic Ito equations with zero drift and

unit diffusion, i.e., standard Wiener processes. In doing so,

the unknown parameters are incorporated into the extended

linear state vector, which should be estimated mean-square

optimally over bilinear observations. The obtained filtering

problem is then further reduced to the filtering problem

for bilinear system states over direct linear observations,

assuming the bilinear drift components in the observation

equation as more additional states and including them in the

extended state vector. The latter filtering problem is solved

using the optimal filter for bilinear polynomial states over

linear observations ([23]). The designed optimal filter for

the extended state vector also serves as the optimal identifier

for the unknown parameters. The proposed algorithm was

partially used for solving the optimal joint state filtering and

parameter identification problem for linear stochastic systems

with unknown parameters in the state equation ([24]).

In the illustrative example, performance of the designed

optimal filter is verified for a linear system state over linear

observations with a multiplicative unknown parameter. Both,

positive and negative, parameter values are examined. The

simulation results demonstrate reliable performance of the

filter: in both cases, the state estimate converges to the

real state and the parameter estimate converges to the real

parameter value rapidly.

The paper is organized as follows. Section 2 presents the

filtering and parameter identification problem statement for

a linear system state over linear observations with unknown

multiplicative and additive parameters. In Section 3, the

stated problem is reduced to the filtering problem for an

extended state vector that incorporates parameters as addi-

tional states. Section 4 presents the solution to the reduced

filtering problem based on the optimal filter from [23]. An

example of applying the designed identification technique is
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given in Section 5.

II. FILTERING PROBLEM FOR LINEAR STATES OVER

LINEAR OBSERVATIONS WITH UNKNOWN PARAMETERS

Let (Ω,F,P) be a complete probability space with an

increasing right-continuous family of σ -algebras Ft , t ≥ t0,

and let (W1(t),Ft , t ≥ t0) and (W2(t),Ft , t ≥ t0) be indepen-

dent Wiener processes. The Ft-measurable random process

(x(t),y(t)) is described by a linear differential equation for

the system state

dx(t) = (a0(t)+a(t)x(t))dt +b(t)dW1(t), x(t0) = x0, (1)

and a linear differential equation with unknown parameters

for the observation process

dy(t) = (A0(θ , t)+A(θ , t)x(t))dt +B(t)dW2(t). (2)

Here, x(t) ∈ Rn is the state vector and y(t) ∈ Rm is the

observation vector, m ≤ n, and θ(t) ∈ Rp, p ≤ m× n + m,

is the vector of unknown entries of the matrix A(θ , t) and

unknown components of vector A0(θ , t). The latter means

that both structures contain unknown components A0i
(t) =

θk(t), k = 1, . . . , p1 ≤ n and Ai j(t) = θk(t), k = 1, . . . , p≤m×
n+m, as well as known components A0i

(t) and Ai j(t), whose

values are known functions of time. The initial condition

x0 ∈ Rn is a Gaussian vector such that x0, W1(t), and W2(t)
are independent. It is assumed that B(t)BT (t) is a positive

definite matrix. All coefficients in (1)–(2) are deterministic

functions of time of appropriate dimensions.

The estimation problem is to find the optimal estimate x̂(t)
of the system state x(t), based on the observation process

Y (t) = {y(s),0≤ s≤ t}, that minimizes the Euclidean 2-norm

J = E[(x(t)− x̂(t))T (x(t)− x̂(t)) | FY
t ]

at every time moment t. Here, E[ξ (t) | FY
t ] means the

conditional expectation of a stochastic process ξ (t) = (x(t)−
x̂(t))T (x(t)− x̂(t)) with respect to the σ - algebra FY

t gen-

erated by the observation process Y (t) in the interval [t0, t].
As known, this optimal estimate is given by the conditional

expectation x̂(t) = m(t) = E(x(t) | FY
t ) of the system state

x(t) with respect to the σ - algebra FY
t generated by the

observation process Y (t) in the interval [t0, t]. As usual,

the symmetric matrix function P(t) = E[(x(t)−m(t))(x(t)−
m(t))T | FY

t ] is the estimation error variance.

The proposed solution is based on the results of [23] and

given in the following two sections.

III. PROBLEM REDUCTION

It is considered that there is no useful information on

values of the unknown parameters θk(t), k = 1, . . . , p, and

this uncertainty even grows as time tends to infinity. In other

words, the unknown parameters can be modeled (see [22]

for specific examples) as Ft-measurable Wiener processes

dθ(t) = β (t)dW3(t), (3)

with unknown initial conditions θ(t0) = θ0 ∈ Rp, where

(W3(t),Ft , t ≥ t0) is a Wiener process independent of x0,

W1(t), and W2(t), and β (t) ∈ Rp×p is a intensity matrix.

Note that a practical example where an observation matrix

contains unknown parameters (matrix entries) can be encoun-

tered in the process of measuring some components of the

”seeming velocity” of flying objects (see [22]). In this case,

direct linear observation of vertical components of the seem-

ing velocity is distorted by an unknown varying factor, which

itself depends on the velocity fluctuations. Given that the

velocity fluctuations behave similarly to Wiener processes,

the modeling of unknown parameters in the observation

matrix as Wiener processes is very appropriate.

To apply the optimal filtering equations from [23] to the

state vector z(t) = [x(t),θ(t)], governed by the equations (1)

and (3), over the linear observations (2), the observation

equation (2) should be transformed into the polynomial

form. For this purpose, a matrix A1(t) ∈ Rm×(n+p), a cubic

tensor A2(t) ∈ Rm×(n+p)×(n+p), and a vector C0(t) ∈ Rm are

introduced as follows.

The equation for the i-th component of the observation

vector is given by

dyi(t) = (A0i
(t)+

m

∑
j=1

Ai j(t)x j(t))dt +
m

∑
j=1

Bi j(t)dW2 j
(t),

Then:

1. If the variable A0i
(t) is a known function, then the

i-th component of the vector C0(t) is set to this function,

C0i
(t) = A0i

(t); otherwise, if the variable A0i
(t) is an un-

known function, then the (i,n+ i)-th entry of the matrix A1(t)
is set to 1.

2. If the variable Ai j(t) is a known function, then the

(i, j)-th component of the matrix A1(t) is set to this func-

tion, A1i j
(t) = Ai j(t); otherwise, if the variable Ai j(t) is an

unknown function, then the (i,n+k, j)-th entry of the cubic

tensor A2(t) is set to 1, where k is the number of this current

unknown entry in the matrix Ai j(t), counting the unknown

entries consequently by rows from the first to n-th entry in

each row.

3. All other unassigned entries of the matrix A1(t), cubic

tensor A2(t), and vector C0(t) are set to 0.

Using the introduced notation, the equations for the state

vector z(t) = [x(t),θ(t)] ∈ Rn+p and the observation process

(2) can be rewritten as

dz(t) = (c0(t)+a1(t)z(t))dt+

diag[b(t),β (t)]d[W T
1 (t),W T

3 (t)]T , (4)

z(t0) = [x0,θ0],

dy(t) = (C0(t)+A1(t)z(t)+A2(t)z(t)z
T (t))dt+ (5)

B(t)dW2(t),

where c0(t) = [a0(t),0p×1], a1(t) = diag[a(t),0p×p], and the

matrix A1(t), cubic tensor A2(t), and vector C0(t) have

already been defined. The equation (4) is linear with respect

to the extended state vector z(t) = [x(t),θ(t)] and the new

observation equation (5) is a second degree polynomial with

respect to the state z(t) = [x(t),θ(t)].
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The reformulated estimation problem is now to find the

optimal estimate mz(t) = [mx(t),mθ (t)] of the system state

z(t) = [x(t),θ(t)], based on the observation process Y (t) =
{y(s),0 ≤ s ≤ t}. This optimal estimate is given by the

conditional expectation

mz(t) = [mx(t),mθ (t)] = [E(x(t) | FY
t ),E(θ(t) | FY

t )]

of the system state z(t) = [x(t),θ(t)] with respect to the σ -

algebra FY
t generated by the observation process Y (t) in the

interval [t0, t]. The symmetric matrix function

P(t) = E[([x(t),θ(t)]− [mx(t),mθ (t)])×

([x(t),θ(t)]− [mx(t),mθ (t)])T | FY
t ]

is the estimation error variance for this reformulated problem.

IV. OPTIMAL FILTER FOR LINEAR STATE OVER LINEAR

OBSERVATIONS WITH UNKNOWN PARAMETERS

Let us reformulate the problem again, introducing the

stochastic process z1(t) = h(z, t) = C0(t) + A1(t)z(t) +
A2(t)z(t)z

T (t). Using the Ito formula (see [25]) for the

stochastic differential of the nonlinear function h(z, t), the

following equation is obtained for z1(t)

dz1(t) =
∂ (h(z, t))

∂ z
(c0(t)+a1(t)z(t))dt +

∂ (h(z, t))

∂ t
dt+

1

2

∂ 2(h(z, t))

∂ z2
diag[b(t),β (t)]diag[b(t),β (t)]T dt+

∂ (h(z, t))

∂ z
diag[b(t),β (t)]d[W T

1 (t),W T
3 (t)]T , (6)

with the initial condition z1(0) = z10.

Note that the addition

1

2

∂ 2h(z, t)

∂ z2
diag[b(t),β (t)]diag[b(t),β (t)]T

appears in view of the second derivative in z in the Ito

formula. The initial condition z10 ∈ Rm is considered a

conditionally Gaussian random vector with respect to obser-

vations. This assumption is quite admissible in the filtering

framework, since the real distributions of z(t) and z1(t) are

actually unknown. Indeed, as follows from [26], if only two

lower conditional moments, expectation m0 and variance P0,

of a random vector m0 = [z10,z0] are available, the Gaussian

distribution with the same parameters, N(m0,P0), is the best

approximation for the unknown conditional distribution of

m0 = [z10,z0] with respect to observations. This fact is also a

corollary of the central limit theorem [27] in the probability

theory.

Upon calculating the partial derivatives of h(z, t), the

equation (6) takes the form

dz1(t) = (A1(t)c0(t)+A1(t)

[

a1(t)x(t)
0

]

+

A2(t)[x(t),θ(t)]T c0(t)+A2(t)([x(t),θ(t)]T c0(t))
T +

A2(t)[x(t),θ(t)]T [x(t),θ(t)]diag[In,0p]a
T
1 (t)+

A2(t)([x(t),θ(t)]T [x(t),θ(t)]diag[In,0p]a
T
1 (t))T +Ċ0(t)+

Ȧ1(t)[x(t),θ(t)]T + Ȧ2(t)[x(t),θ(t)]T [x(t),θ(t)])dt+

A1(t)diag[b(t),β (t)][dW T
1 ,dW T

3 ]+A2(t)[x(t),θ(t)]T×

[dW T
1 ,dW T

3 ]diag[b(t),β (t)]T +A2(t)([x(t),θ(t)]T×

[dW T
1 ,dW T

3 ]diag[bT (t),β T (t)])T , (7)

with the initial condition z1(0) = z10. The equation (5) can

be written in the form

dy(t) = z1(t)dt +B(t)dW2(t). (8)

Thus, the estimation problem is now reformulated as to

find the optimal estimate [m1(t),m2(t),m3(t)] for the state

vector [x(t),θ(t),z1(t)] governed by the linear and bilinear

equations (1), (3), and (7) based on the observation process

Y (t) = {y(s),0 ≤ s ≤ t}, satisfying the equation (8). The so-

lution of this problem is obtained using the optimal filtering

equations for bilinear states over linear observations [23] and

given by

dm1(t) = (a0(t)+a(t)m1(t))dt +P13(t)(B(t)BT (t))−1×

(dy(t)−m3(t)dt),

dm2(t) = P23(t)(B(t)BT (t))−1(dy(t)−m3(t)dt),

dm3(t) = (A1(t)c0(t)+A1(t)

[

a1(t)m1(t)
0

]

A2(t)

[

m1(t)
m2(t)

]

c0(t)+(A2(t)

[

m1(t)
m2(t)

]

c0(t))
T +

A2(t)

[

m1(t)m
T
1 (t) 0

m2(t)m
T
1 (t) 0

]

a1(t)
T +

(A2(t)

[

m1(t)m
T
1 (t) m1(t)m

T
2 (t)

0 0

]

a1(t)
T )T +

A2(t)

[

P11 0

P12 0

]

a1(t)+A2(t)(

[

P11 P21

0 0

]

aT
1 (t))T +

Ċ0(t)+ Ȧ1(t)

[

m1(t)
m2(t)

]

+ Ȧ2(t)

[

m1(t)
m2(t)

][

m1(t)
m2(t)

]T

)dt

+P33(t)(B(t)BT (t))−1(dy(t)−m3(t)dt), (9)

with the initial conditions

m1(t0) = [E(x(t0) | FY
t0

)], m2(t0) = E(θ(t0) | FY
t0

)],

m3(t0) = E(z1(t0) | FY
t0

)],

and

dP11(t) = (a(t)P11(t)+P11(t)a
T (t)+b(t)bT (t)−

P13(t)(B(t)BT (t))−1P31(t))dt,

dP12(t) = (a(t)P12(t)−P13(t)(B(t)BT (t))−1P32(t))dt,

dP13(t) = (a(t)P13(t)+
(

A1(t)

[

P11(t) P12(t)
0 0

][

a(t)
0

])T

+

(Ȧ1(t)[P11(t)+P21(t)])
T +
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2(A2(t)

[

m1(t)
m2(t)

]

P21(t)diag[In,0p]a
T (t))T +

2(A2(t)(

[

m1(t)
m2(t)

]

P21(t)diag[In,0p]a
T (t))T )T +

2(Ȧ2(t)

[

m1(t)
m2(t)

]

P21(t))
T +

2(Ȧ2(t)(

[

m1(t)
m2(t)

]

P21(t))
T )T +(A1(t)

[

b(t)bT (t)
0

]

)T +

[

b(t) 0
]

(

A2(t)

[

m1(t)
m2(t)

]

diag[bT (t),β T (t)]

)T

−

P13(t)(B(t)BT (t))−1P33(t))dt,

dP22(t) = (β (t)−P23(t)(B(t)BT (t))−1P32(t))dt,

dP23(t) = (P21(t)A1(t)

[

a(t)
0

]T

+

(Ȧ1(t)[P12(t)+P12(t)])
T +

2(A2(t)

[

m1(t)
m2(t)

]

P22(t)diag[In,0p]a
T (t))T +

2(A2(t)(

[

m1(t)
m2(t)

]

P22(t)diag[In,0p]a
T (t))T )T +

(

A1(t)

[

0

β (t)

])T

+2(Ȧ2(t)

[

m1(t)
m2(t)

]

P22(t))
T +

2(Ȧ2(t)(

[

m1(t)
m2(t)

]

P22(t))
T +

+
[

0 β (t)
]

(

A2(t)

[

m1(t)
m2(t)

]

diag[bT (t),β T (t)]

)T

−P23(t)(B(t)BT (t))−1P33(t))dt,

dP33(t) = (A1(t)

[

a(t)
0

]

P13(t)+P31(t)(A1(t)

[

a(t)
0

]

)T +

2(Ȧ1(t)[P13(t)+P23(t)])
T +

2A2(t)

[

m1(t)
m2(t)

]

P23(t)diag[In,0p]a
T (t)+

2(A2(t)

[

m1(t)
m2(t)

]

P23(t)diag[In,0p]a
T (t))T +

2A2(t)(

[

m1(t)
m2(t)

]

P23(t)diag[In,0p]a
T (t))T +

2((A2(t)

[

m1(t)
m2(t)

]

P23(t)diag[In,0p]a
T (t))T )T +

2Ȧ2(t)

[

m1(t)
m2(t)

]

P23(t)+2(Ȧ2(t)

[

m1(t)
m2(t)

]

P23(t))
T +

+2Ȧ2(t)(

[

m1(t)
m2(t)

]

P23(t))
T +2((Ȧ2(t)

[

m1(t)
m2(t)

]

P23(t))
T )T

+A1(t)diag[b(t)bT (t),β (t)β T (t)]AT
1 (t)+

A1(t)diag[b(t),β (t)](A2(t)

[

m1(t)
m2(t)

]

diag[bT (t),β T (t)])T +

(A2(t)

[

m1(t)
m2(t)

]

diag[bT (t),β T (t)])(A1(t)diag[b(t),β (t)])T

+(A2(t)diag[bT (t),β T (t)])

[

P11(t) 0

P12(t) 0

]

×

(AT
2 (t)diag[b(t),β (t)])T +

A2(t)diag[bT (t),β T (t)]

[

m1(t)m
T
1 (t) 0

m2(t)m
T
1 (t) 0

]

×

(AT
2 (t)diag[b(t),β (t)])T −P33(t)(B(t)BT (t))−1P33(t))dt,

(10)
with the initial condition

P(t0) = E(([x(t0),θ(t0),z1(t0)]− [m1(t0),m2(t0),m3(t0)])×

([x(t0),θ(t0),z1(t0)]− [m1(t0),m2(t0),m3(t0)])
T | FY

t0
).

Theorem 1. The optimal finite-dimensional filter for

the extended state vector [x(t),θ(t),z1(t)], governed by

the equations (1),(3), and (7), over the linear observa-

tions (8) is given by the equations (9) for the optimal

estimate m(t) = [m1(t),m2(t),m3(t)] = E([x(t),θ(t),z1(t)] |
FY

t ) and the equations (10) for the estimation error vari-

ance P(t) = E(([x(t),θ(t),z1(t)] − [m1(t),m2(t),m3(t)]) ×
([x(t),θ(t),z1(t)]− [m1(t),m2(t),m3(t)])

T | FY
t ). This filter,

applied to the subvector θ(t), also serves as the optimal

identifier for the vector of unknown parameters θ(t) in the

equation (2), yielding the estimate subvector θ̂(t) as the

optimal parameter estimate.

Proof. The proof directly follows from the steps 1-3

for designing the coefficients in the equation (5), the new

extended state equations (4),(6), and the optimal filtering

equations (9),(10) for bilinear states over linear observations,

which were obtained in [23].

V. EXAMPLE

This section presents an example of designing the op-

timal filter for a linear state over linear observations with

a multiplicative unknown parameter, where a conditionally

Gaussian state initial condition for the extended state vector

is additionally assumed.

Let the state x(t) satisfy the linear equation

ẋ(t) = 1+ x(t)+ψ1(t) x(0) = x0, (11)

and the observation process with unknown multiplicative

parameter be given by the equation

y(t) = θ(t)x(t)+ψ2(t), (12)

where ψ1(t) and ψ2(t) are white Gaussian noises, which

are the weak mean square derivatives of standard Wiener

processes (see [25]) independent of each other and of a

Gaussian random variable x0 serving as the initial condition

in (11). The parameter θ(t) is modelled as a standard Wiener

process, i.e., satisfies the equation

dθ(t) = dW3(t), θ(0) = θ0,

which can also be rewritten as

θ̇(t) = ψ3(t), θ(0) = θ0, (13)
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where ψ3(t) is a white Gaussian noise. The Wiener process

W3(t) is independent of x0, W1(t), and W2(t).
The filtering problem is to find the optimal estimate

mz(t) = [m1(t),m2(t)] for the linear states (11),(13), z(t) =
[x(t),θ(t)], using linear observations (12) with an unknown

multiplicative parameter θ(t) confused with independent

and identically distributed disturbances modeled as white

Gaussian noises.

Let us reformulate the problem, introducing the stochastic

process z1(t) = h(x, t) = θ(t)x(t). Using the Ito formula (see

[25]) for the stochastic differential of the function θ(t)x(t),
where x(t) satisfies the equation (11) and θ(t) satisfies the

equation (13), the following equation is obtained for z1(t)

dz1(t) = θ(t)(1+ x(t))dt +θ(t)dw1(t)+ x(t)dw3(t),

z1(0) = z10. (14)

The initial condition z10 ∈ R is considered a conditionally

Gaussian random vector with respect to observations (see

the paragraph following (6) for details). This assumption is

quite admissible in the filtering framework, since the real

distributions of z(t) and z1(t) are unknown. In terms of the

process z1(t), the observation equation (12) takes the form

dy(t) = z1(t)dt +dw2(t). (15)

The obtained filtering system includes three equations,

(11), (13) and (14), for the partially measured state

[z(t),z1(t)] and an equation (15) for the observations y(t),
where z1(t) is a completely measured bilinear state with

multiplicative noise, z(t) = [x(t),θ(t)] is an unmeasured

linear state, and y(t) is a linear observation process directly

measuring the state z1(t). The filtering equations (9),(10) take

the following particular form for the system (11),(13),(14),

and (15)

dm1(t) = (1+m1(t))dt +P13(t)[dy(t)−m3(t)dt], (16)

dm2(t) = P23(t)[dy(t)−m3(t)dt],

dm3(t) = (m2(t)+m3(t))dt +P33(t)[dy(t)−m3(t)dt],

with the initial conditions m1(0) = E(x0 | y(0)) = m10,

m2(0) = E(θ0 | y(0)) = m20, and m3(0) = E(θ0x0 | y(0)) =
m30, and

Ṗ11(t) = 2P11(t)+1−P2
13(t), (17)

Ṗ12(t) = P12(t)−P13(t)P23(t),

Ṗ13(t) = P12(t)+2P13(t)+m2(t)−P13(t)P33(t),

Ṗ22(t) = 1−P2
23(t),

Ṗ23(t) = P22(t)+P23(t)+m1(t)−P23(t)P33(t),

Ṗ33(t) = 2P23(t)+2P33(t)+P11(t)+P22(t)+

m2
1(t)+m2

2(t)−P2
33(t).

with the initial condition

P(0) = E(([x(0),θ(0),z1(0)]− [m1(0),m2(0),m3(0)])×

([x(0),θ(0),z1(0)]− [m1(0),m2(0),m3(0)])T | y(0)).

Here, m1(t) is the optimal estimate for the state x(t), m2(t)
is the optimal estimate for the state θ(t), and m3(t) is the

optimal estimate for the state z1(t) = θ(t)x(t).
Numerical simulation results are obtained solving the

systems of filtering equations (16)–(17). For the filter (16)–

(17) and the reference system (11),(13),(14), (15), involved in

simulation, the following initial values are assigned: x(0)= 1,

m1(0) = 100, m2(0) = 0, m3(0) = 0, P11(0) = 100, P12(0) =
0, P13(0) = 10, P22(0) = 100, P23(0) = 10, P33(0) = 100,

the unknown parameter θ is assigned as θ = −10 in the

first simulation and as θ = 10 in the second one, thus

considering negative and positive parameter values. Gaussian

disturbances dw1(t), dw2(t) and dw3(t) are realized using

the built-in MatLab white noise functions. The simulation

interval is [0,3.5].
Figure 1 shows the graphs of the reference state variable

x(t) (11) and its optimal estimate m1(t) (16), the state

z1(t) = θ(t)x(t) and its optimal estimate m3(t), as well

as the optimal parameter estimate m2(t) (θ=-10) for the

negative parameter value, in the entire simulation interval

[0,3.5]. For better visualization, Figure 2 shows the graph

of the state z1(t) = θ(t)x(t) and its optimal estimate m3(t)
for the negative parameter value in detail in the interval

[0.0.5]. Figure 3 shows the graphs of the reference state

variable x(t) (11) and its optimal estimate m1(t) (16), the

state z1(t) = θ(t)x(t) and its optimal estimate m3(t), as well

as the optimal parameter estimate m2(t) (θ = 10) for the

positive parameter value, in the entire simulation interval

[0,3.5]. For better visualization, Figure 4 shows the graph of

the state z1(t) = θ(t)x(t) and its optimal estimate m3(t) for

the positive parameter value in detail in the interval [0,0.5].

It can be observed that the optimal estimate m1(t) con-

verges to the real state x(t) very rapidly, in spite of a consid-

erable difference in the initial conditions, m1(0)−x(0) = 99,

the optimal estimate m3(t) converges and then remains very

close to the state z1(t), and the optimal parameter estimate

m2(t) definitely converges to the real parameter value θ in

both positive and negative cases.

VI. CONCLUSIONS

This paper presents the optimal mean-square solution to

the simultaneous state filtering and parameter identification

problem for linear stochastic systems over linear observations

with unknown parameters, where unknown parameters are

considered Wiener processes. The optimal state filter and

parameter identifier is designed in the form of a closed

finite-dimensional system of stochastic ODEs. This result is

theoretically proved based on the previously obtained optimal

filter for bilinear system states over linear observations and

numerically verified. The simulation results show very reli-

able behavior of the designed filter and parameter identifier,

which works equally well for both positive and negative

parameter values.
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Fig. 1. Negative parameter value. Above. Graphs of the real state x1(t)
(thin line) and its optimal estimate m1(t) (thick line) in the interval [0,3.5].
Middle. Graph of the state z1(t) (thin line) and its optimal estimate m3(t)
(thick line) in the interval [0,3.5]. Below. Graph of the optimal parameter
estimate m2(t) in the interval [0,3.5].

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−25

−20

−15

−10

−5

0

Time

St
ate

 z 
an

d i
ts 

es
tim

ate

Fig. 2. Negative parameter value. Graph of the state z1(t) (thin line) and
its optimal estimate m3(t) (thick line) in the interval [0,0.5].
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Fig. 3. Positive parameter value. Above. Graphs of the real state x1(t)
(thin line) and its optimal estimate m1(t) (thick line) in the interval [0,3.5].
Middle. Graph of the state z1(t) (thin line) and its optimal estimate m3(t)
(thick line) in the interval [0,3.5]. Below. Graph of the optimal parameter
estimate m2(t) in the interval [0,3.5].
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Fig. 4. Positive parameter value. Graph of the state z1(t) (thin line) and
its optimal estimate m3(t) (thick line) in the interval [0,0.5].
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