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Abstract— Matrix A is said to be additively D-stable if
A−D remains Hurwitz for all nonnegative diagonal ma-
trices D. In reaction-diffusion models, additive D-stability
of the matrix describing the reaction dynamics guarantees
stability of the homogeneous steady-state, thus ruling out
the possibility of diffusion-driven instabilities. We present
a new criterion for additive D-stability using the concept of
compound matrices. We first give conditions under which
the second additive compound matrix has nonnegative off-
diagonal entries. We then use this Metzler property of the
compound matrix to prove additive D-stability with the
help of an additional determinant condition. This result
is then applied to investigate stability of cyclic reaction
networks in the presence of diffusion.

I. I

The concept of diagonal stability and its variants
are commonly used in the study of dynamic models
in economics, ecology, and control theory, as surveyed
by Kaszkurewicz and Bhaya [1]. A square matrix A is
said to be diagonally stable if there exists a diagonal
matrix S > 0 such that AT S + S A < 0. Two related
properties that are less restrictive than diagonal stability
but possibly more restrictive than the Hurwitz property
of A are multiplicative D-stability, which means that DA
is Hurwitz for all diagonal matrices D > 0, and additive
D-stability, which means that A−D is Hurwitz for all
diagonal D ≥ 0.

Additive D-stability is particularly useful for the
study of reaction-diffusion systems where the matrix
A represents the linearization of the reaction dynamics
at a steady-state. Denoting by D the diagonal matrix
of diffusion coefficients for each species, Casten and
Holland [2] showed that the stability of the reaction-
diffusion PDE is determined by the simultaneous sta-
bility of the family of matrices A−λkD, where λk ≥ 0,
k = 1,2,3, · · · are the eigenvalues for Laplace’s equation
with Neumann boundary condition on the given spatial
domain. Additive D-stability thus guarantees stability
of the spatially homogeneous steady-state and rules
out the possibility of diffusion-driven instabilities which
constitute the basis of Turing’s mechanism for pattern

formation [3], [4]. Wang and Li [5] further studied the
connection between additive D-stability and reaction-
diffusion models, and gave several algebraic sufficient
conditions that guarantee either stability or instability in
the presence of diffusion.

In this paper, we present a new sufficient condition
for additive D-stability using the concept of additive
compound matrices [6]–[8] defined below. The key
property employed in this condition is a special sign
structure of matrix A which ensures that its second
additive compound matrix A[2] is Metzler; that is, the
off-diagonal entries of A[2] are nonnegative. Among the
systems that exhibit this sign structure are cyclic reaction
networks with negative feedback, where the end product
of a sequence of reactions inhibits the first reaction
upstream. For this class of networks, [9] established
stability of the homogeneous steady-state in the presence
of diffusion using a secant criterion which, as shown in
[10], is necessary and sufficient for diagonal stability of
A. In the present paper we prove that for cyclic systems,
A is additively D-stable if and only if it is Hurwitz, thus
relaxing the secant condition employed in [9].

In Section II we reveal the sign structure of A
that is necessary and sufficient for its second additive
compound matrix A[2] to be Metzler. This result is of
independent interest because, as further explained in
Section II, the Metzler property of A[2] is also useful
for several nonlinear stability tests where A represents
the Jacobian linearization. In Section III we employ the
Metzler property of A[2] to prove additive D-stability of
A with the additional condition that (−1)n det(A−D) > 0
for every non-negative diagonal matrix D. We then
proceed to derive a determinant test for the minors of A
which is equivalent to (−1)n det(A−D) > 0 and may be
easier to verify in applications. In Section IV we first
review the connection between additive D-stability and
stability of reaction-diffusion PDEs and, next, present
an ODE analog of this result using a compartmental
model. In Section V we apply the results of the previous
sections to cyclic reaction-diffusion models.
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II. W   S A C M

M?

Definition 1. Let A = (ai, j) ∈ Rn×n. The second additive
compound of A is the matrix A[2] = (bi, j) of order

(
n
2

)

defined as follows: For i = 1, · · · ,
(
n
2

)
, let (i) = (i1, i2) be

the ith number in the lexicographic ordering of integer
pairs (i1, i2) such that 1 6 i1 6 i2 6 n. Then,

bi, j =



ai1,i1 + ai2,i2 if (i) = ( j);
(−1)r+sair , js if exactly one entry ir of (i)

doesn’t occur in ( j)
and js doesn’t occur in (i);

0 if neither entry from (i)
occurs in (j).

As an illustration, for n = 2 and 3, the second additive
compound matrix of A = (ai, j) is:

n = 2 : A[2] = a11 + a22 (1)

n = 3 : A[2] =


a11 + a22 a23 −a13

a32 a11 + a33 a12
−a31 a21 a22 + a33

 .(2)

The term additive compound matrix is due to the
property (A + B)[2] = A[2] + B[2]. If λ1, · · · ,λn are the
eigenvalues of A, then the eigenvalues of A[2] are all
possible sums of the form λi +λ j, 1 6 i < j 6 n.

Additive compound matrices have been used by sev-
eral authors to analyze stability properties of nonlinear
systems. Muldowney [7] showed that a sufficient condi-
tion for a closed orbit γ = {p(t) : 0 6 t 6 T } of the system
ẋ = G(x) to be orbitally asymptotically stable is that
the origin be asymptotically stable for the linear system
ẏ = DG(p(t))[2]y where DG(x) denotes the Jacobian of
G(x). Using this orbital stability test, Li and Wang [11]
proposed a technique to prove global asymptotic stability
of the equilibrium for systems that possess a “Poincaré-
Bendixson Property” whereby compact omega limit sets
that contain no equilibria are closed orbits. This proof
technique first uses Muldowney’s test [7] to show that
if periodic orbits exist then they are orbitally stable. It
then makes use of the Poincaré-Bendixson Property to
contradict the existence of periodic orbits when there is
a unique asymptotically stable equilibrium. Sanchez [12]
and Wang et al. [13] applied this technique to cyclic and
tridiagonal feedback systems, respectively, which indeed
possess the Poincaré-Bendixson Property as proven by
Mallet-Paret and Smith [14] and Mallet-Paret and Sell
[15].

An important step for proving orbital stability of
periodic orbits in [12] and [13] is to show that the second
additive compound matrix is Metzler for cyclic and
tridiagonal matrices with negative feedback. In Theorem
1 below we give a full characterization of the class of
matrices whose second additive compounds are Metzler,
thus broadening the classes studied in [12] and [13]. This

result is also instrumental for the additive D-stability
criterion derived in the next section.

Theorem 1. Let A = (ai, j) ∈ Rn×n. Then A[2] is Metzler
if and only if the off-diagonal elements of A satisfy:

ai, j i, j =



6 0 i f i = 1, j = n or i = n, j = 1;
> 0 i f i = k, j = k + 1 or i = k + 1, j = k,

k = 1, · · · ,n−1;
= 0 otherwise.

(3)
that is, A has the following sign structure:

A =



∗ + 0 · · · 0 −
+ ∗ +

. . . 0

0 + ∗ . . .
. . .

...
...

. . .
. . .

. . .
. . .

...

0
. . .

. . .
. . . +

− 0 · · · 0 + ∗



, (4)

where “+” denotes non-negative elements, “−” denotes
non-positive elements, and “*” represents an arbitrary
sign.

Proof. From the construction of A[2], the nonzero off-
diagonal coefficients of A[2] come from the following
entries of A:

(1) a1,n and an,1, which enter A[2] when (i) =

(1,k), ( j) = (k,n) or (i) = (k,n), ( j) = (1,k), where k =

2, · · · ,n− 1. Thus, bi, j = (−1)1+2a1,n or (−1)2+1an,1, and
bi, j > 0 means a1,n 6 0, an,1 6 0.

(2) ak,k+1 and ak+1,k, which enter A[2] when (i) =

(l,k), ( j) = (l,k + 1) or (i) = (l,k + 1), ( j) = (l,k), or
(i) = (k,m), ( j) = (k + 1,m) or (i) = (k + 1,m), ( j) =

(k,m), where l = 1, · · · ,n − 2, m = 3, · · · ,n. Thus,
bi, j = (−1)1+1ak,k+1 or (−1)2+2ak,k+1 or (−1)1+1ak+1,k or
(−1)2+2ak+1,k, and bi, j > 0 means ak+1,k > 0, ak,k+1 > 0.

(3) air , js , ir < js, (ir, js) , (1,n), (k,k + 1), k =

1, · · · ,n − 1. Because ir and js cannot be consecutive
integers, there exists at least one integer l such that
ir < l < js and, thus, (i) = (ir, l) and ( j) = (l, js) yield
bi, j = −air , js . Because (ir, js) , (1,n), there exists an
integer m such that either m< ir or m> js holds. For m<
ir, i = (m, ir) and j = (m, js) yield bi, j = air , js . Likewise,
for m > js, i = (ir,m) and j = ( js,m) give bi, j = air , js .
Thus, air , js appears in the off-diagonals of A[2] with both
positive and negative signs, which means that A[2] can
be Metzler only if air , js = 0.

(4) air , js , ir > js, (ir, js) , (n,1), (k + 1,k), k =

1, · · · ,n−1. As discussed in part (3), there exists at least
one integer l such that ir > l> js and, thus, (i) = (l, ir) and
( j) = ( js, l) yield bi, j = −air , js . Because (ir, js) , (n,1),
there exists an integer m such that either m > ir or
m < js holds. For m > ir, i = (ir,m) and j = ( js,m)
yield bi, j = air , js . Likewise, for m < js, i = (m, ir) and

2905



j = (m, js) give bi, j = air , js . Thus, A[2] can be Metzler
only if air , js = 0. �

III. A S C  A D-S

In Theorem 2 below, we present a sufficient condition
for additive D-stability by using Theorem 1 from the
previous section and the following lemmas:

Lemma 1. ([8]) A matrix A of order n is Hurwitz if and
only if A[2] is Hurwitz and (−1)n det(A) > 0.

Lemma 2. ([16]) The Metzler matrix A is Hurwitz if
and only if it is diagonally stable; that is, there exists a
diagonal matrix S > 0 such that AS + S AT < 0.

Lemma 3. ([1]) If a matrix A is diagonally stable, then
it is additively D-stable; that is, A−D is Hurwitz for all
diagonal matrices D ≥ 0.

Theorem 2. Suppose a matrix A of order n is Hurwitz
and satisfies the following conditions:

1) (−1)n det(A−D) > 0 for every non-negative diag-
onal matrix D;

2) P−1AP satisfies the sign structure (4) for some n×
n invertible matrix P with the property that, for
any non-negative diagonal matrix D, P−1DP is
also a non-negative diagonal matrix.

Then A is additively D-stable.

Proof. Let Ā := P−1AP, D̄ := P−1DP and ∆ := Ā− D̄.
Because Ā is Hurwitz and satisfies the sign structure
(4), it follows from Lemma 1 and Theorem 1 that
Ā[2] is Hurwitz and Metzler. From Lemmas 2 and 3,
this means that Ā[2] is additively D-stable from which
we conclude that ∆[2] is Hurwitz because ∆[2] = Ā[2] −
diag{d̃1, · · · , d̃n}, where d̃i = d̄i1 + d̄i2 , (i) = (i1, i2) is the
ith number in the lexicographic ordering of integer
pairs (i1, i2). Since (−1)n det(∆) = (−1)n det(Ā − D̄) =

(−1)n det(P−1(A−D)P) = (−1)n det(A−D) > 0, Lemma
1 implies that ∆ and, thus, A−D is Hurwitz. �

Examples of similarity transformations P satisfying
condition 2 in Theorem 2 include diagonal matrices and
permutation matrices. Note that condition 1 is necessary
for A−D to be Hurwitz and, thus, it cannot be relaxed.
Because it may be difficult to verify condition 2 for all
diagonal non-negative matrices D, in Lemma 4 below we
present an equivalent condition that does not depend on
the choice of D. Instead, it relies on the sign properties
of the principal minors of A:

Definition 2. ([5]) Let Ik denote the set Ik =

{(i1, i2, · · · , ik)|1 6 i1 < i2 < · · · < ik 6 n}. For any J =

(i1, i2, · · · , ik) ∈ Ik, let PJ(A) denote the k × k principle
submatrix of A, where i1, i2, · · · , ik are the row and
column indices of PJ(A). A is said to satisfy the minors
condition if (−1)k det(PJ(A)) > 0 for all J ∈ Ik and 1 6
k 6 n.

Lemma 4. Given a Hurwitz matrix A, (−1)n det(A−D)>
0 holds for every non-negative diagonal matrix D if and
only if the minors condition in Definition 2 holds.

Proof. The proof follows from a combination of ideas
from [5], which are repeated here because the exact
statement of Lemma 4 is not given in [5]. To show
that the minors condition implies (−1)n det(A−D) > 0,
we rewrite det(A−D) as a polynomial of the diagonal
entries d j of D:

det(A−D) = det(A) + (5)
n−1∑

k=1

(−1)k
∑

J∈Ik

det(PJ′(A))dJ + (−1)n
n∏

j=1

d j,

where J′ = {1,2, · · · ,n}\J for J ∈ Ik and dJ =
∏

j∈J d j. For
the second term in (5), the minors condition gives

(−1)n

(−1)k
∑

J∈Ik

det(PJ′(A))dJ



= (−1)2k

(−1)n−k
∑

J∈Ik

det(PJ′(A))dJ

 ≥ 0. (6)

Since A is Hurwitz, we note that (−1)n det(A) > 0 which,
from (5), yields (−1)n det(A−D) > 0.

Next we prove that (−1)n det(A − D) > 0 implies
the minors condition using a contradiction argument.
Suppose (−1)n det(A − D) > 0 for every non-negative
diagonal matrix D and that there exists 1 6 k∗ 6 n− 1
such that (−1)k∗ det(PJ(A)) < 0 for some J ∈ Ik∗ . Choose
di = 0 for i ∈ J and di = d > 0 for i ∈ J′. Then, (5)
becomes a polynomial in d, where the leading term
is (−1)n−k∗ det(PJ(A))dn−k∗ . This means that, for suffi-
ciently large d, the sign of (−1)n det(A−D) is determined
by

(−1)n(−1)n−k∗ det(PJ(A)) = (−1)k∗ det(PJ(A)) < 0 (7)

which contradicts the hypothesis that (−1)n det(A−D) >
0 for every non-negative diagonal matrix D. �

Wang and Li [5] proved that the minors condition,
which we have shown in Lemma 4 to be equivalent to
condition 1 of our Theorem 2, is sufficient for additive
D-stability when the matrix order is n ≤ 3. Thus, the
complementary condition 2 in Theorem 2 is relevant
only when n > 3.

IV. A D-S  R-D

S

Additive D-stability has been used to prove stability
of reaction-diffusion PDEs with Neumann boundary
conditions:

Lemma 5. ( [2]) Consider the reaction-diffusion model

∂x
∂t

= Ax + D∇2x
∂x
∂ν

= 0 (8)
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where x = x(t, ξ), the spatial variable ξ belongs to some
bounded domain Ω with smooth boundary ∂Ω, and ∂x

∂ν
denotes the directional derivative normal to ∂Ω. Let 0 =

λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · and φk(ξ), k = 1,2,3, · · · denote the
eigenvalues and eigenfunctions of Laplace’s equation
∇2φk = −λkφk in Ω with Neumann boundary condition
∂φk
∂ν = 0. If, for each k = 1,2,3, · · · , the eigenvalues of

A−λkD have negative real parts, then there exist positive
constants K and ω such that, for all t ≥ 0,

‖x(t, ξ)‖ ≤ Ke−ωt‖x(0, ξ)‖ (9)

where ‖x(t, ξ)‖ := supξ∈Ω |x(t, ξ)|.
We now derive a complementary ODE result where

we study n species evolving in N identical compart-
ments. In the absence of coupling, the state vector
X j ∈ Rn for each compartment j is governed by:

Ẋ j = AX j, j = 1, · · · ,N. (10)

Now let the compartments be interconnected according
to a graph in which nodes represent compartments
and edges represent the presence of diffusive coupling
between them. Denoting by L = (li, j) ∈ RN×N the graph
Laplacian matrix [17]:

li, j =


number of nodes adjacent to node i if i = j
−1 if i , j and node j is adjacent to node i
0 otherwise,

(11)
and by D ∈ Rn×n the diagonal matrix of diffusion coef-
ficients for each species, we obtain the coupled system:


Ẋ1
...

ẊN

 =



A
. . .

A





X1
...

XN

− (L⊗ In)



DX1
...

DXN

 ,

(12)
where ⊗ denotes the Kronecker product and In denotes
the n×n identity matrix.

Theorem 3. The eigenvalues of the system (12) are
given by the eigenvalues of A−λkD, where λk ≥ 0 is the
kth eigenvalue of the graph Laplacian L, k = 1, · · · ,N. In
particular, if A is additively D-stable, then the coupled
system (12) is Hurwitz.

Proof. Two identities that will be used in the proof are:
1) (A⊗ B)(C ⊗D) = (AC)⊗ (BD), when the sizes of

A, C and B, D are compatible to form the products
AC and BD;

2) (Ip⊗B)(C⊗ Iq) = C⊗B, where p is the number of
rows of C and q is the number of columns of B.

From identity 1, system (12) can be reorganized as:

Ẋ = [IN ⊗A− (L⊗ In)(IN ⊗D)]X = [IN ⊗A−L⊗D]X,
(13)

where X denotes the concatenation of the vectors Xk.
Let qk, k = 1, · · · ,N be the eigenvectors of L and λk be

the corresponding eigenvalues: qT
k L = λkqT

k . Denoting

Zk = (qT
k ⊗ In)X, (14)

we obtain from identity 1:

Żk = (qT
k ⊗ In)[IN ⊗A−L⊗D]X

= [qT
k ⊗A− (qT

k L)⊗D]X
= [qT

k ⊗A−λk(qT
k ⊗D)]X.

(15)

From identity 2,

qT
k ⊗A = A · (qT

k ⊗ In),
qT

k ⊗D = D · (qT
k ⊗ In), (16)

and, thus,

Żk = (A−λkD)Zk, k = 1, · · · ,N. (17)

A general property of the graph Laplacian L is that λ1 =

0, q1 = [1 · · ·1]T , λk > 0 for k = 2, · · · ,N. Thus, additive
D-stability of A implies that the decoupled subsystems in
(17) are each Hurwitz and, hence, (12) is also Hurwitz.
�

As a special case of Theorem 3, consider two com-
partments connected by diffusion. The eigenvalues of the
graph Laplacian

L =

[
1 −1
−1 1

]
(18)

are λ1 = 0 and λ2 = 2 and, thus, the eigenvalues of system
matrix (12), rewritten here as[

A−D D
D A−D

]
, (19)

are given by the eigenvalues of A and A-2D. This exam-
ple recovers Lemma 1 in [18], where a two-compartment
model is transformed into

Ż1 = AZ1 (20)
Ż2 = (A−2D)Z2

by choosing Z1 = X1 + X2, Z2 = X1 − X2. Equation
(14) extends this decoupling change of coordinates to
a general graph representing an arbitrary number of
compartments.

V. A  C R N

We now apply the results of the previous sections to
cyclic reaction networks, where the end product of a se-
quence of reactions activates or inhibits the first reaction
upstream. To evaluate the local stability properties of
cyclic reaction networks with inhibitory feedback, Tyson
and Othmer [19] and Thron [20] studied the system
matrix:

A =



−a1 0 · · · 0 bn

b1 −a2
. . . 0

0 b2 −a3
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 bn−1 −an



, (21)
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where

ai > 0, i = 1, · · · ,n, bi > 0, i = 1, · · · ,n−1, bn < 0,
(22)

and showed that a sufficient condition for A to be
Hurwitz is −b1 · · ·bn

a1 · · ·an
< sec(π/n)n. (23)

The “secant condition” (23) is also necessary for A to
be Hurwitz when ai’s are identical; otherwise, it is more
restrictive than the Hurwitz property.

In [10], the authors showed that (23) is a necessary
and sufficient condition for A in (21)-(22) to be diag-
onally stable and exploited this property for a global
stability analysis of the nonlinear reaction model. In
[9], the diagonal stability property shown in [10] is
employed to prove stability of the homogeneous steady-
state x(t, ξ) ≡ 0 for the reaction-diffusion system (8)
when A if of the cyclic form (21)-(22). In Theorem 4
below, we relax the secant condition (23) used in [9]
by showing that the Hurwitz property of A is equivalent
to additive D-stability for matrices in cyclic form. We
prove this result for an arbitrary sign structure of the bi
parameters in (21):

Theorem 4. A cyclic matrix of the form (21) with
ai > 0, i = 1, · · · ,n, is additively D-stable if and only
if it is Hurwitz. Thus, if A is Hurwitz, the solutions of
the reaction-diffusion equation (8) satisfy the stability
estimate (9) for some positive constants K and ω.

Proof. If bi = 0 for some i ∈ {1, · · · ,n}, then the eigen-
values of A are its diagonal elements and, thus, A is
additively D-stable whenever it is Hurwitz. If bi , 0,
i = 1, · · · ,n, then the diagonal similarity transformation
P = diag{p1, · · · , pn} with p1 = 1, pk =

∏k−1
i=1 sgn(bi), k =

2, · · · ,n, brings A to the form

Ā = P−1AP =



−a1 0 · · · 0 δ|bn|
|b1| −a2

. . . 0

0 |b2| −a3
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 |bn−1| −an



(24)

where δ = sgn(b1 · · ·bn). If δ > 0, then Ā is Metzler
and, thus, additive D-stability follows from the Hurwitz
property of A by Lemma 2. If δ < 0, then Ā obeys the
sign structure (4), and

(−1)n det(A−D) = (a1 + d1) · · · (an + dn)−b1 · · ·bn > 0
(25)

for every non-negative diagonal matrix D because
b1 · · ·bn < 0. Additive D-stability thus follows from the
Hurwitz property of A by Theorem 2, and stability of
the reaction-diffusion system (8) follows from Lemma
5. �

A significant example that exhibits the cyclic form
(21) is the “repressilator” design of Elowitz and Leibler
[21], which is a synthetic genetic regulatory network
consisting of three genes, where each gene inhibits the
transcription of the next gene in the cycle by expressing
a repressor protein. Denoting by x2i−1 the messenger
RNA concentration for the ith gene i = 1,2,3, and by
x2i the concentration of repressor protein expressed by
this gene, we obtain a system matrix of the form (21)
with n = 6 where b2i−1 > 0 and b2i < 0, i = 1,2,3. It thus
follows from Theorem 4 that, if this matrix is Hurwitz,
then it is additively D-stable and thus stability of the
homogeneous steady-state is guaranteed in the presence
of diffusion. An interesting question is what happens
in the situation where the linearization of this reaction
network model is unstable and the trajectories converge
to a limit cycle as suggested by the experimental results
in [21]. We are currently investigating whether in this
case diffusion would lead to spatially synchronized
oscillations.

Acknowledgement. This work was supported in part
by the National Science Foundation under grant ECCS
0852750. The authors thank Eduardo Sontag and Liming
Wang for raising the question of additive D-stability for
cyclic systems, which led to this note.

R

[1] E. Kaszkurewicz and A. Bhaya. Matrix Diagonal Stability in
Systems and Computation. Birkhauser, Boston, 2000.

[2] R.G. Casten and C.J. Holland. Stability properties of solutions to
systems of reaction-diffusion equations. SIAM Journal of Applied
Mathematics, 33(2):353–364, 1977.

[3] A. Turing. The chemical basis of morphogenesis. Philosophical
Transactions of Royal Society of London, B273:37–72, 1952.

[4] J. Murray. Mathematical Biology. Springer-Verlag, Berlin, 1989.
[5] L. Wang and M.Y. Li. Diffusion-driven instability in reaction-

diffusion systems. Journal of Mathematical Analysis and Appli-
cations, 254:138–153, 2001.

[6] M. Fiedler. Additive compound matrices and inequality for
eigenvalues of stochastic matrices. Czech Math. J., 99:392–402,
1974.

[7] J.S. Muldowney. Compound matrices and ordinary differential
equations. Rocky Mountain Journal of Mathematics, 20(4):857–
871, 1990.

[8] M.Y. Li and L. Wang. A criterion for stability of matrices.
Journal of Mathematical Analysis and Applications, 225:249–
264, 1998.
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for monotone cyclic feedback systems. Journal of Dynamics and
Differential Equations, 2:367–421, 1990.

[15] J. Mallet-Paret and G. Sell. The Poincaré-Bendixson theorem
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