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Abstract- The use of high-level nets, such as coloured Petri
nets, is very convenient for modelling complex controllable
sy tern in order to have a compact, readable and structured
specification. However, when coming to the analysis phase, using
too elaboratc types becomes a burden.

A good trade-off between expressivene and analy is capa­
bilities is then to have only imple types, which is achieved
with symmetric nels. These latter nels enjoy the po ibility
of generating a symbolic reachability gral)h, which is much
smallcr than the whole state Sl)ace and still allows for exhaustive
analysis.

In this paper, we extend the symmetric net model with bags
on arc • Hence, variable can be bag of token ,leading to more
flexible models. We show that symmetric nets with bags also
allow for applying the symbolic reachability graph technique
vith application to deadlock detection and more generally for

safety properties.

r. [TROD TlO

Managing large specification' is a challenge to tackle
industrial ize problems, Thi i particularly true when using
Petri ets (P ). Since having a good expressivenes is im­
portant, Coloured Petri ets (CP ) [I] have been proposed
a a high-level mod [ derived from P

The trade-off between expre siveness of the pecification
formali m and the analy is p weI' (and automation) i a
crucial and recurrent problem one mu t face: the more
expressive the specification language, the more difficult the
veri fication.

CPNs [2], [3] provide an excellent expressiveness through
an association with the ML programming language to use
elaborate function in arc expre ion . A a counterpart,
verification can be automated for models relying on complex
ML functions only by generating the state space. Reduction
technique may hence become difficult to apply, or even
impossible, thu hamp ring th verification capabilities for
complex systems.

Other extension, uch a algebraic net [4] or predi­
cat Itran ition nets [5] al 0 provid more cOmfoJ1abie no­
tation to model complex systems. However, the verification
capabilities are also tempered with, for reason imilar to
tho e for CP
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On the contrary, Symmetric ets I [7] only provide a
limjted et of colour functions. Even though the expres ive
power is the same a. CP s, practical u e i lightly less
amenable. Nevertheless, symmetric net benefit from the
definition of the ymbolic reachability graph [8], a very
condensed way to tore the system state space. The use of
the ymbolic reachability graph allow for analy ing very
large sy tem via a model checker.

FUl1hellllore, thi graph can be applied in order to pelform
an efficient control analysis. This can be done in two
ways: either the model already represents the controlled
system and then safety properties such a deadlock detection
can be directly detected by reachability analysi over the
graph; or (more interestingly) the model represents the yet
uncontrolled system with a pal1ition of states between th
environment states and the controller states.

Thus, viewing the graph as a (finite) game between the
controller and the environment, the standard algorithms de­
rived from game theory allow for finding a strategy for the
controller (or decides that there is none). The objective 0

this game could be to avoid bad states or more ophisticated
ones based on parity, Buchi, Street, ... conditions. Ob er e
that these algorithms are polynomial w.r.t. the ize of the
model [9] and thus remain tractable with the help of the
reduction provided by the symbolic approach.

Our modelling and verification experience on complex
systems leads to modelling techniques that still permit a
imilar expres ivene a in CP . For example, di creti­

sation of functions into the initial (and table) marking of
a place have been experimented to represent operations and
behaviour of physical systems such as a braking function in a
transp0l1ation system [10], [I I]. However, these techniques
may transform an atomic operation into several ones, thus
generating complexity in the state space.

The aim of our contribution i to enhance the ymmetric
nets formalism so as to gain more expre sivene by pro­
viding bags manipulation functions, This extension does not
saclifice the underlying symbolic reachability graph and its
b nellts for model ch cking and control analy. i..

Related work

The construction of a reduced state graph based on sym­
metries of high level nets was introduced by K. Jen en et
al. [12]. However, thi technique suffer two drawback . On
the one hand, the definition of symmetries is left to the

I Symmetric Nets were formerly known tiS Well-Fonned CIS. a subcla's
of high-level Petri nelS, The name "Symmelric CIS" ha been chosen in
the contcxt of Ihc ISO landardiSaiion 161.
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modeller leading to miss some 'ynunetries and on the other
hand the transition firing is still managed as the ordinary one.

In order to combine the advantages of automati symbolic
verification of symm tric nets and of the expressiven ss of
coloured nets, T. lunttila propo ed in [13] a class of n ts
including a set of constructors for coloured functions till
allowing for automatic detection of symmetries. However,
this approach is also based on the ordinary firing rule which,
in the case of complex operator uch as the power et
con tructor, leads to an exponential number (w.r.t. the ize
of the high-level net) of ordinary firings from a ingle
marking wherea in similar ca es our technique reduces it
to a polynomial number.

umerous works on different exploitations of symmetries
have been developed. Let us cite the main contributions.
Symmetries are the upport for model hecking general tem­
poral logic formula rather than afety propertie (e.g. [14]).
Detection of symmetries within ordinary Petri nets is also
possible (e.g. [15]). Efficient verification and evaluation
procedure are also possible in partially symmetric ystems
(e.g. [16], [17]).

The paper is structured as follows. Section II formally
defines symmetric nets with bag and illustrate their benefits
with an example that points out the interest of the formalism
for deadlock detection due to the management of different
kind of resources. Then ection III sh ws that the symbolic
reachability graph technique still applie . Finally, section IV
concludes and gives some perspectives to this work.

[I. SYMMETRI ETS WITH BAGS (5 B)

A. Definitions

Based on the Symmetric ets (SN) from [7], [13], Sym­
metric ets with Bag (S B) are formally defined. An
example i pre ented in ection ll-B.

J) Colour domains: In ymmetric net , the colour do­
mains are structured.

• Colour domain are called classes and generally rep­
resent primitive objects like processes, job files, re­
sources, etc. Classes are finite sets. For some models, it
is interesting to define a (total) order between colours of
a class. In such a case, a c1as i said to be ordered. In
the example of figure 5 there are three classes: Count,
Jobs and Cores.

• The colours of a c1as are objects of the arne kind
but they may have different behaviours. For instance, a
cia of jobs may include interactive and batch jobs. [n
order to repre. ent such differences, a class is partitioned
into static subclasses. In the example of figure 5, the
Cores (resp. Jobs) class is not partitioned since all
ore (re p. job) have the arne potential behaviour,

while the Count class is completely partitioned since
each different element of thi class may explicitly be
checked by a transition.

• When modelling, as ociation between objects are quite
usual. For instance, a core executes a thread of a job
and then one needs to memorise such an a ociation.
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So more general colour domains are built by cartesian
product of classes. ote that the same class may occur
several times in a colour domain (e.g. a network con­
nection between two machine ). Also note that the null
product cone ponds to a domain reduced to a ingle
colour {.}.

Thi leads to the following formal def'inition .
Definition I (Class and subclass): The set of classe of a

symmetric net is denoted by {Ct ,· Cd. The partition of
a class Gi is denoted i = l:!:JqEl ..s; Gi,q where Si is the
number of static ubclasses of C.i.

In 0 'de . to allev' ate notations and e pha ise the eaning
of a class, renaming such as Jobs == 1 are pennitted.

We now introduce the Bag notion.
a) Notations: Let G be a set, then a bag (or l1Iultiset)

over G is a mapping a from G to such that the set (called
the support of a) 110,11 = { 1aCe) =/; O} is finite. Let a, bE
Bag( ). Then aUb i defined by (aUb)( ) = 0,( ) + b( )
and a 2:: b holds iff Ve E G, a(e) 2:: bee). When a 2:: b, a \ b
i defined by (a \ b) (c) = a(c) - b(c). The ize of a, denoted
size(a), is defined by siz (a) = LcEC a(c). A bag a i de­
noted by the symbolic e press·on LCEC a(c).c. In this sum,
we elide scalars aCe) = 1 and terms when aCe) = 0 whatever
c. For in tanc ,c denotes the bag reduced to the ingle item
c and LcEC c denotes the bag equivalent to the whole et
G. Let G and G' be two sets, then Bag(G) x Bag(G') may
be viewed as a subset of Bag( , x G') by mapping (b b')
onto LCEC,C'EC' b(c)b'(c')(c,c'). Thi embedding can be
generalised to any cartesian product of sets of bags. For
in tance, (2c + 3c', 4c") == (c e") + 12(e', c").

Definition 2 (Colour domain): A colour domain i a
carte ian product of clas es and sets of bags over classes.
More precisely, a colour domain D can be written D =
®iEl..k(c;)el X ®iEl..k Bag(Ci)e~ where i is the number
of occurrence of class Gi in D and e~ the numb r of
occunences of Bag( i) in D.

An item d of a colour domain D = ®iE1..k(Gi ) • x
®iEl..k Bag( i)e: will be denoted by d
®El ,. 'El c? X ®El ,. 'El ,b-t with c? Et :.~.J ..e, z. 't ,,"'.J ,. i f t

and bi E Bag(Gi ).

Most definitions in this section can easily be restricted to
Symmetric Nets by leaving out the Bag part.

ote that D = ®iEl.k(Gi)e, x ®iEl.k Bag(G;)e: is
infinite as oon a some : =/; O. If D i the colour domain
of a place, this doe not raise any difficulty. Indeed, in a
Petri net (resp. a CP with finite domains) m(p) E IN (re p.
m(p) E Bag(C(p))) and (resp. Bag(G(p))) is infinite.
The key point W.Lt. effectiveness is that a marking mu t have
a finite repre entation which i also the case for bag of
tuples of bags. However if D is the colour domain of a
transition, then the firing rule cannot be applied. Thus, with
the help of transition guards (see definition 7), we restrict
the colour domain of a transition to be a finite subset of D.

2) Colour functions: In high-level Petri nets, arc are
labelled by colour functions which select tokens in adjacent
place depending on the instantiation pelformed for the



firing.

The simplest colour functions are the projections, denoted
xb" i ELk, .1 ELi that select one c?mponent of a

colour; the successor functions denoted X J . ++ i E l..k,
j E 1. ./3i, that select the successor of a compon~nt of a colour

; and the "global" el ction Ci·all = LeE . c that map any
colour to the "sum' of colours in class Ci .

ew colour functions are defined, that operate both on the
tokens and on the "bag" part of the colour domain.

Definition 3 (Basic colour junctions): Let i be a class

and D = Q9iEJ..k(Ci ) i x Q9iEI,.kBag( i): a c lour

domain. Let d = Q9iEl..k.jEl..e, q Q9iEl..k,jEl..e: ~. The
basic colour functions deal with colour domains and are
defined from D to Bag(Ci) by :

i: xb (d) = cf (for all .1 such that 1 ~ .1 ~ i);

ii: Xb:(d)++ = the ucce or of et in t ( • i uppo cd
to be ordered and .1 i uch that 1 ~ .1 ~ i);

iii: Ci.all(d) = LXE • x and Ci,q.all(d) = LXE '.q x.

Let iJ{ = LXEC. O:x·X. Then the basic colour functions
for bags produce a single element which is a bag and are
defined from D to Bag(C;) by:

B-i: Y~a (C.l(d) = iJ{ (for all .1 uch that 1 ~ .1 ~ D
whigh denotes the function that dispatches items of a
bag;

B-ii: -Y~a9(c.l(d) = LXECdo7=O Lx (for all j uch that
1 ~ j ~ eD which denote th function which
produces the complementary of a bag;

B-iii: (Y~ag( ,)UY~~9( ,,)(d) = LXEC,(aX + a~).x (for
all .1,j' such that 1 ~ .1,.7' ~ ~) which denotes the
union of two bag;

B-iv: (Y~ag( ,)\Y~~g(c)(d) = LXECi max(O, (o:x ­
o:~)).x (for all .1, .1' uch that 1 ~ j .7' ~ e~) which
denote the difference between two bag .

ote that the all function (iii) is a constant function. It can
thus be viewed as a constant bag and used to define (initial)
markings.

Basic colour functions are those of S . The colour func­
tions ranging over a class are btained by linear combination
of basic colour fun tion (note that ome on traint are
required to ensure that the colour functions select a positive
number of tokens). Functions labelled by B are those of S B.

In order to manipulate bags we also u e the operator
whol which, applied to a bag produce a ingle bag
containing it.

Definition 4 (Whole mapping): Let be a finite set,
whol c(c) is the mapping from to Bag( ) defined by:
given c in ,whol (c) = l.{l.c} E Bag(C). We extend
whole to a mapping from Bag(C) to Bag(Bag(C)) by:
given bE Bag( ), whol db) = l.b E Bag(Bag(C)).

Remark J: As for S ,when no confusion is pos 'ible,
the co-domain of colour functions may be omitted ; for
in tance, the mappings Y~ag(Ci) will frequently be denoted

Yi or <Y> a in figure 6, and the mapping X ~ will

be denoted xl, Xi, <X> or by any name (different' from
all) as in the model of figure 5 where j is used instead
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of X}ObS and k instead of XbOUlIi' FUl1hermore the whole
colour function will frequently be used in colour functions

composition like whol 0 Y~a9(Cil' and in thi ca e will be

denoted whol (YLg(C;J)'
The effect of these function is illustrated in the net of

figure I and one example of firing for transition t shown in
figure 2. Places Px and Pa are typed by C while places
Ps and Pw are typed by Bag(C) and thu hold token
containing a bag. We also provide a compari on between
functions <C.all> and <whole(C».

Figure 3 al 0 illustrates a imple net using the U and \
functions on bags. A possible transition firing is shown in
Figure 4 after which pI is unmarked.

Definition 5 (Class colour junctions): Let C i be a clas

and D = Q9iEl../,'(C;) i x Q9iEl.k Bag(C;): a colour
domain.

A class colour junction f : D ---+ Bag(C;) i a linear
combination of basic colour functions and colour functions
for bag uch that 'rid E D, 'ric E i f(d)(e) 2: O.

We now define the tuple colour functions of a S B. To
do so, we denote (x), where x i either a tran ition or a
place, the color domain associated with it (see definition 9).

Definition. 6 (Tuple colour junctions): A colour function
labelling an arc between a tran ition t and a place pi:

i: either a natural number n when C(P) = {.} with 'ric E
C(t) nee) = n .• ·

ii: or a tuple f == (fl,'" ,!k), when C(p) = Co, x ... X
Co,. where every Ii is a colour function from C(t) to
Bag(Co ,)' Then 'ric E C(t), fCc) = (fl(e), ... , !k(c))

111: or a tuple f ; (!I ... !k, f{ ... f£,), when C(P) =
COl X ... X COk x Bag(Co~) ... x Bag(CCl~,) where ev­
ery Ii i a c1as colour function from C(t) to Bag( 01)
and ff is the composition of a class colour function
from C(t) to Bag(Co,) and the wholeco.( mapping. Let

CEC(t): f(e) = (fl(e), ... ,!k(e),f{( )', ... ff.,( »).
3) Guards: Guards are predicates defined over a colour

domain. When applied to a transition, they re trict the cor­
re ponding colour domain. They can also be combined with
a tuple colour function a follows. Either the in tantiating
colour fulfil the guard and the new colour fun tion behave
as the tuple function whilst in the other ca e, the new
function return the empty bag. For instance the colour
function (X, Y) produces a token with two components but
we cannot require that X should be different from Y (see
definition 7.i). Similarly, the colour function X select an
item in a cIa but we cannot require thi item to be elected
in a given static subclass (see definition 7.iii). We also want
to restrict the instantiation of a bag variable to be an ordinary
set ( ee d tinition 7.B.i) or to con train the size of the bag
instantiation (see definition 7.B .ii).

Guards express such requirements.
Definition 7 (Guards): A (basic) guard for bags is a

boolean mapping d fined on a colour domain D =

Q9i=l.k(Ci )Ci X Q9;=l ..k' Bag(C;) : with iJ{ = LcEC. O:c·c .
Let l><l be either the = or the < relation. S B guards are
'yntactically built with:
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Pw &lg(C)
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Fig. I. Model illu lnlting funclions
Fig. 2. Result of flring for transition I with X = a in the model of
figure I

Fig. 3. Model illustrming funclions

ClaSS C is la. b, c, dl;

plQ
C ~<Yl>
p2~<Y2> I
C \fEJ

Va, VI, V2 in Bogle);

<YI UY2 I'u C

<YIW Pd C

I:YI= G0® Pu:~

pl:GX£) Y2= ®0 Pd:@
p2: <EX:£:@_.....iiIoIiii.p2:@)

Fig. 4. Result of firing for transilion t with Yl = l.a + I.b nnd Y2 =
1.b + l.e in thc modcl of figure 3

1 [Xii [><] XiZ] (C) equals true iff C~I [><] C~2.C i C; 1. 1. '

)1 [X6
j

= X2, ++)(c) equal true iff c:' is the ucces or
of c~z in Ci ;

iii [X2, E ;,q)(c) equal' true iff c:' belongs to the ·tatie
ub-c1as i,q'

B.i [Uniqti (Y~ag(c;»)( )equals true iff \fc E C i , Q c ::;

l'

B.ii [card(Y~ag(c;» [><] n)(c) equals true iff

size(Y~ag(C,)(c» [><] n;

a.iii [Y~ag(c;) M Y~~g( ;)](c) equal true iff

Y~a9(C,)(c) M Y~~9( ,).

More generally a guard is inductively defined by:

• Let g be a basic guard, then 9 i a guard;
• Let gl, 92 be guards then 91 V 92, 91 A 92 and -'91 are

guards.
Remark 2: When a colour function Xc, has been denoted

by another ymbol, then this name must be used for the
guard.

Dejinition 8 (General colour junction): Let U;} 1<i<n

be a family of tuple colour function, {9ih:5i:5n a t'a~niiy
of guard, and {O', h:5i:5n a family of po itive integer.

general colollr ftmcTiol! f == l:5i:5n[gi]O';.j; is defined
by

f(c) == L Cii·f;(c)
ilg.(c)=true

Some abbreviations of colour expressions are useful for
modelling such as the O'rd function. Let D = C~' x ... X CZ'
and f be a tuple function from D to ome Bag(D). Then:
ord(Xf).f == Ll:5q:5 ,[Xl E Ci,q]q·f· Thi function allows
the modeller to specify a dynamic multiplicative factor
cone ponding to the index of the tatic subclass to which the
colour a ociated with a variable by the in tantiation pro e
belongs. Its use will be illustrated in the example of figure 6.

DefiniTion 9 (SymmeTric neT WiTh Bags): A S B is a 7-
tuple B = (P, T, PT Po t l, C <J?) where2 :

• P is a finite non-empty set of places;
• T is a finite non-empty set of tran it ion , Tn P = 0;

2Whcn bags are omincd, (hc dcfinition holds for S .
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• Cl = {C., ' . , ,Cd is the set of cia se , each being par­
titioned into i static sub-classes ( i = ltIq=l..s;Ci,q);
we denote n; = ICil and nt,q = I i,ql;

• C defines for each place and each transition its colour
domain, denoted (), which is a finite cartesian prod­
uct of clas es and of bag of cla s s;

• Post (resp. PTe) is the forward (resp. backward) inci­
dence mapping which associates with each pair (p, t) E

P x T a general colour function for bags defined from
C(t) to Bag(C(p»;

• <J? i' a mapping that associates a guard with each
transition.

Remark 3: By default, the guard <J?(t) i the con tant
true.

Dejinition 10 (Marking): A markin ' of a SNB is a map­
ping that associates with each place p a bag m(p) E
Bag(C(p)). The initial marking of a net i denoted by mo.

DefiniTion II (Firing rille): Let m be a marking, t a
transition and Ct E C(t), (t,cd is firable at m (denot d
m[(t, Ct»)) iff:

I) the guard associated with t evaluates to true for Ci

(i.e. <li(l)(cd = true)
2) 'rip E P, m(p) 2:: PT (p,t)(cd.
When m[(t Ct»), the firing of t instantiated by Ct

leads to marking m' defined by: 'rip E P m'(p) =
m(p) - Pr' (p, t)(cd + Post(p, t)(Ct). Given a SNB,
R ach( B mol denote the set of all reachable marking
from marking mo.

B. The multi-thread example

The growing market of multi-core processors generates an
increased need for the analysis of parallel ystems that are
much more difficult to de ign than quential one . Since
such systems are usually very regular, a formal notation
capturing symmetries is of interest because it can cope with
larger pecification .

So, we can ider the example of a multi-core processor that
is ba ed on the following a sumptions:

• a job may be multi-threaded;
• a job i as igned to a ubset of core ;
• among the cores a master one is associated with the job

itself while the other cores are slave ones'
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<bT-
<1>f<Jb"'"m

AllocatedCorcs M
'CJKC

<xJ·.k.z> FreeCorcs <x> ord(k).<j,k,7.>

~~~:::~<X~';IJ~'.3~.:J>~+~<X~2J~·.3~.:J>~+~<X~3~J~·.3~.:J>~C~O~,.~e,~' ===:::J~-<,j, . TermThreads
TEnds CJ <j.k,7.> JKC

class
Count Is 1..3;
JObS is 1..4;
Cores is 1..4:

domain
JK Is <Jobs, Counl>;
JKC Is <Jobs. Count, Cores>;
CJKC is <Cores. Jobs. Count. Cores>;

var
j in Jobs;
x, xl, x2.)(3, z 1r1 Cores;
k in Count;

Fig. 5. The multi-thre.1d system modelled with a SN

c1ess
Countls 1,.3;
JObS is 1..4;
Cores Is 1,.4:

domain
JK is <Jobs. Counl>;
JKC is <Jobs, Count, Cores>; k in Count;
CJKC is <Cores. Jobs. Count. Cores>; VI. V2 in bag(Cores);

~------<.j.k.z>-----<c:;:::~-<j.k> M JobsGen
GenJobs JK

<z>
<j.k>

obEnds

ord(k).<j.k.z>

TermThread
JKe

Fig. 6. The multi-thread system modelled with a SNB

• the set of cores i partitioned according to some hard­
ware configuration;

• all thread a ociatcd with one job are as igned to lave
core simultaneou Iy;

• every core can manage imultaneously a fixed maximal
number of thread (denoted in the sequel by Max­
ThreadsPerCore).

]) The SN model: [n figure 5 a job i initially generated
by transition GenJobs. A triple containing the job number,
the number of cOITesponding threads and the master core
J put to wait for being handled in place JobsWait. Thi
corresponds to the execution of an initialisation phase. ote
that place JobsGen contains the different configurations
that can occur in the y tem (marking M - for example
< J ,2>+<2,3> means that job 1 has two threads and job
2 has three thread ).

Then, depending on the numbcr of thread required, one
of the four tran ition lbk TCi assign k core with config­
uration i to the k threads. These cores, having the same
configuration as de cribed in Confl and Conf2 (the initial
markings of these places are respectively K and K'), are
removed from the set of FreeCores (with initial marking
M'= MaxThTeadsPeTCoTe x <Cores.all».

Markings K and 'is express d in a ymbolic way:
K = Zl + Z2 and K' = Z2 + Z3' Zi are called "dynamic
ubcla e" ( ee definition in ection TlI-B) whatever their

values. Z2 is the part Ihal is duplicated in places Con1] and
Conf2, Z\ the part located in Calif] only and Z3 the part
located in Conf2 only.

The information logged with the AllocatedCores is a 4-

tuple with the lave core, the job identifier, the number
of thread for this job, and the master core. This allows
for ensuring a clean termination at a later stage. When a
thread execution i finished (tran ition TEnds), the lave
core becomes free again. When all threads have finished,
a final phase takes place: the terminated thread (place
TennThreads) are discarded by transition JobEnds and the
master core is released, terminating the job execution.

One can note that there i a po ible deadl ck in thi
model when master threads consume cores that cannot then
be allo ared to lave rhread . In the ner, thi ca e corre p nd
to too many occurrence of GenJobs preventing the firing of
any lbk TGj transition.

This example reveals a major drawback of Symmetric
ets, represented by the V-shape in the upper part of figure 5.

We mu t duplicate the transitions in order to capture the
con umption of a variable number of token. It means that,
if we change the Count colour domain (denoting the number
of threads to associate with a given job), we must adapt the
series of transitions lbk TCi . This is nor very convenienr for
modellers. F1II1hermore, the ystem cannot be parameterised
ea ily, which i a problem.

2) The SNB model: A new version for the multi-threads
example is hown in figure 6. Th modified part i framed.

One can note that the numerou tran ition lb k TGi in the
net of figure 5 are now expressed using a single transition:
LbThreads. Configurations are now stored in one place:
Conjigs that contains Bag(Cores) tokens. Let us note that
the marking of Conjigs, K" is defined from K and K' by
K" = {K} U {K'} = whole(Z\ U Z2) U\ hole(Z2 U Z:J).

A bag of cores Y1 is selected among the free core', with
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the same cardinality as the number of threads to execute
(this i specified in the guard of transition LbThreads with
formula card (Y 1) =ord (k»). For the transition to be fired,
an available configuration where Yl <= Y2 (i.e. IIYIII ~
111.1"211 ) must be found (thi is expressed by the econd term
of the guard).

The job ends when all corresponding threads are ter­
minated, and they are removed simultaneously from place
TermThread as in the Symmetric et vel' ion of the example.

III. SYMBOLIC REACHABILITY GRAPH FOR S B

The symboli rea hability graph aim at reducing the
reachability graph size (thu rend ring v rification amenable)
by regrouping some "equivalent" marlcings into symbolic
markings and using a symbolic firing rule compatible w.r.t.
the normal firing rule. Thus, many properties of the model
like acces ibility, boundne or livene s can directly be
checked on the symbolic rea hability graph, allowing for the
analysis of larger pecifications.

A. Symbolic markings

Symboli marking are ba ed on the notion of admissible
permutations in the set of colour classes. An admissible
permutation i a family (J "" {ai}iEI uch that a permutation
(Ji of i fulfils: I) \:I ;.q, ai(Ci,q) "" i,q i.e., any item
of a tmic ubcla Ci •q of Ci i mapped to an item of
the same subclass and 2) if Ci is an ordered class then
admissible permutation are re tricted to rotation (the order
of an ordered class caml0t be modified).

Given these restrictions, the action of a permutation a
on a colour c of a place p, = Q9iEf.jEl.. I(p) c1 E

C(P), i defined by a(e) = Q9iEf.jEl..e,(p) ai(c{). We can
define the action of a on a marking rn by Vp E P, \:Ie E
C(p),<1.m(p)(O'( )) = m(p)(c). ote that the enabling rule
for a transition i' preserved when applying an admi sible
permutation on a marking and on a transition OCCUITence:

rn[(t, c))rn' {:=} a.rn[(t,a(c))}a.rn'

Thus, markings obtained with the application of a permu­
tation for a given marking m are "equivalent" in terms of
behaviour. Therefore an equivalence class of markings can be
defined: m ~ rn' {:=} 3ala.rn = rn', yielding equivalence
classes named symbolic marking and denoted M.

The first problem is the repre entation of a symb lie
marking. De cribing an equivalence class of a set with its
own elements is obviously very exp nsive in terms of storage
and brings no advantage W.r.t. the explicit rea hability graph.
To tack Ie thi. problem, a fi r. t approach [12], [13] r presen~

an equivalence class with one of its elements (i.e. a marking).
This method reduces the storage requirement for markings
but doe not provide any aving W.r.t. the tate tran ition
issued from these marking .

An alternative approach [7) con i t in a symbolic repre-
entation of both th marlcings (inside an equivalence cia s)

and the transitions i ued from these marlcing . Ob erve that
the number of transitions issued from a marking of a S
may be exponential W.r.t. the size of the S and thus, the
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ymbolic firing rule is mandatory Ln order to manage large
models.

B. Symbolic marking representation

Let m be an explicit marking. Roughly peaking, we fir t
partition every static subcla s (C;,q) such that inside the
partition, two colours have the same distribution of tok n
component corresponding to the class i for m. Then,
forgetting the identitie of colour inside any partition but
memorizing the ize of this partition lead to our ymbolic
marking representation.

More formally, we define for every clas i a set of
dynamic subclasses {Z1 h;";j;";m; such that every Z{ has two
attribute: its cardinality (card(Z{)) and the index of the
static subcla it belongs to (d(Z{)). Given these partition,
the symbolic marking (rnrwk) is represented as an ordinary
marking where the dynamic ubclas e are ub tituted to
colours. The following definition formalises the character­
istics of a symbolic marking representation.

Definition 12 (Symbolic marking representation):
A ymbolic marking representation of a S B,
M = (m,card,d,mark) is defined by:

• m: I >--4 IN' defines the number of dynamic ubclasses
for every class Ci . m(i) is also denoted mi and C; =
{Z{ I 0 < J ~ mil denote the set of dynamic
subcla ses of Ci .

• card : UiEl Oi >--4 IN" denote the size of every
dynamic ubcla s.

• d: UiEf Oi >--4 • denotes the index of the correspond-
ing static subcla s to which every dynamic subclass be­
longs. Hence d and card fulfil the following constraints:

I) d(Z1) E {I,... oil i.e. d(Z{) i the index ofa tatic
ubcla of Ci .

2) L;d(zf)=q card(Zl) = ni,q: the size of a static
ubc1ass is the urn of the sizes of the dynamic
ub las es that belong to it.

3) \:Ii E I VI ~ j < j' ~ mi,d(Zi) ~ d(Z{): the
dynamic subcla ses are ordered W.r.t. the order of
tatic ubclasses.

• rna1'k a ociate with everx place p a ymbolic content:
rna1'k(p) E Bag(Q9iEl( ;) ;(v)Q9iEfBag(~i)e:(p»).
Then dynamic. ubclas. e. act as colour. for ordinary
markings.

The semantics of a symbolic marking repre entation is a
et of equivalent ordinary markings.

Definition 13 (Symbolic representation semantics): Let
M be a symbolic marking representation. Then the set ffMD
of associated ordinary marking is defined by rn E ffMD iff:

• \:Ii E I, 30'i : Ci >--4 8i ; O'i distributes the colours
among the dynamic ubcla ses. A usual, we linearly
extend O'i to a mapping from Bag(Ci) to Bag(Oi)'

• \:Iz.{ E Gi ,IO';l(Zl)1 = card(Z1) ; these mappings
mu t preserve the ize con traint .

• \:I 1,0:;1 (Z1) ~ Ci ,d(Z1) ; these mappings must pre­
serve the tatic subclass constraint .
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Fig. 7. Example of symbolk firing

• 'rip E P, 'ric E C(p) with

c =0 iEJ.jEl..e,(P) Ci,j 0 iE J.jEl..e;(p) bi .j :

m(p)( ) = mark(p)(0iEJ.jEl..e,(p) ai(Ci.j)

0iEJ.jEI.. ;(p) ai(bi .j ))

the marking of a place must be preserved by the
symbolic transformation.

• When Ci is ordered, 'rIZ13c E ai1(Zl) such that
.(1 ) E z~j mod m;)+l d w' E ;-l(Zi) , -J.a, .C, an vC a, l' C r

C, <li(C') E Zf ; the in tantiation via <li of dynamic
subclasscs must prc crvc thc ordcr of C,.

It mu t be empha ized that different I' pre entation yield
the ame et of explicit marking . However, it i po ible to
define and compute a canonical repre entation a developed
in the appendix [18]. Roughly peaking a ymbolic repre­
sentation i canonical if th number of dynamic ubc)ass s is
minimal and the numbering of dynamic subclasses ensures
that the repre entation is minimal W.r.t. some lexicographic
ordering.

C. Symbolic firing rule

The second step in the symbolic reachability graph con­
struction is the design of a symbolic firing rule for ymbolic
markings. Our goal is to "produce" and "consume" dynamk
subclasses in tead of colours. A dynamic subclass is elected
for each occurrence of a class in the colour domain. However,
assume that we instantiate variable Xb, with the dynamic
$ubcla Z,k. Such an in tantiation i sound iff ca7'd(Zf) = 1
(meaning that this subcla i reduced to a ingle colour).

Furthermore, the in tantiation of y B
j

( ) hould requirea.g t

to select I) only a subset of colours in some Zt and 2)
to select colours from different zl:. Thus in order for the

ymbolic rule to correspond to the explicit firing rule, we
need to preprocess a symbolic representation M. The goal
of this preprocessing, called splitting, is to produce M I uch
that [MD = [MID and the cardinality of every dynamic
ubcla of M I i ).

Once thi plitting ha been performed, the tran ition i
fired as in dcfinition I I with dynamic ubcla scs in tcad of
colours; thi lead to a new symbolic marking. However, this
lring include. an optimi. ation step that reduces the number
of possible instantiations.

Rather than formally define th optimisation, we illu trat
it on figure 7. It first shows the symbolic marking obtained
after the plitting. Applying u ual in tantiation, variable Y
could be associated with any bag l:iEJ zi for any J ~
{I, ... , nil, nl being the maximal cardinality of dynamk

ubclasses in YJaO(c.)" Thi would lead to 2nl different
firing.

However, we re9uire that if a dynamic ubcla Zf occurs

in Y thcn any Zl with j' < j also occur in Y. This re­
striction does not eliminate any a ociated explicit firing due
to the semantics of symbolic markings. ow, the number of
differcnt firing i only nl. This constraint can be generali ed
to any number of variables occurring in a transition by an
arbitrary order over these variable .

In this case, let Z{, Z{ obtained by the splitting of
the arne dynamic subclass with j' < j. We require that

if zl occurs in the in tantiation of a variable, then Z{
occurs either in the instantiation of the same variable or
of a previous variable. We emphasize that this reduction is
impossible with the approach in [12], [13].

The last step is the canonisation of the repre entation. The
whole process is formally described in [18].
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Example: Our approach preserves the use of symbolic
states together with bag functions. For example, let us
consider the model of figure 5 with 1U f containing 4 available
core, and !VI containing 4 configuration (two requiring two
additional cores and two requiring three additional core ).
If there is at least: 3 occurrences of GenJobs prior to any
occurrence of IbiTCj the system will inevitably become
deadlocked in the following configuration: there is no token
in either AllocaledCores or FreeCore - one ymbolic state.
In the S B of figure 6, the ame configuration i the singl
symbolic state representing a deadlock.

Thus, the introduction of bag can only reduce the size of
the symbolic reachability graph.

Moreover, it may also reduce the number of symbolic
firings (those that are expensive in terms of CPU usage). For
example, the firing of both Ib2TCl and Ib2TC2 in the m del
of figure 5 correspond to only a ingle firing of LbThreads
in the model of figure 6.

IV. Co CL 10

In thi paper, we have extended the symbolic reachability
graph and its related symbolic firing to Symmetric ets with
bags in tokens ( B) as introduced in [13].

SNB have two main advantages. First the use of bags in
Symmetric nets allows for easier and more readable mod­
elling. The Petri net specification can thus be parameterised
without change in it tructure (e.g. adding place or tran i­
tions). Hence, the specifier doe not have to concentrate on
choosing tricks or duplicating large parts of net . Moreover,
these could lead to bad choices that would hamper the
analysi capabilitie.

Second, it enables the u e of the symbolic reachability
graph teChnique, thu allowing for analy ing larg P tri n t .
Our approach maintain a low complexity on th symbolic
reachability graph can truction , contrary to previou work
like [12], [13].

To achieve this goal, we provide a new consistent et of
definition for S B. We show on an example in figure 6
the advantages of S Boa more conc'se modelling: a
ingle tran ition corre ponds to everal imilar one in the

S model of figure 5. Then, we define for S B the symbolic
reachability graph tructure and the a ociated optimi ed
firing rule.

We plan to soon develop within the CP -AMI Petri
net environment (http://move .lip6. fr / software/
CPNAMI/) [19] both the extended formalism, the adaptation
of the ymbolic reachability graph and the game-ba ed
algorithm for control ynthe. i .
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