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Abstract— A complex network of interdependent components
is susceptible to percolating faults. Sensor networks deployed
for real-time detection and monitoring of such systems require
adaptive re-distribution of resources for an energy-aware oper-
ation. This paper presents a statistical mechanical approach to
adaptive self-organization of a sensor network for detection
and monitoring of percolating faults. A complex dynamical
system of interdependent components (e.g. computer and social
network) is represented as an Ising-like model where component
states are modeled as spins, and interactions as ferromag-
netic couplings. Using a recursive prediction and correction
methodology the sensor network is shown to adaptively self-
organize to the dynamic environment and real-time detection
and monitoring is enabled. The algorithm is validated on
a test-bed simulating the operation of a sensor network for
detection of percolating faults (e.g. computer viruses, infectious
disease, chemical weapons, and pollution) in an interacting
multi-component complex system.

1. INTRODUCTION

Real-time situational awareness is of paramount impor-

tance for both - military and civilian applications for de-

tection (of known and unknown events) and for control

to maintain desired performance. The need for real-time

situational awareness has generated interest in the area of

distributed sensing and control. Recent advances in the tech-

nologies of microcomputers and wireless communications

have enabled usage of inexpensive and miniaturized sensor

nodes [18], [10], [17] that can be densely deployed in

both benign and harsh environments as a sensor network

for various applications. A sensor network is essentially a

collection of miniature platforms, each of which is equipped

with sensing, communication, and computing devices. Often

used to monitor large and distributed systems composed
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of interdependent components, sensor networks have found

diverse applications such as Structural Health Monitoring,

Military Operations in Urban Terrain (MOUT), weather,

habitat, and pollution monitoring [13], [5], [23], [1].

A complex system composed of interacting and inter-

dependent components is susceptible to percolating faults

such as power blackouts, spread of computer viruses and

infectious diseases [15], [6], [14]. Usage of distributed sensor

networks for pattern recognition and detection of percolating

faults becomes a challenging task because of the need to

process a large volume of generated data in real time [19].

Moreover, sensor nodes are often severely constrained for

the use of available resources - such as processing power,

energy, communication bandwidth etc. Since events such as

the growth of anomalies are usually rare and localized events,

data from all sensor nodes need not be processed simultane-

ously at all times. Thus, the network can often be operated

at a reduced capacity by using a only fraction of available

resources while extracting the necessary information in real

time.

Complex systems of interacting dynamic components

found in computer networks, social networks, chemistry, and

biology have recently been studied using the concepts of

statistical mechanics and graph theory [2]. The tools of statis-

tical mechanics have been applied to investigate the ensemble

behavior of a large number of interacting units. For instance,

representing nodes in a graph as energy levels and its edges

as particles occupying it, complex networks have been shown

to follow Bose statistics, where certain known characteristics

of the network appear as thermodynamically distinct phases

of a Bose gas [4]. A detailed review of statistical mechanics

of complex networks is reported by Albért and Barabási [2]

and, in the context of statistical physics, Strogatz [22] has

explored the behavior of interacting dynamical systems in

various disciplines.

Ising’s ferromagnetic spin model [11][8] has been tradi-

tionally used to study critical phenomena (e.g., spontaneous
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magnetization) in various systems. Essentially, it allows to

model the collective behavior of an ensemble of interacting

agents. Its ability to model local and global influences on

constituting units that make a binary choice (e.g. ±1) has

been shown to characterize the behavior of systems in diverse

disciplines other than statistical mechanics, e.g., finance [7],

biology [3], and sociophysics [12].

This paper extends the application of Ising model to

the field of sensor networks to enable resource-aware real-

time monitoring of a dynamic environment for detection

of percolating faults. Tools of statistical mechanics and

graph theory have been applied to formulate an algorithm

for self-organization and adaptive control for redistribution

of available resources in the sensor network. From these

perspectives, contributions of the work reported in this paper

are: (1) Adaptive control of sensor network for node activity

scheduling, self-learning and adaptation (2) Construction

of a state-dependent Hamiltonian function to characterize

neighborhood interactions and time-dependent external influ-

ences (3) Interdisciplinary approach to sensor networks using

statistical mechanical concepts (e.g., Boltzman distribution

and thermodynamic equilibrium) and (4) Construction of an

importance sampling function for probabilistic activation of

sensor nodes.

The paper is organized in five sections including the

present one. Section 2 presents a brief review of graph

theory and Ising Model formulation that form the backbone

of the sensor network algorithm. Section 3 formulates the

algorithm for self organization of sensor networks based

on the principles of statistical mechanics and graph theory.

Section 4 presents the simulation results for validation of the

algorithm. Section 5 summarizes and concludes the paper

with recommendations for future research.

2. ISING MODEL FORMULATION

Let G = (V,E, W ) be a weighted graph, where V =
{v1, v2, . . . , vN} is the set of individual components of the

system under consideration; an edge (vi, vj) ∈ E is a two-

element subset of V representing interdependence between a

pair of components vi and vj ; and the function W : E → R

yields W ((vi, vj)) = wij as the strength of interaction

between the components vi and vj . A weighted graph has

been used to represent interacting components in a large

system as the choice of this framework naturally leads to

an Ising-like formulation.

The Ising’s spin model was originally conceived to explain

the onset of spontaneous magnetization in ferromagnetic

materials. In this model a ferromagnet is considered as a

collection of large number of spins placed at the crystal

lattice sites. Each spin can be in two states +1 (up) or −1
(down). A nearest neighbor interaction model is assumed

where the interaction energy of the system is a function of

only nearest neighbor spin configurations.

Every interaction in G, identified as an edge and its weight,

is now represented in a nearest neighbor model in the sense

of Ising. However, unlike a conventional Ising model, G can

potentially be a directed graph where elements of E are

2-tuples and interactions between components may not be

symmetric. Self loops are assumed to be absent in G as they

are not meaningful in this context.

For the weighted graph G, its weights are used to construct

a time-dependent Hamiltonian H τ as

H
τ = −

∑

<i,j>

wijσiσj − B
τ
∑

i

σi (1)

where < i, j > denotes a pair of nearest neighbor spins; wij

and Bτ are neighborhood interactions and time-dependent

external field, respectively. Each node is assigned a spin σi

to represent its current state. The spin σi of node vi is ±1
to represent its state as functional (+1) or failed (−1). In

general, the interactions wij in Eq. (1) can be time-dependent

but they are assumed to be constants here. Every wij is taken

to be strictly positive; thus, being in the same spin state

as its neighbors is energetically favorable for a node. This

assumption is representative of a typical multi-component

system where malfunctioning neighbors make a node more

likely to change its state from functional (+1) to failed

(−1) under similar external influences, which is analogous

to ferromagnetic influences in an Ising model.

Let S = {S1,S2, . . . ,SN} be a sensor network, where

every component vi ∈ V is being monitored by a sensor

node Si which is represented as a function Si : P → R
n

that maps the physical space P of observable parameters

into the measurement space R
n. The pattern of a sensor data

sequence, generated from a component vi ∈ V , could be

statistically characterized as the state probability vector pi of

a finite state machine, and a (non-negative scalar) distance

measure µi , d(pi, qi) of pi from a given reference pattern

qi can be computed [19]. Instead of directly incorporating

sensor data sequences, the scalar measures µi are used for

construction of a Hamiltonian in the Ising model to make

the computation independent of specific sensor modalities

as described below.

The field Bτ in Eq. (1) is representative of external in-

fluences and points in the negative direction. Thus enforcing

the components of the system to flip to their respective failed

(−1) state. The value of Bτ at node vk and time τ is

estimated as:

B
τ (k) = −

N
∑

i=1

Bi

(

µτ
i , {µτ

ij
}
)

δi(k) (2)
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where Bi

(

µτ
i , {µτ

ij
}
)

is magnitude of the local field at node

vi, which is a function of the measure µτ
i at node vi and

the set of measures {µτ
ij
} of its nearest neighbors vij

. The

functional form of Bi is taken to be identical for all nodes

vi, and δi(k) is the unit impulse function, i.e., δi(k) = 1 if

k = i and δi(k) = 0 if k 6= i.
Given the spin states and anomaly measures at a given

time instant, it follows from Eq. (2) that self-organization

of a sensor network for redistribution of resources reduces

to estimation of the probabilities of the possible subsequent

state of the system. A statistical mechanical approach that is

used to compute the probability of subsequent states of the

observed system is given in the next section.

3. ALGORITHM FOR SELF ORGANIZATION OF SENSOR

NETWORKS

A statistical mechanical representation of the sensor net-

work is formulated as follows. The thermodynamic state I of

the system represented by the graph G can be given by the

spin sequence (σ1, σ2, . . . , σN ); the probability PI that the

system is in this state is given by the Gibbs Distribution [11]:

PI(σ1, σ2, . . . , σN ) =
1

ZN

exp(−βEI) (3)

where the energy EI of the thermodynamic state I is

derived from the Hamiltonian in Eq. (1); the parameter β
is proportional to the inverse temperature and ZN is the

associated partition function defined as:

ZN =
∑

I

exp(−βEI) (4)

where the sum runs over all possible spin sequences or

thermodynamic states I . The partition function may not be

computationally tractable, especially, for systems with an

irregular lattice and a large number of interacting nodes. The

situation is simplified by the following assumptions [16]:

• Markov dynamics, i.e., the future state depends only on

the present state.

• Quasi-static equilibria at all time instants, i.e., the

probability of state transitions corresponding to large

changes in energy is assumed to be zero and the system

follows the single-flip dynamics.

• Detailed balance: Let PI be the probability of being

in thermodynamic state I and p
IJ

be the probability of

transition from the thermodynamic state I to state J .

Then, detailed balance [16] implies that

(

PIpIJ
= PJp

JI

)

⇒
(PJ

PI

=
p

IJ

p
JI

)

(5)

and p
IJ

= p
JI

exp (−β(EJ − EI)) follows from

Eq. (4).

Equation (5) eliminates the partition function ZN and tells

how the ratios of transition probabilities p
IJ

and p
JI

should

behave but it does not provide the solution for p
IJ

. For

this purpose, p
IJ

is derived from the so-called heat-bath

dynamics [16] as:

p
IJ

=
exp

(

− β(EJ − EI)
)

1 + exp
(

− β(EJ − EI)
) > 0 (6)

Irreducibility of the state transition matrix
[

p
IJ

]

is ensured

because of strict positivity of each p
IJ

.

The change in energy ∆Eflip due to a single-spin-flip

(from +1 to −1 or vice versa) at a node vi is given by:

∆Eflip
i = 2

∑

<i,j>

wijσiσj + 2B
τσi (7)

where < i, j > denotes the nearest neighbor j of the node

i. The flip probability pflip
i of node vi is obtained by using

Eq. (6) as:

pflip
i = exp(−β∆Eflip

i )/[1 + exp(−β∆Eflip
i )] (8)

Thus for a node vi, pflip
i is the likelihood that it would

change its state from σi → −σi given the states of its

neighbors and magnitude of external influence. The expected

probability p̂flip that a randomly chosen node would flip (and

generate information) in the next sampling instant is obtained

as:

p̂flip =
1

N

N
∑

i=1

pflip
i (9)

A high (low) value of p̂flip indicates, irrespective of the

chosen node, a higher likelihood of new information begin

available (unavailable) when a randomly chosen sensor node

is set to be active. The number Ns of sensors that should

be activated in the next sampling instant, out of a total of

N sensors, is therefore a monotonically increasing function

of p̂flip. The choice of a piecewise linear function for Ns

yields:

Ns = min
(

M, max
(

(1 + ǫ)Np̂flip,m
))

(10)

where 0 < ǫ ≪ 1 is a detection threshold; m is the minimum

number of sensors that must remain active at all time instants;

and M ≤ N is the maximum capacity of the sensor network.

Given the flip probabilities pflip
i for each node and

Ns ≤ N computed by Eq. (10), the optimal solution for

choosing the nodes that should be activated would yield

Ns sensor nodes with the highest probability to be active

at any instant. This deterministic method where the most

probable Ns sensor nodes are activated would be blind to

any activities at the nodes not chosen by the method. Thus, a
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suboptimal approach is followed where the sensor nodes are

not chosen deterministically but Ns nodes are sampled from

an importance sampling function. This ensures that there is

a finite probability of activating every sensor node at all

time instants, although the sampling probability is higher for

nodes with high expected activity and vice versa.

The importance sampling function is defined as:

ps
i =

pflip
i

Np̂flip
(11)

to provide larger sampling weights to nodes with higher

expected activity in the next instant. In essence, Ns nodes

are drawn from this distribution at each instant and are

scheduled to be activated in the next sampling instant. The

collected data are used to modify the flip probability pflip
i

of the node vi and the importance sampling function ps
i is

re-calculated. The state of a node is changed from +1 to

σi = −1 when it is detected to have reached its respective

failed state. The failed state of a node is signalled when

the normalized measure µi computed for that node saturates

and reaches a value of unity [21]. Unless updated by the

sensor network, µi and spin σi are maintained at their last

recorded values. Thus at all times the network works with

partial information gathered by a fraction of sensor nodes.

Following a recursive procedure, collected information is

used to predict the likelihood of new activities. This estimate

is then used to reorganize the network to adapt to the

changing environment and collect new data, which is used to

modify previously made predictions. This approach is similar

to recursive filters (e.g., Kalman filter) where predictions are

made using a model and the measurement history, which are

then corrected based on new data.

It is noteworthy that the model predicts a non-zero proba-

bility of a −1 → +1 flip, which corresponds to a less likely

event of healing or on-line repair. Due to the field pointing

in the negative direction, the probability of a −1 → +1
flip is very small. Thus, the sensor network has a non-zero

probability of activating a sensor for a failed component, but

it may do so with a very small probability.

The parameter β serves the role of bias control for ps
i (see

Eqs. (8) and (11)). Low (high) values of β cause ps
i to move

towards uniform distribution (δ-distribution) independent of

∆Eflip.

It must be noted that irrespective of the state of sensors

(i.e., active or inactive), the underlying system evolves in

time, whereas a limited number, Ns ≤ N , of sensor nodes

are activated at each sampling instant. From this perspective,

the efficiency η is defined as:

η =

(

N
∑

i=1

µi

)

m

/ (

N
∑

i=1

µi

)

a

(12)

where the subscripts ‘m’ and ‘a’ imply measured and actual

values, respectively.

Unlike a typical computational statistical mechanical prob-

lem, the goal here is not to compute macroscopic parameters

but to estimate the probabilities of future thermodynamic

states of the system when a particular state is sensed at

time τ . In this respect the following two control issues are

addressed for the sensor network at all sampling instants: (1)

the number of nodes to activate and (2) their distribution in

the sensor network.

Algorithm 1: Algorithm for self-organization of sensor

network for detection of pervasive faults

while (1) do1

1: Collect data from active senor nodes.2

2: Compute local measure µτ
i for active nodes at3

current time τ and update their spin states.

3: Compute the local field Bl (Eq. 13)4

4: Compute change in energy ∆E (Eq. 7)and5

calculate new pi (Eq. 6) for each node i.
5: Update importance function ps (Eq. 11) and6

calculate Ns (Eq. 10)

6: Draw Ns samples from ps and to activate7

sensors nodes in the next time step.
endw8

4. SIMULATION RESULTS AND DISCUSSION

A simulation test bed has been constructed to validate

the proposed methodology. The test bed consists of a 2-

dimensional (25 × 25) array of sensor nodes (i.e., a total

of 625 nodes) with four nearest neighbors in the orthogonal

directions. All nodes begin with a functional state (i.e., σi =
+1) and a small number (= 5) of randomly chosen nodes

are injected (seeded) with faults that slowly continue to grow

until the node reaches the failed state (normalized anomaly

measure = 1). Nodes with a critical value of normalized

anomaly measure (≥ 0.8 here) infect their neighbors with

a probability,called transmission probability, equal to the

fraction of the total number of failed nodes present in the

system at that instant of time τ . Thus, the transmission prob-

ability increases as the fault percolates through the system.

The simulation scenario resembles the Susceptible Exposed

Infectious Removed (SEIR) model of epidemic spread [9]

(e.g. infectious diseases and computer viruses).

Each node vi in the simulation test bed is monitored by a

sensor whose τ -dependent data are compressed into a scalar

measure µτ
i , and the local field Bi for each node vi is
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Fig. 1. Algorithm efficiency

identically modeled as:

B
(

µτ
i , {µτ

ij
}
)

= B0



µτ
i +

∑

ij

µτ
ij

exp(−α|i − ij |)





(13)

where |i − ij | = 1 for nearest neighbor interactions.
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Fig. 2. (Fraction of active sensors

The interactions wij are chosen to be 0.8 for each neighbor

pair (vi, vj); and the parameters N , M , m, ǫ, B0, α, and β
set at 625, 320, 20, 0.001, 5, 1, and 0.333, respectively, for

the simulation experiments.

The plots of algorithm efficiency η for three typical

simulation runs are shown in Fig. 1. At the beginning, η

has a relatively low trend when the sensor network learns

the fault pattern; then η approaches unity as the network

dynamically adapts itself to the fault pattern. Figure 2 shows

the fraction of active sensor nodes at any given time. The

number of active sensor nodes dynamically changes and is

always a small fraction (e.g., < 25%) of the total number of

sensor nodes in these tests. Fig. 1 and 2 show the ability of

the sensor network to self-organize to adapt to the dynamic

environment. The proposed control algorithm enables real-

time detection and monitoring working with a small fraction

of sensor nodes to conserve valuable resources.

Fig. 3. A snap shot of the sensor grid. Solid dots (blue): σi = −1. Small
circles (blue) : σi = +1. Squares (red): failed but yet undetected by the
sensor network. Big circles (magenta): sensors active at this instant

Figure 3 displays a snapshot of the operational envi-

ronment. It is seen that a large number of sensor nodes,

neighboring a node detected to have failed σi = −1 (marked

as solid blue dots), were activated. Network resources were

directed more towards functional nodes to activate theirs

sensors than for nodes detected as failed. As the fault pattern

evolves in time, the sensor network dynamically adapts to

the changes by making corrections to its predicted estimates

while using partial information at all times.

5. SUMMARY AND CONCLUSIONS

This paper introduces a concept of adaptive self-

organization of sensor networks by using weighted graphs

and an Ising-like model based on the principles of Statistical

Mechanics. Given past measurements, probabilities of future

states are computed to construct an importance sampling

function to probabilistically activate a small fraction of

sensor nodes. Numerical simulation has been conducted on
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a test bed of interacting multi-component systems to demon-

strate the adaptive self-organizing capability of the proposed

control methodology for sensor networks. Simulation results

show that the proposed algorithm is capable of detecting

percolating faults in a resource-aware manner.

Further research is recommended to utilize information-

theoretic concepts, such as mutual information to deter-

mine the strength of interactions wij between interconnected

neighbors and transfer entropy [20], to ascertain direction of

information flow. The use of multi-state spin models such as

the Potts model for systems where a binary state assumption

of Ising is not valid needs to be investigated. Also, further

research needs to be done for construction of the Hamiltonian

in Eq. (1) directly from the patterns of state probability

vectors [19] rather than compressing the sensed information

into a scalar measure µ.
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