
  

  

Abstract—This paper examines the problem of maximizing 

net power output in a polymer electrolyte membrane (PEM) fuel 

cell system. The net power production depends heavily on the 

oxygen excess ratio in the cathode. However, the time-varying 

parameters and complex nonlinear dynamics of the system 

present many challenges to regulating oxygen excess ratio under 

all operating conditions. A constrained extremum seeking 

control architecture is presented to effectively regulate oxygen 

excess ratio about an optimum value that maximizes net power 

output over a broad range of operating conditions. Simulation 

results demonstrate that this control technique improves fuel cell 

system performance and our constrained optimization approach 

enables faster convergence rates for an admissible level of 

overshoot. 

I. INTRODUCTION 

HIS paper investigates an air flow control strategy for 

optimizing the net power output of fuel cell systems, 

subject to time-varying parameters. The extremum seeking 

control approach ensures the fuel cell system operates at peak 

performance under all operating conditions. Moreover, the 

proposed algorithm avoids excessive power waste and oxygen 

starvation [1] by imposing constraints on the air supply 

subsystem. This is particularly important for increasing the 

robustness of fuel cell systems, which is generally difficult to 

achieve due to the challenge of accurately modeling the highly 

coupled electrochemical, thermodynamic, heat transfer, 

material, and fluid dynamics. In this paper, we consider 

polymer electrolyte membrane (PEM) fuel cells, which are 

popular in automotive applications due to their low operating 

temperature. However, our extremum seeking approach is 

extendible to a general class of nonlinear dynamic systems, 

including fuel cell systems with alternative electrolytes. 

The fuel cell control engineering literature is rich with both 

adaptive and optimal control techniques for power 

management. Pukrushpan et al. developed a nonlinear 

state-space model and used linear-quadratic-Gaussian (LQG) 

techniques to control the air supply subsystem [2]. This work 

introduced a physics-based fuel cell system model, but the 

control design does not explicitly maximize power output 

over the entire operating range, as suggested by [3]. To 

achieve this goal, Yang et al. [4] reduced a model of two 
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inputs (hydrogen and air flow rates) and two outputs (cell 

voltage and current) to a single-input single-output (SISO) 

system to regulate fuel cell output voltage by adjusting air 

flow rate using model identification adaptive control (MIAC). 

While both simulation and experimental data demonstrate that 

adaptive control can be implemented to adjust for changes in 

system parameters effectively, over-simplified models can 

sometimes produce erroneous calculations and inefficient 

performance characteristics. Golbert et al. developed a high 

fidelity, spatial-time dependent model and applied model 

predictive control (MPC) to satisfy a set of desired power 

requirements [5]. Although nonlinear multivariable MPC 

generally ensures accurate control under external 

disturbances, on-line optimization can be computationally 

intensive, particularly for the complicated fuel cell system 

models used in the literature [2], [5]. Ideally, it is more 

desirable to maximize fuel cell performance via control 

algorithms that are both computationally efficient and 

self-optimizing with respect to time-varying parameters and 

model uncertainty. 

The above survey briefly examines several approaches for 

air flow control in fuel cell systems. These methods generally 

regulate the air supply to the cathode at a fixed level, either via 

adaptive or optimal control techniques. However, the optimal 

air supply may vary as system parameters, such as stack 

temperature and membrane humidity, drift away from their 

nominal values. Hence, we investigate the impact of oxygen 

supply, stack temperature, and membrane humidity on net 

power output, by analyzing the first principles model 

presented in [6] and [7]. This particular model assumes that 

the fuel stack water and temperature dynamics are controlled 

independently, although more recent work has included the 

dynamic coupling between air flow, membrane water content 

[8], and stack temperature [5]. In practice, this assumption 

will likely be violated, since water management represents one 

of the most challenging obstacles in fuel cell control and is 

currently an active area of research, e.g., [8], [9]. To mitigate 

the uncertainty imposed by water and temperature dynamics, 

we apply the method of extremum seeking (ES) control, a 

non-model based and self-optimizing algorithm, to seek for 

the optimal operating point using a gradient-based search. ES 

control is sensitive to water and temperature dynamics without 

requiring an explicit model for control, thus reconciling the 

tradeoff between computational efficiency and optimal 

performance.  

A similar extremum seeking approach developed in [10] 

tracks the fuel cell stack’s maximum power point by 

controlling the current input at the DC/DC power conversion 

electronics level, while providing constant oxygen supply. In 
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contrast, this paper focuses on maximizing net fuel cell system 

power output at the air flow control level. By controlling the 

air flow supply to the cathode, the amount of reactant oxygen 

is managed to ensure proper balance of stack power output 

and compressor motor power draw. Moreover, managing the 

amount of reactant oxygen enables some controllability over 

preventing oxygen starvation and membrane dehydration. 

This paper thus adds two new contributions to research on air 

flow control in fuel cell systems. First, it explicitly maximizes 

net power output by regulating air flow, thereby improving 

system efficiency and potentially catalyzing the market 

penetration of fuel cell systems. Second, it introduces a 

self-optimizing control scheme that maximizes net power 

production over the entire temperature and membrane 

hydration range. The paper’s simulation results demonstrate 

an improvement in the fuel cell system’s net power production 

can be achieved across various operating conditions relative 

to several standard control techniques. 

The paper is organized as follows: Section II presents a 

summary of the fuel cell system model. A steady-state analysis 

of the fuel cell system is presented in Section III. Section IV 

provides the mathematical control problem formulation and 

Section V presents the key results. The paper’s main 

conclusions are provided in Section IV. 

II. FUEL CELL SYSTEM MODEL 

This section describes the fuel cell system model developed 

in [6], [7] that we use for analyzing the impact of oxygen 

supply, stack temperature, and membrane water content on net 

power output. The model describes the manifold filling 

dynamics, reactant partial pressures, and compressor inertia. 

The fuel cell system under consideration comprises a fuel cell 

stack, a compressor, anode and cathode manifolds, an air 

cooler, and a humidifier shown in Fig. 1. The fuel cell model 

used contains nine state variables, whose governing equations 

can be grouped into the cathode manifold, anode manifold, 

and compressor. In the manifolds, the governing equations 

model the mass flow and partial pressures of the reactants and 

products using mass and energy conservation laws. In the 

compressor, the governing equations model the inertial 

dynamics of the compressor and motor. The air compressor 

motor voltage vcm is the controlled input, fuel cell stack current 

Ist is modeled as a disturbance input, while the performance 

output variables are net fuel cell system power Pnet and oxygen 

excess ratio λO2. For clarity and completeness, we review the 

model equations and associated phenomena here, but readers 

interested in the complete details should refer to [6], [7]. The 

model’s key parameters and component sizes are provided in 

Table I.  

A. State Equations 

This section describes the state equations corresponding to 

the air supply subsystem shown in Fig. 2. In the cathode, 

supply manifold, and return manifold, mass conservation 

yields the dynamic equations for the masses of oxygen mO2, 

nitrogen mN2, water mw,ca, and supply manifold air msm given in 

(1)-(4). The rate of change of supply and return manifold 

pressures, psm and prm, are governed by energy conservation in 

(5)-(6). 

 

2 2, 2, 2 ,in outO O O O rct

d
m W W W

dt
= − −   (1) 

2 2, 2 ,in outN N N

d
m W W

dt
= −   (2) 

TABLE I 

FUEL CELL SYSTEM MODEL SPECIFICATIONS 

Fuel Cell 

Stack 

Membrane Type Proton Electrolyte 

Maximum Power 75 kW 

No. of Cells (n) 381 

Membrane Thickness (tm) 0.01275 cm 

Cell Active Area 280 cm2 

Compressor 

Manufacturer Allied Signals 

Type Centrifugal 

Maximum Power 12.5 kW 

Operating 

Parameters 

Nominal Temperature (Tfc) 353 K 

Nominal Membrane  

Water Content (λm) 
14 (100% hydrated) 

 

stI

cmv

net
P

2Oλ

 
 

Fig. 1.  Fuel cell system model, comprised of fuel cell stack, anode, cathode, 

cooler, humidifier, compressor, and compressor motor. Air flow in the fuel cell 

system is regulated using an extremum seeking controller. 

 

 
 

Fig. 2.  Air supply subsystem, indicating model state variables, oxygen excess 

ratio λO2, stack temperature Tfc, and membrane water content λm. 
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, , , , , , ,w ca v ca in v ca out v gen v mbr

d
m W W W W

dt
= − − −   (3) 

sm cp sm

d
m W W

dt
= −   (4) 

( )sm cp cp sm smatm

a sm

d R
p W T W T

dt M V

γ
= −   (5) 

( )fc

rm ca rmca

a rm

RTd
p W W

dt M V
= −   (6) 

 

where m, p, W, γ, R, M, V, T denote mass, pressure, mass flow 

rate, ratio of specific heat capacities for air, universal gas 

constant, molar mass of atmospheric air, volume, and 

temperature, respectively. The subscripts denote the location 

of the variable, e.g., Wsm is the mass flow rate of air in the 

supply manifold and Tcp is the temperature of air in the 

compressor.  

 The state equations for the anode model the rate of change 

of mass for hydrogen mH2 and water mw,an, via the mass 

conservation principal in (7)-(8). These molecules arise as 

products of the chemical reaction in the stack. 

 

2 2, 2 ,inH H H rct

d
m W W

dt
= −   (7) 

, , , ,w an v an in v mbr

d
m W W

dt
= −   (8) 

 

 Air is supplied to the cathode by a compressor, which is 

powered by a motor that consumes energy generated from the 

fuel cell stack. The mass flow rate of air produced by the 

compressor Wcp is related to psm in (5) and the compressor 

speed ωcp, which is governed by the following inertial 

dynamics: 

 

 ( )cp cp cm cm v cp cp

d
J K v k

dt
ω ω τ= − −   (9) 

 

where Jcp, vcm, τcp, Kcm, kv denote the compressor inertia, motor 

input voltage, compressor driving torque, and motor 

constants, respectively. The model states are accumulated in 

the state vector 

 

2 2 2, ,, , , , , , , ,
T

O N w ca sm sm rm H w an cpx m m m m p p m m ω =     (10) 

 

B. Output Equations 

A critically important variable in our analysis is the oxygen 

excess ratio, which describes the excess oxygen supplied to 

the cathode as follows: 

 

 2

2

2

,

,

O in

O

O rct

W

W
λ =   (11) 

 

where WO2,in and WO2,rct are the mass flow rates of oxygen 

entering the cathode and consumed by the chemical reaction, 

respectively. A value of λO2 = 1 indicates the amount of 

oxygen supplied to the cathode is equal to the amount required 

by the stoichiometric chemical reaction 2H2 + O2 → 2H2O. 

WO2,rct is directly proportional to the current drawn from the 

fuel cell stack Ist according to 

 

 
2 2,

4

st
O rct O

nI
W M

F
=  (12) 

 

where MO2, n, and F are the oxygen molar mass, number of 

cells in the stack, and Faraday number, respectively. As a 

result, if a constant amount of oxygen is supplied to the 

cathode, λO2 will decrease as Ist increases, which corresponds 

to oxygen starvation. 

Since stack power is the product of current and voltage, let 

us review the phenomena associated with stack voltage.  The 

stack voltage is comprised of the open circuit voltage E and 

voltage losses. These losses are typically categorized as 

activation loss vact, ohmic loss vohm, and concentration loss 

vconc, thus furnishing the following equation 

 

 
st act ohm concv E v v v= − − −  (10) 

 

where each term on the right-hand side of (10) is calculated 

from physical properties and parameters empirically derived 

from experimental data [7]. These terms are generally 

nonlinear functions of both fuel cell stack temperature Tfc and 

water membrane content λm.  

The power produced by the fuel cell stack is given by the 

product of stack current Ist and stack voltage vst. The 

compressor motor draws power generated from the fuel cell 

stack according to the product of current Icm and voltage vcm. 

As a result, the net power produced by the entire fuel cell 

system is 

 

 
net st st cm cmP I v I v= −  (18) 

 

where vcm serves as the control input from the extremum 

seeking feedback loop and Icm is defined by the compressor 

motor model. 

III. STEADY-STATE ANALYSIS 

Equation (11) indicates that high oxygen excess ratio λO2 

corresponds to more oxygen supplied to the cathode, which 

improves the power generated by the stack Pst. However, if λO2 

is too large, then net power Pnet decreases due to excessive 

power demanded by the air compressor, as shown by (18). As 

a result, there exists an optimal value for λO2 that maximizes 

Pnet by trading off stack power production and compressor 

motor power consumption. 

Using the fuel cell system model developed in [7], we 

investigate the effect of varying system parameters on the 

optimal value of λO2. Fig. 3 demonstrates that the value of Pnet 

increases as Tfc increases, since more energy is released by the 
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governing chemical reaction. Also, as the fuel cell membrane 

water content increases (zero hydration at λm=0; full hydration 

at λm=14), Pnet also increases, since high membrane humidity 

promotes high proton conductivity. Moreover, the range of 

maximum net power points for varying stack temperatures 

changes depending on membrane water content. At lower 

membrane water content values (e.g. λm=4), the range of 

maximum net power values is more drastic compared to when 

the membrane is fully hydrated.  

It is most interesting to note that the optimal value of λO2 

fluctuates and ranges between 2.4 and 2.7, which is different 

from the results found in [6], [7], [11], [12]. This implies that 

improved performance may be achieved by identifying the 

optimal λO2 value and regulating the system about this point. 

Since the optimal value of λO2 changes with respect to these 

time-varying parameters, an on-line optimization control 

scheme is necessary to achieve maximum power output over 

the entire operating range. 

IV. EXTREMUM SEEKING PROBLEM FORMULATION 

A. Optimization Formulation 

The goal of this paper is to maximize the net power output 

Pnet of the fuel system by means of air flow control. This 

problem can be summarized mathematically as: 

 

Maximize: ( ), ,netP J x u w=  (19) 

 

Subject to: ( ), ,x f x u w=ɺ  (20) 

 x X∈  (21) 

 u U∈  (22) 

 

where the objective J(x,u,w) is the system output function 

from (18) relating the model states x in (10), control input u, 

and disturbance inputs w to the objective function value. In the 

fuel cell system model discussed in this paper, u corresponds 

to the compressor motor voltage vcm, and the disturbance input 

w corresponds to the demanded fuel cell stack current Ist. The 

optimization is subject to the fuel cell system dynamics 

f(x,u,w) briefly surveyed in Section II, and the set constraints 

X and U, representing a feasible sets of states and controls, 

respectively. We refer to these set constraints as admissible 

states and controls.  

As discussed in Section III, the oxygen excess ratio λO2 

(functionally dependent on the states x) is a critical value for 

understanding how mass air flow relates to net power. 

Therefore, if we require the fuel cell system to operate within 

some neighborhood of the maximum net power point, it may 

be reasonable to impose simple bounds on λO2 to avoid oxygen 

starvation and membrane dehydration. This is mathematically 

represented by the set constraint  

 

 { }
2

: [1.4,3.0]OX x λ= ∈  (23) 

 

Imposing this constraint within the control design requires a 

way to directly measure or accurately estimate λO2. For the 

present investigation, we assume such a method exists (e.g. 

using a Luenberger observer in [7]) and it does not 

significantly alter the model dynamics or output equations.  

 Actuator saturation constraints typically bound the set of 

admissible controls. In the case of a fuel cell system, this 

corresponds to minimum and maximum voltage inputs to the 

compressor motor. Hence, the set constraint U is defined as: 

 

 { }: [0V,220V]cmU u v= ∈  (24) 

 

The maximum compressor motor voltage corresponds directly 

to the compressor’s maximum power capacity. 

B. Extremum Seeking Control Architecture 

To maximize net fuel cell system power, we employ a 

simple yet widely studied extremum seeking (ES) scheme 

[13]-[17] for static nonlinear maps, shown in Fig. 4, adapted 

to account for the inequality constraints given by (23) and 

(24).  Before embarking on a detailed discussion of this 

method, we give an intuitive explanation of how the approach 

works, which can also be found in [13]-[15], but is presented 

here for completeness. 

The control scheme applies a slow periodic perturbation 

asin ωt to the signal û , which is the current estimate of the 

optimum value u
*
. If the perturbation is slow enough, then the 

plant appears as a static nonlinear map J(u) from the view of 

the extremum seeking loop. Hence, the plant outputs a 

periodic signal y. The band-pass filter then eliminates the DC 

component of y (or the augmented objective function value in 

the constrained case shown in Fig. 4. If the plant has a static 

maximum, as is the case for the fuel cell system in this study, 

then the output of the band-pass filter η will be in phase or out 
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Fig. 3.  Fuel cell system net power Pnet vs. oxygen excess ratio λO2 for stack 

current Ist =150A at different membrane water content λm. values (λm = 0 and λm 

= 14 are 0% and 100% hydration, respectively). 
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of phase with the perturbation signal asin ωt if û  is less than 

or greater than u
*
, respectively. This property is important, 

because when the signal η is multiplied by the perturbation 

signal sin ωt, the resulting signal ξ has a DC component that is 

greater than or less than zero if û  is less than or greater than 

u
*
, respectively. Therefore, the signal ξ can be thought of as 

the sensitivity (a
2
/2) J( û ) and we may use a gradient update 

law ûɺ =k(a
2
/2) J( û ) to force û  to converge to u

*
. 

This method for seeking extrema of static nonlinear maps 

requires the following assumptions about the closed loop 

system, which assist in selecting the ES parameters ω, a, k, 

and designing the band-pass filter: 

 

Assumption 1: The ES perturbation frequency ω is selected 

to ensure significant time scale separation between the ES 

feedback loop and plant dynamics. Therefore, the plant 

dynamics in (20) appear as instantaneous, and the objective 

function in (19) reduces to J(u). This assumption enables the 

use of a very simple ES control scheme for static maps. We 

note that other ES formulations exist without the time scale 

separation assumption, but they are generally much more 

complicated (e.g. [13], [14], [16], [18], [19]). 

 

Assumption 2: The objective function is locally convex with 

respect to the control, and has a maximum value of J(u
*
). 

 

Assumption 3: The values of k and a are sufficiently small to 

ensure the closed loop system remains stable for all time. In 

practice, however, one desires to set k and a as large as 

possible to increase convergence speed. As a result, the 

selection of these parameters involves a trade-off between 

convergence rate and stability. The proposed constrained 

extremum seeking approach eliminates this tradeoff to a 

certain degree, as discussed in Section V-B. 

 

Assumption 4: As discussed in [14], the signals asin ωt and η 

must be 

1. in phase for *û u<  

2. out of phase for *û u>  

for û  to converge to u
*
. This property must be satisfied by 

designing a band-pass filter which does not impose 

unwarranted phase lead as to violate the above assumption. 

Moreover, the band-pass filter must not attenuate the 

sinusoidal perturbation frequency, thus bounding the cutoff 

frequency from below.  

 

Remark: Butterworth filters are particularly useful for 

designing a band-pass filter that satisfies the assumptions 

above, due to the following three properties: (1) The pass 

band contains the perturbation frequency and is maximally flat 

with unity magnitude. (2) The phase response can be tuned to 

zero at the perturbation frequency by appropriately selecting 

the cutoff frequencies. (3) Frequency components greater than 

the perturbation frequency are attenuated. This is important 

because when η is demodulated, the DC component of ξ 

accurately represents the phase shift between perturbation and 

output signals. 

 

The inequality constraints are enforced by transforming 

(23) and (24) into exterior-point penalty functions, given by 

 

 
, ,cons cons u cons xJ J J= +  (27) 

 

2
min max

, min max
100 max ,0,cm cm cm cm

cons u

cm cm

v v v v
J

v v

  − −
= ×   

  

 (28) 

 2 2 2 2

2 2

2
min max

, min max
100 max ,0,

O O O O

cons x

O O

J
λ λ λ λ

λ λ

  − − 
= ×  
    

 (29) 

 

and augmenting these soft constraints to the objective function 

J(u). Here, we apply quadratic penalty functions that penalize 

the square of the percentage excursion outside the desired 

operating range. The concept of penalty functions is 

fundamental to constrained optimization theory [20] and 

similar to existing extremum seeking techniques [21]. 

However, the application of constrained optimization 

techniques to the extremum seeking architecture studied in 

[14] is novel, to the authors’ knowledge. 

V. SIMULATION RESULTS AND DISCUSSION 

A. Control Architectures 

To evaluate the performance characteristics of our proposed 

extremum seeking controller, we compare it to two simpler 

control architectures, referred to as static feedforward (sFF) 

and static feedforward with PI control (sFF + PI). 

k

s

sina tω sin tω

ξ

yu

û

w

( )

( )

, ,

, ,

x f x u w

y J x u w

=

=

ɺ

( )uxJcons ,

x

η

 
Fig. 4.  Extremum seeking (ES) control scheme. The perturbation frequency 

ω is chosen to ensure large time scale separation between the plant and 

feedback loop. Hence, the plant appears as a static nonlinear map J(u) from 

the viewpoint of ES. Jcons denotes the penalty function term. 
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The idea behind the sFF control configuration is to use a 

direct measurement of the disturbance input Ist to compute the 

compressor motor voltage required to maintain the oxygen 

excess ratio λO2 = 2. This takes the form of the open loop static 

feedforward compensator gsFF(Ist) = 0.67Ist + 33.55 in Fig. 

5(a), which is synthesized by inverting the DC gain of the 

plant. This controller is taken directly from [7] and is very 

simple to implement, but lacks the robustness properties of 

feedback controllers. Moreover, the oxygen excess ratio will 

not be exactly equal to two during transients or during 

steady-state if the DC gain of the plant model is inaccurate. 

One way to alleviate these issues is to introduce a feedback 

structure. 

In the sFF + PI control configuration, a static feedforward 

compensator calculates the optimal oxygen excess ratio at 

steady-state, given a measurement of the stack current Ist. 

Then the PI controller adjusts the compressor motor voltage 

vcm to regulate λO2 about the optimal value calculated by the 

feedforward block in Fig. 5(b). Unlike sFF, the static map 

gsff+PI(Ist) is a lookup table that determines the optimal λO2 for a 

given Ist.  We construct this lookup table by first simulating the 

model at various Ist and vcm values and then plotting the 

corresponding steady-state values of net power Pnet and λO2, 

shown in Fig. 6(a). Next we identified the value of λO2 that 

maximizes Pnet given Ist, which produced the lookup table 

shown in Fig. 6(b). In contrast to sFF, this approach 

determines the optimal set point for λO2 related to the 

disturbance Ist. However, it has two distinct drawbacks. First, 

the optimal λO2 value identified by the lookup table 

corresponds to steady-state response values only. As a result, 

optimality is not guaranteed during transients. Second, the 

lookup table is generated for a fuel cell stack temperature of 

Tfc = 353 K and membrane water content of λm = 14. As 

demonstrated in Section III, the optimum λO2 is quite sensitive 

to these system parameters. Hence, optimality is only 

guaranteed when these conditions are met exactly. 

B. Performance 

To illustrate how ES optimizes net power, we simulate the 

responses of compressor motor voltage vcm, oxygen excess 

ratio λO2, and net power Pnet to a stack current Ist input of 150A 

for the sFF, sFF + PI, and ES control architectures. The initial 

conditions are set to correspond with the steady-state values 

produced for operating conditions of Tfc = 353K and λm = 14. 

However, in these simulations we set Tfc = 293K and λm = 6 to 

understand how each controller deals with varying operating 

conditions. Similar results may be obtained with step or ramp 

inputs; however, a constant input and the aforementioned 

initial conditions provide results that are sufficient for 

understanding the fundamental performance differences 

among the control architectures. The perturbation frequency 

ω is set to 0.15 rad/sec. The band-pass filter is a third order 

Butterworth filter with cut-off frequencies at 0.07 and 0.3 

rad/sec.  

In Fig. 7, we observe that ES generates final values of Pnet = 

22.5 kW and λO2 = 2.64 that correspond to the optimal values 

found by the steady-state analysis in Fig. 3. The corresponding 

optimal compressor motor voltage is 151V. Moreover, the net 

power values generated are higher than either sFF or sFF + PI 

at steady-state. This indicates that the ES algorithm effectively 

identifies the optimal net power and oxygen excess ratio 

despite variations in stack temperature and membrane water 

content and produces superior power output relative to both 

sFF and sFF + PI. 

Typically, if one wishes to enforce the set constraints (23) 

and (24) without penalty functions, the ES parameters a, k, ω  

must be chosen conservatively and slowly increased until 

satisfactory results are obtained. However, the approach 

proposed here explicitly accounts for these constraints 

through a penalty function transformation. Therefore, there 

exists more freedom in selecting aggressive ES parameters. 

This is advantageous because the constrained ES algorithm 

guarantees that set constraints (23) and (24) are enforced and 

allows greater values of a and k, which increases the 

convergence speed [14], [16], but may result in overshoot. In 

Fig. 8, we investigate this property by running simulations for 

various values of k. These results show the net power output 

reaches the optimal value more quickly as k increases. 

However, it also makes the compressor motor voltage input 

more sensitive to perturbations, resulting in greater overshoot. 

Hence, applying penalty functions enables more aggressive 

ES parameter choices, which increases convergence speed 

with higher overshoot. Nevertheless, the penalty functions 

mitigate the tradeoff imposed by Assumption 3 of Section IV 

   
(a)                                              

 
                                                         (b) 

 
Fig. 5(a) Static feedforward (sFF) and (b) Static feedforward with PI control 

(sFF + PI) architectures. 
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Fig. 6(a) Net power at different stack current from gsff+PI(Ist), (b) Look-up 

table for gsff+PI(Ist) 
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to an extent, and allow faster convergence speed within an 

acceptable overshoot range. 

C. Discussion 

These simulation results indicate that ES converges to the 

optimal operating point and can account for time-varying 

parameters, such as stack temperature and membrane water 

content, by searching for the optimal compressor motor 

voltage online. The constrained extremum seeking approach 

allows the engineer to explicitly enforce set constraints 

representing sufficient membrane hydration and reactant 

oxygen supply. An additional benefit of the penalty functions 

is that it enables the designer to select more aggressive ES 

parameters to increase convergence speed, with satisfactory 

overshoot. 

Despite ES’s many desirable properties, it also comes with 

several drawbacks. First, the periodic perturbation may 

produce unacceptable oscillations in the system. Secondly, the 

ES algorithm presented here generally takes a long time to 

converge, even with penalty functions that allow for more 

aggressive ES parameters. This is a direct result of requiring 

the perturbation frequency to be at least one order of 

magnitude less the plant’s slowest eigenvalue. Third, when the 

system reaches the optimal operating point, the system 

oscillates about this value rather than converging to it exactly. 

In future work, we shall apply two techniques to resolve these 

drawbacks. First, we will investigate alternative periodic 

signal designs (e.g. square and saw-tooth waves) to determine 

if they improve convergence speed, as suggested by [22]. 

Second, we will apply a periodic perturbation signal with 

dynamic amplitude that converges to zero as ES converges to 

the optimal value u
*
. One simple method for doing this is to 

make the periodic perturbation signal exponentially decaying 

in amplitude [21]. 

VI. CONCLUSION 

This paper investigates a novel constrained extremum 

seeking method for maximizing the net power output of a 

PEM fuel cell system. First we review a popular model in the 

literature [6], [7] and analyze how the net power production 

changes with varying stack temperature and membrane water 

content. Then we define an optimal control problem with set 

constraints defining admissible state and control values. 

Finally, we simulate the proposed ES algorithm and compare 

its results against simple open loop and closed loop control 

architectures. The results indicate that ES is able to improve 

the net power output relative to the other controllers, despite 

variations in stack temperature and membrane water content. 

Moreover, exterior point penalty functions effectively enforce 

the set constraints and enable the use of more aggressive ES 

parameters to increase convergence speed for an appropriate 

level of overshoot. 
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Fig. 7.  Comparison of simulation results for each control architecture with 

initial conditions Tfc = 353K and λm = 14 simulated at Tfc = 293K and λm = 

6 , with ES parameters a = 2 and k = 12. 
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Fig. 8.  Net power response for various values of ES parameters k. Note the 

tradeoff between convergence speed and overshoot. 
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