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Abstract— Robustness and preservation of stability and syn-
chronization in the presence of structural changes is an im-
portant issue in the study of chaotic dynamical systems. In
this work we present a methodology to establish conditions for
preservation of stability in dynamical system in terms of linear
matrix polynomial evaluation. The idea is to construct a group
of dynamical transformations under which stability is retained
along the stable, unstable and synchronization manifolds using
simultaneous Schur decompositions.

I. INTRODUCTION

The study of stability preservation makes sense when
it comes to chaos control problems. As a matter of fact,
the generalized synchronization can even be derived for
different systems by finding a diffeomorphic transformation
such that the states of the slave system can be written as
a function of the states of the master dynamics (see [1]
and references therein). This result can be seen as a timely
contribution; however, in accordance to the goal of keeping
intact the stability under the transformation, a new question
arises: how can stability be preserved under transformations
suffered by a dynamical system? An answer to this question
might allow us to ensure synchronization in strictly different
systems, in the sense that stability of the error is preserved
under the transformation. In the case of linear dynamical
systems there exist several results of stability preservation,
for instance in [2], [3]. We propose a methodology to extend
some classic results of the dynamical systems theory by
preserving the signature of the real parts of the eigenvalues
of an underlying Jacobian matrix. This methodology is based
on the use of matrix theory tools, specifically, simultaneous
Schur decomposition, the closure under product and sum of
positive definite diagonal matrices and the eigenvalue sign-
preservation for both real and complex diagonal matrices
under matrix multiplication. We present a modified Chen
attractor to show the preservation of the synchronization
manifold.

II. MATHEMATICAL PRELIMINARIES

In this section we present the necessary definitions and
results that will allow us to prove the main propositions of
this paper.

Definition 1: The group of matrices A1, A2, . . . , An is

said to be Schur simultaneously decomposable if there exists

a unitary matrix U , where UU⊤ = U⊤U = I , such that

A1 = UT1U
⊤, A2 = UT2U

⊤, . . . , An = UTnU⊤, where

Ti are upper triangular matrices.
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For the following discussion consider the dynamical sys-
tem described by ẋ = f(x), where x ∈ R

n and f : R
n →

R
n is a continuous differentiable function of its argument.

Let A = ∂f
∂x

∣∣∣
x0

be the Jacobian matrix associated with f

evaluated at an equilibrium point x0.
Lemma 1: Consider the linear polynomial Pn(A) =∑n
i=0

MiA
i. Where A and Mi for all i are simultaneously

Schur decomposable matrices of our dynamical system’s

associated Jacobian matrix A = UTAU⊤ such that Mi =
UDMi

U⊤ where DMi
i = 1, . . . , n are positive definite

diagonal matrices. Any matrix polynomial Pn(A) which

fulfills σ(Pn(A)) = σ(A), where σ(Pn(A)) and σ(A) are

the spectra of Pn(A) and A, respectively, will preserve the

system’s hyperbolicity.

III. LOCAL STABLE-UNSTABLE MANIFOLD
THEOREM EXTENSION

The following proposition is a simple extension of the
Local Stable-Unstable Manifold Theorem for the action of
matrix polynomials Pn(X) =

∑n
i=0

MiX
i on the matrix

A and the vector field f(x) where A, the system’s linear
coefficients matrix, may be decomposed as A = UTAU⊤

with TA an upper triangular matrix, UU⊤ = U⊤U = I .
Mi ∈ ∆pd; i = 1, . . . , n, where ∆pd is the set of diagonaliz-
able matrices whose real coefficients are all positive and the
set Ψ as

Ψ = {Pn(X) |sgn(σ(Pn(X))) = sgn(σ(X))} (1)

where σ(Pn(X)) and σ(X) are the spectra of Pn(X) and
X , respectively.

This proposition is an alternative result to proposition 4.2
presented in [4].

Proposition 1: Let E be an open subset of R
n contain-

ing the origin, let f ∈ C1(E), and let φt be the flow
of the nonlinear system ẋ = f(x) = Ax + g(x). Suppose
that f(0) = 0 and that A =Df(0) has k eigenvalues with
negative real part and n − k eigenvalues with positive real
part, i.e., the origin is an hyperbolic fixed point. Then for
each polynomial Pn(A) ∈Ψ, as defined in (1), there exists
a k-dimensional differentiable manifold SP tangent to the
stable subspace ES

P and and n−k dimensional differentiable
manifold WP tangent to the unstable subspace EW

P of the
linear system ẋ = Pn(A)x at 0.

In consequence this transformation preserves hyperbolic
points in nonlinear systems and dimension of the stable
and unstable manifolds, i.e, an hyperbolic nonlinear system
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(ẋ = Ax+g(x)) is mapped in a hyperbolic nonlinear systems
(ẋ = Pn(A)x+g(x)), and dimS = dimSP and dimW =
dimWP .

Sketch of Proof:

Consider a matrix A with Schur decomposition A =
UTAU⊤ and the modifying matrix Mi = UTDi

U⊤, M ∈
∆pd. Then Pn(A) =

∑n
i=1

MiA
i = U

(∑n
i=1

DMi
TA

i
)
U⊤

and the eigenvalues of the matrix MiA
i are the product of

the eigenvalues of matrices Mi and Ai.

Since each matrix Mi ∈∆pd, i = 1, . . . , n has all

diagonal elements strictly positive and M0 is selected

appropriately so that Pn(A) ∈ Ψ, then the matrix Pn(A)
has k eigenvalues with negative real part and n − k

eigenvalues with positive real part. Since the dimensions of

each manifold have not changed, the result is a consequence

of the Stable-Unstable Manifold Theorem and Lemma 1. �

This proposition is a generalization of the results proposed
in [5].

IV. PRESERVATION OF SYNCHRONIZATION IN
MODIFIED SYSTEMS

For simplicity we will consider a first order polynomial,
P (A) = MA + M0, for the examples presented in the
following sections.

Consider the following n-dimensional systems in a master-
slave configuration

ẋ = Ax + g(x)

ẏ = Ay + f(y) + u(t)

where A ∈ Rn×n is a constant matrix, f, g : Rn → Rn are
continuous nonlinear functions and u ∈ Rn is the control
input.

Considering the error state vector e = y−x ∈ Rn, f(y)−
g(x) = L(x, y) and an error dynamics equation

ė = Ae + L(x, y) + u(t)

choosing u(t) = Bv(t)−L(x, y), where B is a constant gain
matrix which is selected such that (A, B) be controllable.
Since the pair (A, B) is controllable a suitable choice for
state feedback is a linear-quadratic state-feedback regulator
[1], which minimizes the quadratic cost function.

This state-feedback law renders the error equation to
ė = (A − BK)e, with (A − BK) a Hurwitz matrix.

Now consider M ∈ ∆pd, and suppose that the following
two n-dimensional systems are chaotic:

ẋ = (MA + M0) x + g(x)

ẏ = (MA + M0) y + f(y) + û(t)

We have that û(t) = − (MBK + M0) e−L(x, y) stabilizes
the zero solution of the error dynamics system, i.e., the
resultant system

ė = (MA + M0 − MBK − M0) e

is asymptotically stable. The original control u(t) =
−BKe−L(x, y) is preserved in its linear part by the trans-
formation P (BK) and the new control is given by û(t) =

− (MBK + M0) e − L(x, y). Therefore the controller u(t)
which achieves the synchronization in the two original sys-
tems is preserved under the transformation P (BK) so that
û(t) achieves the synchronization in the two transformed
systems.

Take for example the Chen attractor, whose Jacobian,
L(x, y) and modifying matrices are defined as follows

A =




−35 35 0
−7 28 0
0 0 −3



 , L(x, y) =




0

−y1y3 + x1x3

y1y2 − x1x2



 ,

M =




3 −0.1 0

−0.1 4 0
0 0 2



 , M0 =




39 11 0
11 −53 0
0 0 5





where M and M0 were constructed using simultaneous Schur
decomposition.
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Fig. 1. Synchronization of modified Chen attractor and magnitude of error
|e| = |y − x| between master and slave systems in semi-logarithmic plot

In Figure 1 we have the transformed system’s dynamics,
which seem to preserve chaotic behavior, and the absolute
error of the master/slave system configuration where there is
clearly an effective convergence to zero.

V. CONCLUSIONS

It has been shown that a scheme consisting of a mas-
ter/slave pair for which a constant state feedback achieves
synchronization, the transformed master/slave/controller sys-
tem preserves this characteristic. It is an attempt to study how
a given collective dynamic can be preserved when changes
occur in the dynamical system. From the results we may
conclude that the fundamental properties of the synchro-
nization manifold are preserved thus showing that robustness
under the proposed transformations is a consequence of this
methodology.
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