
  

  

Abstract—A very successful scheme to accomplish trajectory 

tracking of unknown nonlinear systems consists of identifying 

the unknown dynamics using differential neural networks and 

on the basis of the so obtained mathematical model to develop 

an appropriate control law. The purpose of this paper is to 

present some new results in this sense. In particular, for the 

neural identifier, a new online learning law which permits to 

guarantee the boundedness for both the weights and the 

identification error without using a dead zone function is 

showed. Likewise, based on this neural identifier, a new control 

law to guarantee the boundedness of the tracking error is 

developed. These results are proved using a Lyapunov like 

analysis. With respect to the approach based on the local 

optimal control theory, the new approach has a similar 

performance but its main advantage consists of simplifying 

considerably the design process. The workability of the 

suggested approach is illustrated by simulation. 

I. INTRODUCTION 

RAJECTORY tracking is an issue of great importance 

in many applications of the automatic control. Basically, 

the trajectory tracking problem consists of forcing the states 

of a given plant in order that they follow a reference 

trajectory, by applying appropriate control actions to the 

plant input. An interesting case of this problem it occurs 

when the physical model of the plant is not available. Due to 

its practical implications, this case has received increasing 

attention during the last two decades and different strategies 

of solution have been proposed. One of these consists of 

accomplishing the control action based on a mathematical 

model provided by the online identification of the plant. 

From this perspective, a key question that should be 

answered is how to select the proper structure to achieve this 

identification. Besides, considering the lack of the physical 

model, it would be very convenient that this structure be 

general enough. In such cases, due to its properties as a 

universal approximator, an artificial neural network (ANN) 

could be a good option. 

An ANN is a well posed mathematical model with 

capabilities of “learning” and which is inspired by biological 

nervous systems. Roughly speaking, ANNs can be classified 

as static ones, using the, so called, back-propagation 

technique [1] or as recurrent ones [2]. In the first kind of 

networks, a system dynamics is approximated by a static 
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mapping; therefore, the network outputs are uniquely 

determined by the current inputs and weights. These 

networks have two major disadvantages: a slow learning rate 

(which can be inadequate for online training) and a high 

sensitivity of the function approximation to the training data. 

On the other hand, the second approach incorporates 

feedback in its structure. Thus, recurrent neural networks 

overcome many problems associated with first ones such as 

global extrema search and consequently they have better 

approximation properties. Depending on their structure, 

recurrent neural networks can be classified as (discrete-time) 

difference ones or (continuous-time) differential ones. In 

general, recurrent ANNs have demonstrated a good 

performance in applications for automatic control. In this 

sense, one of the first works for the continuous-time case was 

accomplished by Polycarpou and Ioannou. Effectively, in [3] 

it was employed Lyapunov stability theory to develop stable 

adaptive laws for identification and control of dynamic 

systems with unknown nonlinearities. However, the results of 

this work were restricted to SISO feedback linearizable 

systems. Afterward, in [4], Rovithakis extended these results 

to multi input systems simplifying, in addition, the 

assumptions about the unknown plant. Nonetheless, this 

work was only applicable to input affine nonlinear systems. 

On the other hand, in [5] and [6], a more general class of 

uncertain systems was considered. In that work, the control 

goal is to force the system states to track a prespecified 

trajectory. Starting from certain assumptions, such as the 

existence of a unique solution for a matrix Riccati equation, 

among others, a learning law with a dead zone function is 

designed by Lyapunov-like analysis to guarantee the 

boundedness of both the identification error and the weights 

of the neural network. Likewise, on the basis of this dynamic 

neural identifier, a controller is developed using the local 

optimal control theory. In spite of the effectiveness of this 

identifier-controller scheme, its main drawbacks are: 1) In 

order to improve the identification quality, it is necessary to 

reduce the size of the dead zone. This can be obtained by 

increasing a certain parameter associated to the Riccati 

equation. However, this parameter can only be increased up 

to certain level, beyond which no solution exists to the 

Riccati equation. 2) The implementation of the suggested 

control law requires solving another Riccati equation. 

Consequently, the design process could be awkward. 

Thereby, in this paper, we present a new learning law by 

which is possible to guarantee the boundedness of the 
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weights of the neural network without using the dead zone 

function. Likewise, we propose a new control law which has 

a performance similar to the law based on the optimal 

control theory but without the need of solving another 

Riccati equation. Therefore, these results simplify 

considerably the design process. The workability of 

suggested approach is illustrated by a simulation example in 

which a Lorenz model is controlled.  

II. DIFFERENTIAL NEURAL NETWORK 

A. Uncertain Dynamics and Basic Assumptions 

Since no physical model is available, at least certain 

assumptions about the unknown system must be 

accomplished. Consider that the uncertain measurable 

dynamics of this system can be described, in general, as  

( , , )t t tx f x u t=
i

                            (1) 

where 
n

tx ℜ∈  is the system state vector at time t +ℜ∈  

{ }: : 0 ,t t= ≥  
n

tu ℜ∈  is a given control action, and  

: n n nf +ℜ × ℜ × ℜ → ℜ  is an unknown nonlinear 

vector function. It is important to notice that (1) can always 

be represented alternatively by a known term plus an 

unknown term in the following way:  

( ) ( )1 2 ( , , )t t t t t t tx Ax W x W x u f x u tσ φ∗ ∗= + + + ∆�   (2) 

where n nA ×ℜ∈  is a Hurwitz matrix, 1
n mW ∗ ×ℜ∈  and 

2
n nW ∗ ×ℜ∈  are constant matrices,  ( ) : n mσ ⋅ ℜ → ℜ  

is the activation vector-function with sigmoidal components, 

that is, ( )σ ⋅  := ( ) ( )[ ]1 ,  ...,  mσ σ⋅ ⋅ ᵀ
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() : n nφ ⋅ ℜ → ℜ  is a diagonal matrix function with 

sigmoidal components, that is, 
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and : n n nf +∆ ℜ × ℜ × ℜ → ℜ  is an error term which 

may include both unmodelled dynamics and deterministic 

disturbances. ( , , )t tf x u t∆   is simply defined as  

( ) ( ) ( )1 2( , , ) : , ,t t t t t t t tf x u t f x u t Ax W x W x uσ φ∗ ∗∆ = − − −

Hereafter we consider that the following assumptions are 

complied: 

A.1) System (1) satisfies the (uniform on t) Lipschitz  

condition, that is, 

   
( ) ( ) 1 2

1 2

, , , ,

, ; , ; 0 ,n n

f x u t f z v t L x z L u v

x z u v L L

− ≤ − + −

ℜ ℜ ≤ < ∞∈ ∈

 (3) 

A.2) The function and  () ()σ φ⋅ ⋅  satisfy sector conditions [8]:  

                     
2

,TT
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u u D u
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        where                  

                             : tt tx x∆ = −�                           (4)     
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       and ,m m
σ

×Λ ℜ∈ n nDσ
×ℜ∈ , ,n n

φ

×Λ ℜ∈       

     n nDφ
×ℜ∈  are known constant positive definite 

       matrices.  

A.3) Admissible controls are bounded, to be precise, 

{ }2: :adm
t tU u u u= ≤ < ∞ . Besides, ut does 

not violate the existence of the solution to ODE (1). 

A.4) Error term is bounded by  

                                 
2

( , , )
f

t tf x u t ηΛ∆ ≤      

     where n n
f

×Λ ℜ∈  is a constant positive definite matrix. 

A.5) The matrices 1W ∗
 and 2W ∗

 are bounded in the 

following sense  

                           

1
11 1

1
22 2

T

T

W W W

W W W

σ

φ

∗ − ∗

∗ − ∗

Λ ≤

Λ ≤
 

where 1 ,n nW ×ℜ∈  2
n nW ×ℜ∈  are known 

positive definite matrices. 

A.6) There exits a strictly positive definite matrix Q0 such  

that if the matrices R and Q are defined as  

                           

1
1 2

0

:

:

fR W W

Q D uD Qσ φ

−= + + Λ

= + +
                  (6)                       

       then the following matrix Riccati equation  

                          0TA P PA PRP Q+ + + =            (7) 

   has a positive solution 0TP P= >  (in [6] there are     

   given conditions for matrices A, R and Q which  

   guarantees the existence of P>0).  

It is worth mentioning that the preceding assumptions are 

not unrealistic. On the contrary, they are generally met for 

physically meaningful dynamic systems. 

B. New Differential Learning Law 

Consider the neural identifier with the following structure 

( ) ( )1, 2,ˆ ˆ ˆ ˆt t t t t t t

d
x Ax W x W x u

dt
σ φ= + +      (8)      

where n
tx ℜ� ∈  is the state of the neural network and  

1,tW  and 2,tW  are the weight matrices. This neural network 

can be classified as generalized Hopfield-type one [9]. In 

particular, to adjust online the weights of (8) and reduce the 

identification error : ,tt tx x∆ = −�  we propose the 

following learning law: 
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where K1, K2 are positive definite matrices which are 

selected by the designer, P is the solution of matrix Riccati 

equation given by (7) and 
�

�

1, 1, 1

2, 2, 2

:

:

t t

t t

W W W

W W W

∗

∗

= −

= −
                    (10) 

Next, the basic result on the identification process of 

unknown measurable dynamics (1) by the neural network (8) 

is formulated: 

 Theorem 1: If the assumptions A.1- A.6 are satisfied and the 

weight matrices 1,tW  and 2,tW  of the neural network (8) 

are adjusted by the differential learning law (9) then 

a) both the identification error and the weights are 

bounded: 

 1, 2,, ,t t tW W L∞∆ ∈                    (11) 

b) the identification error has the following upper bound: 

               

( )
1 1
2 2

min 0

limsup T
t t

t

P
P Q P

η

λ − −
→ ∞

∆ ∆ ≤       (12)   

Proof: Before beginning the analysis, we determine the 

dynamics of the identification error. From (4), the first 

derivative of  t∆  is 

                              t tx x∆ = −
ii i

�                            (13) 

substituting (8) and (2) into (13) yields 

( )

(14)

1, 1 2,

2

( ) ( )

( )                              
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t t
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adding and subtracting the terms ( )1 t̂W xσ∗  and ( )2 t̂ tW x uφ∗  

and taking into account equations (5) and (10), (14) can be 

expressed as  

� �

(15)

1, 2,1

2

( ) ( )

                                     

t t t tt tt t

tt

A W x W W x u

W u f

σ σ φ

φ
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+ − ∆

i

� ��

�

To begin the analysis, we select the following non-negative 

function  

� � � �1 1
1, 1, 2, 2,1 2:
T TT

t t t tt t tV P tr W K W tr W K W− −   = ∆ ∆ + +      
(16) 

where P is the positive solution for the matrix Riccati 

equation given by (7). The first derivative of  Vt  is 

  ( ) � �11, 1,1
TT

t t tt t

d d
V P tr W K W

dt dt
− = ∆ ∆ +   

i

 

   � �12, 2,2
T

t t
d

tr W K W
dt

− +   
                         (17) 

Each term of (17) will be calculated separately. For 

( )T
t t

d
P

dt
∆ ∆ , we have  

2T T
tt t t

d
P P

dt
∆ ∆ = ∆ ∆

i

                     (18) 

substituting (15) into (18) yields 

�

�
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2
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On the other hand, for � �11, 1,1
T

t t
d

tr W K W
dt

− 
  

, using several 

properties of the trace of a matrix, we obtain  

� � � �( )1 1
1, 1, 1, 1,1 1
T T

t t t t
d d

tr W K W tr W K W
dt dt

− −   =      
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if (10) is differentiated then  

�1, 1,t tW W=
i i

 

but 1,tW
i

 is given by the learning law (9). Thus, substituting 

(9) into the last term of (20),  � �11, 1,1
T

t t
d

tr W K W
dt

− 
  

 can be 

calculated as  
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proceeding in a similar way for � �12, 2,2
T

t ttr W K W− 
  
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2, 2, 2,2 2 ( )
T T

tt t tt t

d
tr W K W PW x u

dt
φ−  = − ∆  
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 ( ) � �
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2, 2,m in 0 2
T

t tP Q P tr W K Wλ − − − −   
 (22) 

finally, substituting (19), (21), and (22) into equation (17), 

tV
i

 can be expressed as  
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now, we need to find an upper bound for tV
i

. To 

accomplish this task, first we consider the term 

12 T
tt PW σ∗∆ � . Since this term is an scalar, it is possible to 

express it alternatively as  

1 1 12 T T TT
t tt t ttPW PW W Pσ σ σ∗ ∗ ∗∆ = ∆ + ∆� � �  

using the matrix inequality proved in [6] 
1T T T TX Y Y X X X Y Y−+ ≤ Γ + Γ        (24) 

which is valid for any , n kX Y ×ℜ∈  and for any positive 

definite matrix 0 ,T n n×< Γ = Γ ℜ∈  12 T
tt PW σ∗∆ �   

can be bounded by  
1

1 1 12 T T T T
tt t t tPW PW W Pσ σσ σ σ∗ ∗ − ∗∆ ≤ ∆ Λ ∆ + Λ� � �  

but, from the assumptions A.2 and A.5, we can conclude  

112 T T T
tt t t t tPW PW P Dσσ∗∆ ≤ ∆ ∆ + ∆ ∆�     (25) 

likewise, using the inequality (24) in 22 T
t ttPW uφ∗∆ � , we 

have  
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2 2 2

1
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2

2
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φ φ φ

φ φ

∗ ∗ ∗

∗ − ∗

∆ = ∆ + ∆

≤ ∆ Λ ∆ + Λ

≤ ∆ ∆ + ∆ ∆

� � �

� �

This last inequality is concluded by the assumptions A.2, 

A.3, and A.5. On the other hand, the following inequality is a 

corollary from (24): 
1T T T TZ Y Y Z Z Z Y Y−− − ≤ Γ + Γ  

which is valid for any  , n kZ Y ×ℜ∈  and for any positive 

definite matrix  0 T n n×< Γ = Γ ℜ∈ . Using this result 

to bound  2 T
t P f− ∆ ∆ , we find that  

12 T T T
t f t f t f f fP P P−− ∆ ∆ ≤ ∆ Λ ∆ + ∆ Λ ∆  

but, in accordance with the assumption A.4 
12 T T

t f t f tP P P η−− ∆ ∆ ≤ ∆ Λ ∆ +             (27) 

substituting (25), (26), and (27) into (23), the following 

bound for  tV
i

  can be determined  
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i

 

Adding and subtracting 0
T
t tQ∆ ∆  into the right-hand side of 

the last inequality, the expression 

( )11 2 0
T

fA P PA P W W P D D u Qσ φ
−+ + + + Λ + + +

is formed. However, this expression in accordance with the 

assumption A.6 is equal to zero. Then 

( ) � �
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1
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1
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T
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T
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T
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≤ −∆ ∆ +
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Now, we consider that 

( )
1 1 1 1
2 2 2 2

0 0
T T
t t t tQ P P Q P P− −∆ ∆ = ∆ ∆  

using Rayleigh inequality [7] , we obtain 

( )
1 1
2 2

min 0 0
T T
t t t tP Q P P Qλ − − ∆ ∆ ≤ ∆ ∆  

or else 

( )
1 1
2 2

0 min 0
T T
t t t tQ P Q P Pλ − −−∆ ∆ ≤ − ∆ ∆  

consequently,  

( )

( ) � �
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1 1
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1
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T
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 −   

 − +  
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from the definition (16) for the non-negative function tV , 

finally tV
i

 can be bounded as  

( )
1 1
2 2

min 0t tV P Q P Vλ η− −≤ − +
i

 

which implies that  

( ) ( )( )0 exp 1 exptV V t t
η

ξ ξ
ξ

≤ − + − −      (29) 

where ( )
1 1
2 2

min 0P Q Pξ λ − −= . Since tV  is an upperly 

bounded non-negative function then 1, 2,, ,t t tW W L∞∆ ∈  

and the first part of the theorem 1 has been proved. On the 

other hand, from definition of  tV  (16) is evident that 

T
t t tP V∆ ∆ ≤  

but from (29) 

( ) ( )( )0 exp 1 expT
t tP V t t

η
ξ ξ

ξ
∆ ∆ ≤ − + − −  

finally, taking limsup
t →∞

 for both sides of the last inequality, 

we can conclude that 

( )
1 1
2 2

min 0

limsup T
t t

t

P
P Q P

η

λ − −
→∞

∆ ∆ ≤  

and the last part of the theorem 1 has been proved.            � 

III. TRAJECTORY TRACKING BASED ON THE NEURAL 

IDENTIFIER 

In this section, on the basis of the neural network identifier 

(8), we will design a controller to force the nonlinear system 

(1) to track a reference trajectory  

 n
tx ∗ ℜ∈  
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which is assumed to be smooth enough. This trajectory is 

regarded as a solution of a nonlinear reference model given 

by 

( ),t tx x tϕ∗ ∗=�                             (30) 

with a known fixed initial condition. In other words, we 

would like to synchronize the dynamics (1) with a given 

reference dynamics given by (30). If the trajectory has points 

of discontinuity in some fixed moments, we can use any 

approximating trajectory which is smooth. In the case of 

regulation problem, we have 

( ), 0, (0)tx t x kϕ ∗ ∗= =  

where k is a known constant vector. 

 Theorem 2: If the following control law is used  

[ ] { }
1

2, 1,( ) ( ) ( )t t t t t t t t tu W x x Ax W x C x xφ σ
− ∗ ∗= − − − −�

                      (31) 

where C  is a positive definite matrix which is selected by the 

designer such that 

1
max

min

( )
( )

2
f

C
λ

λ
−Λ

> , then the 

tracking error which is defined as :t t te x x ∗= −  has the 

following upper bound:  

2
0 1

min max2 ( ) ( )
t

f

e e
C

η

λ λ −≤ +
− Λ

 

 

  Proof: We can see that another alternative representation 

for (1) is given by 

( ) ( )1, 2,t t t t t t t tx Ax W x W x uσ φ δ= + + +�   (32) 

where tδ  is an error term. Since ( )1,t t tAx W xσ+ +  

( )2,t t tW x uφ   with the weights  1,tW  and  2,tW   adjusted 

by (9) is a better approximator than simply 

( ) ( )1 2t t t tAx W x W x uσ φ∗ ∗+ +  then  

   
22 ( , , )

f f
t t tf x u tδ Λ Λ≤ ∆  

However, from the assumption A.4, we have 
2

ftδ ηΛ ≤                              (33) 

On the other hand, substituting the control law (31) into (32) 

and after some operations, yields 

( )t t t t tx x C x x δ∗ ∗= − − +� �  

considering that in accordance with the definition  

t t te x x∗= −  and consequently t t te x x ∗= −� � � , we can 

obtain 

t t te Ce δ= − +�                         (34) 

which is the dynamics of the tracking error. To analyze the 

behavior of this dynamics, we use the following Lyapunov 

function candidate 
T

t t tV e e=  

The first derivative of  tV  is  

2 T
t t tV e e=� �                                (35) 

substituting (34) into (35) yields 

2 2T T
t t t t tV e Ce e δ= − +�  

Now, in accordance with Rayleigh inequality 

min2 2 ( )T T
t t t te Ce C e eλ− ≤ −  

Likewise, using the inequality (24), the term 2 T
t te δ  can be 

estimated by 
12 T T T

t t t f t t f te e eδ δ δ−≤ Λ + Λ  

However, using again Rayleigh inequality and in accordance 

with (33), we obtain 
1

max2 ( )T T
t t f t te e eδ λ η−≤ Λ +  

then, using these results, tV�  can be bounded as  

( )1
min max2 ( ) ( )t f tV C Vλ λ η−≤ − − Λ +�  

which implies that  

( ) ( )( )0 exp 1 exptV V t t
η

γ γ
γ

≤ − + − −  

where 1
min max2 ( ) ( )fCγ λ λ −= − Λ . Since, by 

hypothesis,  

1
max

min

( )
( )

2
f

C
λ

λ
−Λ

>   then  

0 1
min max2 ( ) ( )

t
f

V V
C

η

λ λ −≤ +
− Λ

 

Finally, we can conclude that 

  0 1
min max2 ( ) ( )

t
f

e V
C

η

λ λ −≤ +
− Λ

      

                                                                                     � 

IV. SIMULATION RESULTS 

In this section, the results proposed in this work are 

applied to control a Lorenz model. This model is used for the 

fluid conviction description especially for some feature of 

atmospheric dynamics [10]. The uncontrolled model is given 

by  

1 2 1

2 1 2 1 3

3 3 1 2

( )x x x

x x x x x

x x x x

σ

ρ

β

= −

= − −

= − +

i

i

i

                    (36) 

where x1, x2 and x3 represent measures of fluid velocity, 

horizontal and vertical temperature variations, 

correspondingly. The parameters σ, ρ and β are positive 
parameters that represent the Prandtl number, Rayleigh 

number and geometric factor, correspondingly. We select σ 
= 10, β = 8/3, and ρ=28. On the other hand, the Lorenz 
system subjected to a control can be expressed as [11] 

1 2 1 1

2 1 2 1 3 2

3 3 1 2 3

( )x x x u

x x x x x u

x x x x u

σ

ρ

β

= − +

= − − +

= − + +

i

i

i

                (37) 
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In particular, we consider that (37) has the following initial 

condition: 0 [0, 0.5, 3]Tx = − . Now we will manage to 

force this system into a desirable periodic trajectory. The 

nonlinear reference model to be followed is selected as: 

                                  

1 2

2 1

3

sin( )

4

x x

x x

x

∗
∗

∗
∗

∗

=

=

=

i

i                             (38) 

with initial conditions equal to 1 2(0) 1, (0) 0x x∗ ∗= = . The 

main parameters for the control law (31) and the learning law 

(9) are selected as 

1

2 0

( 2, 1, 3.5), (15,10,17)

(20,18,11), (4,8,7)

(10, 9,5), (0.5, 0.5, 0.5)

A diag P diag

C diag K diag

K diag Q diag

= − − − =

= =

= =

 

The trajectory tracking results are shown in Fig. 1 and Fig. 2 

for x1,t and x2,t, respectively. The solid lines correspond to the 

states of the reference dynamics (38), the dashed lines are the 

states of Lorenz system (37). 
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Fig. 1.  Tracking process result for x1, t 
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Fig. 2.  Tracking process result for x2, t 

V. CONCLUSIONS 

In this work, we have proposed a new learning law for a 

neural identifier. The boundedness of both the weights and 

the identification error has been guaranteed without resorting 

to any dead zone method. Likewise, a control law has been 

developed on the basis of this neural identifier without 

resorting to optimal local control theory. Therefore, our main 

contribution has been to simplify the design process of 

controllers based on differential neural networks in order to 

accomplish trajectory tracking 
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