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Abstract— This paper presents a new fundamental approach
to modal participation analysis of linear time-invariant systems,
leading to new insights and new formulas for modal partic-
ipation factors. Modal participation factors were introduced
over a quarter century ago as a way of measuring the relative
participation of modes in states, and of states in modes, for
linear time-invariant systems. Participation factors have proved
their usefulness in the field of electric power systems and in
other applications. However, in the current understanding, it is
routinely taken for granted that the measure of participation of
modes in states is identical to that for participation of states in

modes. Here, a new analysis using averaging over an uncertain
set of system initial conditions yields the conclusion that these
quantities should not be viewed as interchangeable. In fact,
it is proposed that a new definition and calculation replace the
existing ones for state in mode participation factors, while the
previously existing participation factors definition and formula
should be retained but viewed only as mode in state participation
factors. Examples are used to illustrate the issues addressed and
the results obtained.

I. INTRODUCTION

This paper presents new concepts, results, and formulas

in the subject of modal participation analysis of linear time-

invariant systems. This topic is an important component of

the Selective Modal Analysis (SMA) framework introduced

by Perez-Arriaga, Verghese and Schweppe [8], [13] in the

early 1980s. A main construct in SMA is the concept of

modal participation factors (or simply participation factors).

Participation factors are scalars intended to measure the

relative contribution of system modes to system states, and

of system states to system modes, for linear systems. The

work of these authors has had a major impact especially in

applications to electric power systems, where participation

factors as they were originally introduced have become a

routine tool for the practitioner and researcher alike.

Since their introduction, participation factors have been

employed widely in electric power systems and other ap-

plications. They have been used for stability analysis, order

reduction, sensor and actuator placement, and coherency and

clustering studies (e.g., [8], [13], [9], [2], [6], [3], [10]).
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Several researchers have also considered alternate ways of

viewing modal participation factors (e.g., [12], [4], [11]).

We study linear time-invariant continuous-time systems

ẋ = Ax(t) (1)

where x ∈ Rn and A is a real n× n matrix. We make the

blanket assumption that A has a set of n distinct eigenvalues

(λ1,λ2, . . . ,λn). The solution of Eq. (1) then takes the form

of a sum of modal components:

x(t) =
n

∑
i=1

eλitci (2)

where the ci are constant vectors determined by the initial

condition x0 and by the right and left eigenvectors of A.

In their study of modal participation for the system (1), the

authors of [8], [13] selected particular initial conditions and

introduced definitions motivated by the calculation of relative

state and mode contributions using those initial conditions.

In this paper, we take a different approach, building on our

previous work [1], in which definitions of modal participation

factors are formulated by averaging relative contributions of

modes in states and states in modes over an uncertain set of

initial conditions. In this approach, we consider initial con-

ditions to be unknown, and we take the view that performing

some sort of average over all possible initial conditions

should give a more reliable result than focusing attention

on one particular possible initial condition. The uncertainty

in initial condition can be taken as set-theoretic (unknown

but bounded) or probabilistic.

The main contribution of this paper is to reveal a previ-

ously unknown dichotomy in modal participation analysis.

To wit, although the definitions obtained in [8], [13], and

which have been in wide use since their introduction, give

identical values for measures of participation of modes in

states and for participation of states in modes, these are in

fact better viewed as fundamentally different, and should

be calculated using two distinct formulas. Summarizing, the

main contribution of this paper is as follows: we propose

replacing the existing definition of participation factors with

two separate definitions that yield distinct numerical values

for participation of modes in states and for participation of

states in modes. In this paper, the currently used participa-

tion factors measuring participation of states in modes are

replaced with a new first-principles definition, a particular

instance of which is an explicit formula given in Section

V. In addition, we show that our formula for participation

factors measuring participation of modes in states agrees

with the commonly used participation factors formula under
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reasonable assumptions on the allowed uncertainty in the

system initial conditions. Thus, a dichotomy is proposed in

the calculation of participation factors.

The paper proceeds as follows. In Section II, the orig-

inal definitions of modal participation factors are recalled

from [8], [13]. In Section III, basic examples are used to il-

lustrate the need for an approach that yields distinct formulas

for measuring the two main types of modal participation.

In Section IV, the initial condition uncertainty approach

we introduced to this topic in [1] is recalled and applied

to define mode-in-state participation factors. In Section V,

the proposed new definition of state-in-mode participation

factors is given, and an explicit formula is derived under a

simplifying assumption on the initial condition uncertainty.

Due to space constraints, here we provide the new analytical

formula for state-in-mode participation factors only for the

case of a mode associated with a real eigenvalue λi. The

formula for the case of a mode associated with a complex

conjugate pair of eigenvalues also follows along the same

lines and will be reported in detail elsewhere [5].

II. ORIGINAL DEFINITIONS OF PARTICIPATION FACTORS

In this section, the original definitions of modal participa-

tion factors are recalled from [8], [13]. Consider the linear

system (1), repeated here for convenience:

ẋ = Ax(t) (3)

where x ∈ Rn, and A is a real n × n matrix. The authors

of [8], [13] also make the blanket assumption that A has

n distinct eigenvalues (λ1,λ2, . . . ,λn). Let (r1
,r2

, . . . ,rn) be

right eigenvectors of the matrix A associated with the eigen-

values (λ1,λ2, . . . ,λn), respectively. Let (l1
, l2

, . . . , ln) denote

left (row) eigenvectors of the matrix A associated with the

eigenvalues (λ1,λ2, . . . ,λn), respectively. The right and left

eigenvectors are taken to satisfy the normalization [7]

lir j = δi j (4)

where δi j is the Kronecker delta:

δi j =

{
1 i = j

0 i 6= j

The solution to (3) starting from an initial condition x(0)= x0

is

x(t) = eAtx0 (5)

Since the eigenvalues of A are distinct, A is similar to a

diagonal matrix. Using this, Eq. (5) can be rewritten in the

form

x(t) =
n

∑
i=1

(lix0)eλitri
. (6)

From (6), xk(t) is given by

xk(t) =
n

∑
i=1

(lix0)eλitri
k. (7)

A. Relative participation of the i-th mode in the k-th state

To determine the relative participation of the i-th mode

in the k-th state, the authors of [8], [13] select an initial

condition x0 = ek, the unit vector along the k-th coordinate

axis. As seen next, this choice is convenient in that it results

in a simple formula for mode-in-state participation factors.

With this choice of x0, the evolution of the k-th state becomes

xk(t) =
n

∑
i=1

(li
kri

k)e
λit =:

n

∑
i=1

pkie
λit

. (8)

The quantities pki := li
kri

k (9)

are found to be unit-independent, and are taken in [8], [13]

as measures of the relative participation of the i-th mode in

the k-th state.

B. Relative participation of the k-th state in the i-th mode

The relative participation of the k-th state in the i-th

mode is studied in [8], [13] by first applying the similarity

transformation z := V−1x (10)

to system (3), where V is the matrix of right eigenvectors of

A:

V = [r1 r2 · · · rn] (11)

and V−1 is the matrix of left eigenvectors of A:

V−1 =






l1

...

ln




 . (12)

Then z obeys the dynamics

ż(t) = V−1AVz(t) = Λz(t), (13)

where Λ := diag(λ1,λ2, . . . ,λn), with initial condition z0 :=
V−1x0. This implies that the evolution of the new state vector

components zi, i = 1, . . . ,n is given by

zi(t) = z0
i eλit = lix0eλit =

[
n

∑
k=1

(li
kx0

k)

]

eλit
. (14)

For a real eigenvalue λi, clearly zi(t) represents the evolution

of the associated mode. If λi is not real, then the associated

mode is sometimes taken to be zi(t), but can also be taken

as the combination of zi(t) and its complex conjugate z̄i(t),
which reflects the influence of the eigenvalue λ̄i. In the

latter approach, we view λi and λ̄i as representing the same

“complex frequency.” In the past, the former convention

was used in most publications. In this paper, we allow both

interpretations, but we will find it convenient to use the latter

point of view when deriving a new state-in-mode participa-

tion factors formula for the case of complex eigenvalues.

In order to determine the relative participation of the k-

th state in the i-th mode, the authors of [8], [13] select an

initial condition x0 = ri, the right eigenvector associated with

λi. As seen next, this choice is convenient in that it results in

a simple formula for state-in-mode participation factors. We

will revisit this later using an uncertain initial condition, and
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obtain a different result. With this choice of initial condition

(x0 = ri), the evolution of the i-th mode becomes

zi(t) =

[
n

∑
k=1

(li
kri

k)

]

eλit =

[
n

∑
k=1

pki

]

eλit
. (15)

Based on Equation (15) and that for the chosen initial

condition x0
k = ri

k, k = 1, . . . ,n, the authors of [8], [13]

propose the formula
pki = li

kri
k (16)

as a measure of the relative participation of the k-th state in

the i-th mode.

Note that Eqs. (9), (16) provide identical formulas for

participation of modes in states and participation of states in

modes, respectively. For this reason, the same notation pki

was used for both types of participation factors until now.

III. MOTIVATING EXAMPLES SHOWING INADEQUACY OF

PARTICIPATION FACTORS FORMULA AS A MEASURE OF

STATE IN MODE PARTICIPATION

In this section, by way of motivation for the subsequent

analysis, two examples are given that show the need for

a new definition and a new formula for state in mode

participation factors.

Example 1 Consider the two-dimensional system

[
ẋ1

ẋ2

]

=

[
a b

0 d

]

︸ ︷︷ ︸

A

[
x1

x2

]

where a, b and d are constants with a 6= d. The eigenvalues

of A are λ1 = a and λ2 = d. The right eigenvectors associated

with λ1 and λ2 are

r1 =

[
1

0

]

and r2 =

[
1

d−a
b

]

,

respectively. The left eigenvectors associated with λ1 and λ2

and satisfying the normalization (4) are

l1 =
[

1 b
a−d

]
and l2 =

[
0 −b

a−d

]
,

respectively.

Before calculating the participation factors measuring the

influence of states x1 and x2 in mode 1,§ we write the

evolution of mode 1 explicitly. Using (14), we have

z1(t) = l1x0eλ1t =

[

1
b

a−d

][
x0

1

x0
2

]

eλ1t

=

(

x0
1 +

b

a−d
x0

2

)

eλ1t
. (17)

Note that the evolution of mode 1 is influenced by both x0
1

and x0
2, with the relative degree of influence depending on

the values of the system parameters a,b and d.

Calculating the participation factors using the original

definition, we find the participation factor for state x1 in mode

1 is p11 = l1
1r1

1 = 1, while the participation factor for state x2

§For simplicity, we use the terminology ‘mode i’ in place of ‘the mode
associated with eigenvalue λi .’

in mode 1 is p21 = l1
2r1

2 = 0. Thus, the original definition of

participation factors for state in mode participation indicates

that state x2 has zero influence on mode 1 regardless of

the values of system parameters a,b and d. This is in stark

contradiction to what we observed using the explicit formula

(17), and begs for a re-examination of the basic formula for

state-in-mode participation factors. �

Example 2 Consider the two-dimensional system

[
ẋ1

ẋ2

]

=

[
1 1

−d −d

]

︸ ︷︷ ︸

A

[
x1

x2

]

where d is a constant. The eigenvalues of A are λ1 = 0 and

λ2 = 1−d. The right eigenvectors associated with λ1 and λ2

are

r1 =

[
1

−1

]

and r2 =

[
1

−d

]

,

respectively. The left eigenvectors associated with λ1 and λ2

and satisfying the normalization (4) are

l1 =
[

−d
1−d

−1
1−d

]
and l2 =

[
1

1−d
1

1−d

]
,

respectively. Denote by V the matrix of right eigenvectors of

A:

V = [r1 r2] =

[
1 1

−1 −d

]

.

From the normalization condition (4), we can immediately

write

V−1 =

[
l1

l2

]

=

[ −d
1−d

−1
1−d

1
1−d

1
1−d

]

.

The evolution of the modes can be obtained using the

diagonalizing transformation z := V−1x as was done in (10)-

(13). The system modes are found to be
[

z1(t)
z2(t)

]

=

[
l1x0eλ1t

l2x0eλ2t

]

=

[ (
−d
1−d

x0
1 −

1
1−d

x0
2

)
eλ1t

1
1−d

(
x0

1 + x0
2

)
eλ2t

]

. (18)

Based on the original definition of participation factors,

the participation factor for state x1 in mode 2 is p12 = r2
1l2

1 =
1

1−d
, and the participation factor for state x2 in mode 2 is

p22 = r2
2l2

2 = −d
1−d

. Clearly, in general p12 6= p22. However,

from (18) we have the equation

z2(t) =
1

1−d

(
x0

1 + x0
2

)
eλ2t (19)

for the second mode z2(t), from which we observe that state

x1 and state x2 participate equally in mode 2 since z2(t)
depends on the initial condition x0 through the sum x0

1 + x0
2.

Again, we find that the state-in-mode participation factors as

commonly calculated yield conclusions that are very much

at odds with what one might consider reasonable based on

explicit calculation of the evolution of system modes as they

depend on initial conditions of the state variables. �
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The inadequacy of the original state-in-mode participation

factors formula has been demonstrated in the two examples

above. This motivates the need for a new formula that better

assesses the influence of system states on system modes.

IV. INITIAL CONDITION UNCERTAINTY APPROACH TO

DERIVATION OF MODE-IN-STATE PARTICIPATION

FACTORS

For systems operating near equilibrium, it is often rea-

sonable to view the system initial condition as being an

uncertain vector in the vicinity of the system equilibrium

point. In this paper, and in the authors’ previous work [1],

we approach the problem of measuring modal participation

by averaging relative contributions over an uncertain set of

initial conditions.

Next, we recall from our previous work [1] a basic

definition of relative participation of a mode in a state. This

definition involves taking an average over system initial con-

ditions of a measure of the relative influence of a particular

system mode on a system state. The initial condition uncer-

tainty can be taken as set-theoretic or probabilistic. In the

set-theoretic formulation, the participation factor measuring

relative influence of the mode associated with λi on state xk

is defined as

pki := avg

x0 ∈ S

(lix0)ri
k

x0
k

(20)

whenever this quantity exists. Here, x0
k = ∑

n
i=1(l

ix0)ri
k is

the value of xk(t) at t = 0, and “avgx0∈S
” is an operator

that computes the average of a function over a set S ⊂ Rn

(representing the set of possible values of the initial condition

x0). We assume that the initial condition uncertainty set S is

symmetric with respect to each of the hyperplanes {xk = 0},

k = 1, . . . ,n.

In the definition in [1] that starts with a probabilistic

description of the uncertainty in the initial condition x0, the

average in (20) is replaced by a mathematical expectation.

The general formula for the participation factor pki measur-

ing participation of mode i in state xk becomes

pki := E

{
(lix0)ri

k

x0
k

}

(21)

where the expectation is evaluated using some assumed joint

probability density function f (x0) for the initial condition

uncertainty (of course, this definition applies only when the

expectation exists).

Expanding the inner product term in (21), we find

pki = E

{
n

∑
j=1

(li
jx

0
j)r

i
k

x0
k

}

= E

{
(li

kx0
k)r

i
k

x0
k

}

+ E

{
n

∑
j=1, j 6=k

(li
jx

0
j)r

i
k

x0
k

}

= li
kri

k +
n

∑
j=1, j 6=k

li
jr

i
kE

{

x0
j

x0
k

}

. (22)

The second term in (22) vanishes when the components of

the initial condition vector x0
1,x

0
2, . . . ,x

0
n are independent with

zero mean [1]. Therefore, under the assumption that the

initial condition components x0
1,x

0
2, . . . ,x

0
n are independent

with zero mean, the participation of the i-th mode in the k-th

state is given by the same expression originally introduced

by Perez-Arriaga, Verghese and Schweppe [8], [13]:

pki = li
kri

k. (23)

This result can also be obtained using the set-theoretic

averaging formula (20) [1].

Remark 1: (Alternate Definition of Mode-in-State Partic-

ipation Factor for a Complex Mode) For a complex eigen-

value λi, the associated “mode” is taken above as the term

containing eλit in the system response (2). However, we can

alternately view this mode as consisting of the combined

contributions from λi and its complex conjugate eigenvalue

λ̄i. This viewpoint is easily seen to lead, under the same

symmetry hypotheses as above, to the following alternate

expression for the participation factor of the mode associated

with λi and λ̄i in state xk:

p̃ki = 2Re {li
kri

k}. (24)

V. NEW DEFINITION OF PARTICIPATION FACTORS

MEASURING PARTICIPATION OF STATES IN MODES

In this section, a new definition and calculation are given

for participation factors measuring contribution of states in

modes. The probabilistic approach presented in the previous

section is used, where the initial condition is assumed to

satisfy a joint probability density function. In order to obtain

an explicit formula from the new general definition of state-

in-mode participation factors, we find that it is necessary to

make an assumption on the probability distribution of the

initial condition which is more constraining than what was

needed in the analysis above for mode-in-state participation

factors. Thus, the explicit formula derived in this section

should be viewed in the pragmatic sense that it provides

an easy to use expression that reflects initial condition un-

certainty. Other assumed forms of uncertainty may not lead

to explicit formulas, although a formula requiring numerical

evaluation of integrals can always be obtained from the

definition. The explicit formula obtained here differs from

the single formula (16) that is currently used to measure both

state-in-mode participation and mode-in-state participation,

while the currently used formula (16) is retained here as

a measure of mode-in-state participation (noting that the

alternate formula (24) can also be used for the case of

a complex mode). This dichotomy represents a significant

departure from current practice. We will also use the new

formula to revisit the examples of Section III.

Consider the general linear time-invariant continuous-time

system given in (3), repeated here for convenience:

ẋ = Ax(t) (25)

1143



Recall from Section II the expression

zi(t) = eλit lix0 = eλit
n

∑
j=1

(li
jx

0
j). (26)

This equation shows the contribution of each component x0
j ,

j = 1, . . . ,n of the initial state x0 to zi(t). Recall also that

for the case of a real eigenvalue λi, zi(t) is identically the i-

th mode, while, for a complex eigenvalue λi, the associated

mode can be taken as zi(t) or as the combination of zi(t)
and its conjugate: zi(t) + ¯zi(t) = 2Re zi(t). The following

general definition of state-in-mode participation factors is

obtained by averaging the relative contribution of x0
k in the

i-th mode and evaluating the result at t = 0. In this definition,

we take the mode associated with a complex eigenvalue as

2Re zi(t), i.e., the combination of modal components due to

the eigenvalue and its conjugate. Had we decided to view

the mode associated with a complex eigenvalue λi as zi(t)
alone, we would use the first expression in the definition

below for both the case of a real and a complex eigenvalue.

However, the derivation following the basic definition below

of a simple final formula would become unwieldy for the

complex eigenvalue case.

Definition 1: For a linear time-invariant continuous-time

system (25), the participation factor for the k-th state in the

i-th mode is

πki :=







E

{
li
kx0

k

z0
i

}

if λi is real

E

{
(li

k+l̄i
k)x

0
k

z0
i +z̄0

i

}

if λi is complex

(27)

whenever the expectation exists.

Note that in (27), the notation z0
i means zi(t = 0) = lix0

and the bar denotes complex conjugation. Also, analogous

to the approach in Section IV, the quantities being evaluated

represent the contribution of state xk to a mode divided by

the total mode evaluated at time t = 0.

As was emphasized in the original work of [8], [13], defi-

nitions of modal participation factors should be independent

of the units in which the system state variables are measured.

This is indeed the case for the newly defined state in mode

participation factors πki. This can be shown readily, using an

argument similar to that in [1]. Thus, we have the following

important statement.

Proposition 1: The state in mode participation factors πki

introduced in Definition 1 are invariant to arbitrary changes

in the units of the system state variables xk.

Unfortunately, even under an assumption such as sym-

metry of the initial condition uncertainty, there is no single

closed-form expression for the state in mode participation

factors πki. To obtain a simple closed-form expression for the

state in mode participation factors πki using Eq. (27), we need

to find an assumption on the probability density function

f (x0) governing the uncertainty in the initial condition x0

that allows us to explicitly evaluate the integrals inherent in

the definition.

Due to space constraints, here we will give the derivation

of a particular analytical formula for state-in-mode partici-

pation factors only for the case of a real eigenvalue λi. The

derivation for a complex eigenvalue proceeds in the same

way (both are based on Definition 1 above and Lemma 1

below) and will be presented in detail elsewhere [5].

In the remainder of this section, we assume that the prob-

ability density function f (x0) is such that the components

x0
1,x

0
2, . . . ,x

0
n are jointly uniformly distributed over the unit

sphere in Rn centered at the origin:

f (x0) =

{
k ||x0|| ≤ 1

0 otherwise
(28)

(This is the same as assuming a uniform distribution in

an ellipsoid that is centered at the origin and symmetric

with respect to the coordinate hyperplanes in the original

state variable units, a physically palatable assumption and

independent of units by construction.) Here, the constant k

is chosen to ensure the normalization condition
∫

||x0||≤1
f (x0)dx0 = 1. (29)

The value of the constant k can be determined by evaluating

the integral in (29) using f (x0) given in (28):
∫

||x0||≤1
f (x0)dx0 =

∫

||x0||≤1
kdx0

1dx0
2 . . .dx0

n = kVn = 1 (30)

where Vn is the volume of the unit sphere in Rn. The constant

k is then given by

k =
1

Vn
. (31)

Next, the relative participation of the k-th state in the i-th

mode is evaluated using Definition 1 for a real eigenvalue

λi and under the assumption above on the distribution of

the initial condition x0. Before proceeding, we recall the

relationship between x0 and z0:

x0 = V z0 =
n

∑
j=1

r jz0
j . (32)

To determine the participation of the k-th state in the i-th

mode, we substitute x0
k = ∑

n
j=1 r

j
kz0

j in (27):

πki = E

{
li
kx0

k

z0
i

}

= E

{

li
k ∑

n
j=1 r

j

kz0
j

z0
i

}

= E

{
li
kri

kz0
i

z0
i

}

+
n

∑
j=1, j 6=i

li
kr

j

kE

{

z0
j

z0
i

}

= li
kri

k +
n

∑
j=1, j 6=i

li
kr

j

kE

{

z0
j

z0
i

}

. (33)

Note that the first term in (33) coincides with pki, the

original participation factors formula. We will show that, in

general, the second term in (33) does not vanish. This is true

even in case the components x0
1,x

0
2, . . . ,x

0
n representing the

initial conditions of the state are assumed to be independent.

This is due to the fact that the second term involves the

components of z0 (i.e., z0
1,z

0
2, . . . ,z

0
n) which need not be

independent even under the assumption that the x0
k are

independent, due to the transformation z0 =V−1x0. This was
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overlooked in [1], leading to the incorrect conclusion there

that the second term in (33) vanishes.

The following Lemma will be used below.

Lemma 1: For vectors a,b ∈ Rn with b 6= 0 we have

∫

||x||≤1

aT x

bT x
dnx =

aT b

bT b
Vn (34)

where dnx denotes the differential volume element

dx1dx2 · · ·dxn, and Vn is the volume of a unit sphere in Rn

which is given by

Vn =







2, n = 1

π, n = 2
2π
n

Vn−2, n ≥ 3

(35)

See [5] for a proof.

We now use Lemma 1 to simplify the expression (33) for

the participation factor for the k-th state in the i-th mode:

πki = li
kri

k +
n

∑
j=1, j 6=i

li
kr

j

kE

{

z0
j

z0
i

}

. (36)

Substituting z0
i = lix0 into (36) yields

πki = li
kri

k +
n

∑
j=1, j 6=i

li
kr

j
kE

{
l jx0

lix0

}

(37)

Denote a := (l j)T and b := (li)T . Then E
{

l jx0

lix0

}

is

E

{
l jx0

lix0

}

=

∫

||x0||≤1

l jx0

lix0
f (x0) dx0 = k

∫

||x0||≤1

aT x0

bT x0
dx0

Using Lemma 1 and the normalization condition kVn = 1

from (31), this integral reduces to

E

{
l jx0

lix0

}

=
aT b

bT b
kVn =

aT b

bT b
. (38)

Substituting (38) into (37) yields an important result of this

paper, a new formula for the participation factor for state xk

in mode i for the case of a real eigenvalue λi:

πki = li
kri

k +
n

∑
j=1, j 6=i

li
kr

j

k

l j(li)T

li(li)T
. (39)

Remark 2: Another expression equivalent to (39) is

πki =
(li

k)
2

li(li)T
=

(li
k)

2

∑
n
j=1(l

i
j)

2
(40)

This also follows easily from Lemma 1 (see [5]).

Next, we revisit Examples 1 and 2 using the newly derived

formula (39) for state in mode participation factors, and

compare the results to the participation factors obtained using

the original definitions. Note that all eigenvalues in these

examples are real, so the formula (39) applies as a (new)

measure of state-in-mode participation factors πki (as does

the equivalent formula (40)).

Example 1 Revisited

For Example 1, the participation factors for states x1 and x2

in mode 1 based on the new formula (39) are

π11 =
(a−d)2

(a−d)2 + b2
and π21 =

b2

(a−d)2 + b2
,

respectively. The participation factors for states x1 and x2

in mode 1 based on the original formula are p11 = 1 and

p21 = 0, respectively. Note that the coupling between states

x1 and x2, not reflected in the original formula pki, is now

reflected by the new participation factors πki.

Example 2 Revisited

For Example 2, the participation factors for states x1 and x2

in mode 2 based on the new formula (39) are

π12 =
1

2
and π22 =

1

2
,

respectively. The results using the new formula more faith-

fully reflect the relative contributions of the initial conditions

of the two state variables to the evolution of mode 2, which

is given explicitly by the formula z2(t) = 1
1−d

(
x0

1 + x0
2

)
eλ2t .

Here it is clear that z2(t) is equally influenced by x0
1 and x0

2

since it depends on the initial condition x0 through the sum

x0
1 + x0

2.
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[8] I.J. Pérez-Arriaga, G.C. Verghese, and F.C. Schweppe, “Selective

modal analysis with applications to electric power systems, Part I:
Heuristic introduction,” IEEE Transactions on Power Apparatus and

Systems, Vol. 101, No. 9, pp. 3117–3125, Sept. 1982.
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