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Abstract—A simple nonlinear observer with a dynamic gain
is proposed for a class of bounded-state nonlinear systems
subject to state delay. By saturating the states of the system
nonlinearities, we show that the observer exists whatever the
delay is. Furthermore, it will be highlighted that the observer
design is free from any preliminary analysis of the time-
delay system such as estimating the Lipschitz constants of
nonlinearities. The proposed design encompasses a wide class
of nonlinear and time-delay systems written in triangular form
and generalizes previous results on delayless nonlinear systems.

Index Terms—Nonlinear observers; Time-delay Systems;
Adaptive observers.

I. INTRODUCTION

T IME-delay often appears in many control systems such

as chemical reactions, mechanical systems, electrical

circuits [1], high-speed networks, and many other process

control systems [2], [3], [4], [5]. This delay is due to sev-

eral reasons such as communication protocols, transmission,

transportation or inertia effects. Unlike systems governed

by ordinary differential equations, delay systems called also

hereditary or systems with aftereffects, are infinite dimen-

sional in nature and time-delay is, in many cases, a source of

instability. The stability issue and the performance of control

systems with delay are, therefore, both of theoretical and

practical importance. As a dual problem, observer design

for time-delay systems turns out a stabilization issue since

the observation error dynamics must be stabilized using only

partial state measurements which is, in the general case, a

quite hard problem as compared with full-state feedback

stabilization issues. For further results on observation of

time-delay systems, we refer the reader to [6], [7], [8], [9]

and the references therein.

Referring to many results on observation of time-delay

systems, conditions under which the observer/filter ex-

ists can be classified into two main categories: delay-

independent conditions and delay-dependent ones. However,

delay-dependent results reveal less conservative than delay-

independent conditions. Nevertheless, in most cases, a small

delay is tolerable to maintain stability by output feedbacks.

In the present paper, a new adaptive observer is proposed

for bounded-state nonlinear systems written in triangular

form. By appropriate selection of a parameter-dependent Ric-

cati equation, we show that we can update the observer vector

gain by updating just one parameter of the ARE. Even though

the observer design methodology does not necessitate any
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preliminary analysis of the system, the knowledge of both

the system delay and the domain of variation of the system

states remain necessary to build the nonlinear observer. This

assumption seems to be a natural assumption in practice

since the observation is usually made in some compact and

large set called the observation domain. We show that the

saturated-state observer can reproduce the behaviors of the

original states by injection of a time-varying gain. Further-

more, it will be outlined that the observer always exists

without any condition on the size of the delay or the form

of nonlinearities. Finally, extension of the obtained results

to linear systems with lower-triangular nominal matrices is

given.

Throughout this paper, we note by IR the set of real

numbers. The notation A > 0 (resp. A < 0) means that

the matrix A is positive definite (resp. negative definite). A′

is the matrix transpose of A. “?” is used to notify an element

which is induced by transposition. , stands for an equality

by definition. λk(A) stands for the k-th eigenvalue of the

matrix A. ‖ · ‖ is the Euclidean norm, ‖ · ‖∞ is the infinity

norm, and Spec(A) stands for the set of eigenvalues of the
matrix A. Ck

n is the binomial coefficient.

II. SYSTEM DESCRIPTION

Consider the time-delay nonlinear system given in lower

triangular form:

ẋ1(t) = x2(t) + f1(x1(t), x1(t − τ), u(t)),

ẋ2(t) = x3(t) + f2(x1(t), x2(t), x1(t − τ), x2(t − τ), u(t)),

...

ẋi(t) = xi+1(t) + fi(x1(t), · · · , xi(t), x1(t − τ), · · · ,

xi(t − τ), u(t)),

...

ẋn(t) = fn(x1(t), · · · , xn(t), x1(t − τ), · · · ,

xn(t − τ), u(t)),

y(t) = x1(t),
(1)

where x(t) ∈ IRn is the state vector, u(t) ∈ U ⊂ IRm is

a bouded control input and y(t) ∈ IR is the system output.

We assume that the delay τ is constant and x(t) = φ(t) for
t ≤ τ . In matrix notation, system (1) takes the form

ẋ(t) = A x(t) + f(x(t), x(t − τ), u(t)),

y(t) = C x(t),
(2)
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where

A ,




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . . 0
0 0 0 · · · 1
0 0 0 · · · 0



∈ IRn×n, C ,




1
0
0
...

0




′

∈ IRn,

f(x(t), x(t − τ), u(t))

,




f1(x1(t), x1(t − τ), u(t))
f2(x1(t), x2(t), x1(t − τ), x2(t − τ), u(t))

...

fn(x(t), x(t − τ), u(t))


 ∈ IRn.

(3)

To complete the system description, the following assump-

tions are considered.

Assumption 1: The nonlinearity f(x(t), x(t− τ), u(t)) is
smooth and well-defined for all x(t) ∈ IRn with f(0, 0, 0) =
0.
Assumption 2: For all t ≥ 0 and initial condition x0 ∈

M ⊂ IRn, the state vector x(t) is well-defined and globally
bounded under the excitation of u ∈ U .

Assumption 3: For all t ≥ 0, the system input u(t) ∈
U ∈ IRm is globally bounded.

Assumption 4: For all t ≥ 0, the delay τ is known and

constant.

In the sequel, for simplicity of notations, u(t), x(t) and

x(t − τ) will be noted by u, x and xτ , respectively.

III. OBSERVER DESIGN

Before giving the main result of this paper, let us present

some preliminary results.

A. Preliminary results

The following technical Lemma is necessary for the proof

of the main statement.

Lemma 1: Let P (γ) and P̃ be the solutions of the Alge-

braic Riccati Equations (AREs):

P (γ)A′ + AP (γ) − P (γ)C ′CP (γ) + Q(γ) = 0,

P̃A′ + AP̃ − P̃C ′CP̃ + Q̃ = 0,
(4)

respectively, where A and C are given in observable canon-

ical form as in (3), Q̃ is any symmetric positive-definite

matrix verifying the following matrix inequality:

ΛQ̃ + Q̃Λ > 0; Λ = diag
(
1, 2, 3, · · · , n

)
, (5)

and

Q(γ) = γ2D(γ)Q̃D(γ). (6)

Then, P (γ) is positive-definite for γ > 0 and has the

following properties:

i) for any γ > 0, the Cholesky decomposition of P (γ) is
given by:

P (γ) = R(γ)R′(γ), R(γ) =
√

γD(γ)R̃, (7)

where

D(γ) = diag

(
1, γ, γ2, · · · , γn−1

)
, (8)

and P̃ = R̃R̃′ is the solution of the ARE:

P̃A′ + AP̃ − P̃C ′CP̃ + Q̃ = 0. (9)

ii) For any γ > 0,
d

dγ
P (γ) > 0. (10)

iii) For any γ > 0,

d

dγ
P−1(γ) < 0. (11)

iv) For any lower triangular matrix L ∈ IRn×n whose en-

tries are all constants, we can always find two constants

c1 and c2 such that

sup
γ≥1

∥∥∥∥D−1(γ)LD(γ)

∥∥∥∥ ≤ c1 +
c2

γ
. (12)

Remark 1: In the particular case where

Q̃ = diag
(
C1

n, C2
n, · · · , Cn

n

)
,

the ARE (4) coincides with the ARE used in [10], [11], and

the matrix A − P (γ)C ′C has an eigenvalue of multiplicity

n equal to −γ, i.e.,

Spec

(
A − P (γ)C ′C

)
=

{
− γ,−γ, · · · ,−γ

}
. (13)

The properties i)−iv) of Lemma 1 do not require the matrix
Q(γ) to be diagonal as it has been required in the design of
the ARE-based differentiation observers, see [10]. Therefore,

more freedom in assigning the eigenvalues of A−P (γ)C ′C

is tolerated. Explicit formulae that gives Q(γ) in terms of

the coefficients of the characteristic polynomial (not on the

roots of this polynomial) is given in [12].

Proof of Lemma 1. Since Q(γ) is symmetric and positive-

definite for all γ > 0, then the matrix P (γ) is the only

solution of the ARE (4) which is always symmetric and

positive-definite for γ > 0.
To prove i) it is sufficient to prove that P (γ) =

γD(γ)P̃D(γ). Pre- and post multiplying the ARE (9) by

γD(γ), then we have:

γ2D(γ)P̃A′D(γ) + γ2D(γ)AP̃D(γ)

− γ2D(γ)P̃C ′CP̃D(γ) + γ2D(γ)Q̃D(γ) = 0.
(14)

where Q̃ = Q(γ)
∣∣
γ=1

. Using the following properties:

D(γ)A′ = γ A′D(γ), γD(γ)A = AD(γ), CD(γ) = C,

D(γ)C ′ = C ′, γ2D(γ)Q̃D(γ) = Q(γ) then, the first ARE
in (4) can be rewritten as

[
γD(γ)P̃D(γ)

]
A′ + A

[
γD(γ)P̃D(γ)

]

−
[
γD(γ)P̃D(γ)

]
C ′C

[
γD(γ)P̃D(γ)

]
+ Q(γ) = 0.

(15)
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By comparing the last ARE with the first ARE of (4), we

conclude that

P (γ) = γD(γ)P̃D(γ). (16)

Since P̃ = R̃R̃′, this immediately implies that

P (γ) = γD(γ)R̃R̃′D(γ). (17)

and consequently, R(γ) =
√

γD(γ)R̃. This ends the proof

of item i).
ii) We have for all γ > 0,

d

dγ
(γ D(γ)) = diag

(
1, 2γ, · · · , n γn−1

)
= D(γ)Λ. (18)

This gives

d

dγ
Q(γ) = γD(γ)ΛQ̃D(γ) + γD(γ)Q̃D(γ)Λ (19)

Since D(γ) and Λ commute then, D(γ)Λ = ΛD(γ), which
makes the derivative of γ equal to

d

dγ
Q(γ) = γD(γ)

[
ΛQ̃ + Q̃Λ

]
D(γ). (20)

By assumption of Lemma 1, ΛQ̃+ Q̃Λ > 0, then d
dγ

Q(γ) >

0 for all γ > 0.
By differentiating the first ARE in (4) with respect to γ,

we get

d

dγ
P (γ)A′ + A

d

dγ
P (γ)

− d

dγ
P (γ)C ′CP (γ) − P (γ)C ′C

d

dγ
P (γ) +

d

dγ
Q(γ) = 0.

(21)

The last equation can be rewritten as

d

dγ
P (γ)

(
A − P (γ)C ′C

)′

+

(
A − P (γ)C ′C

)
d

dγ
P (γ) = − d

dγ
Q(γ)

(22)

Then, we conclude that the matrix derivative d
dγ

P (γ) verifies

the Lyapunov equation (22) which implies that d
dγ

P (γ) is

positive-definite. This ends the proof of ii).
The proof of iii) is easy since the derivative of the matrix

inverse can be explicitly written as

d

dγ
P−1(γ) = −P−1(γ)

d

dγ
P (γ)P−1(γ). (23)

Using the result obtained in ii), we conclude that
d
dγ

P−1(γ) < 0.

iv) Since each (i, j)-entry of the matrix D−1(γ)LD(γ) is
in the form αi,j +

βi,j

γ
, then we conclude that

sup
γ≥1

∥∥∥∥D−1(γ)LD(γ)

∥∥∥∥ ≤
√

n sup
γ≥1

∥∥∥∥D−1(γ)LD(γ)

∥∥∥∥
∞

≤ c1 +
c2

γ
.

(24)

Before presenting the saturated-state observer, we need to

introduce the following Lemma.

Lemma 2: Let v and w be two n-dimensional real-valued

vectors and suppose that P is a real, symmetric and positive

semi-definite matrix. Let σ̄1, σ̄2, · · · , σ̄n be different and

positive saturation levels. Then, for any v, w ∈ IRn, we

have

(
σ(v) − σ(w)

)′

P
(
σ(v) − σ(w)

)
≤

(
v − w

)′

P
(
v − w

)
,

(25)

where each component of the vector

σ(·) =
[

σ1(v1) σ2(v2) · · ·σn(vn)
]′

is defined as

σi(xi) ,

{
xi if , |xi| ≤ σ̄i

σ̄i sign(xi) otherwise,
, 1 ≤ i ≤ n. (26)

Proof. The vector of the saturation functions σ(v) can be

rewritten as

σ(v) = ∆(v) v, (27)

where ∆(v) = diag
(
∆1(v1), · · · , ∆n(vn)

)
is n×n diagonal

matrix whose elements are defined as

∆(v) = diag
(
∆1(v1), · · · ,∆n(vn)

)

=




σ1(v1)
v1

0 · · · 0

?
σ2(v2)

v2
· · · 0

...
...

. . .
...

? ? · · · σn(vn)
vn




.
(28)

According to this notation, the matrix ∆(v) is positive

definite and all its eigenvalues are less or equal to one. We

have

(
σ(v) − σ(w)

)′

P
(
σ(v) − σ(w)

)
=

(
v′∆(v) − w′∆(w)

)
P

(
∆(v) v − ∆(w)w

)

=
[

v′ w′
] [

∆(v) 0

0 ∆(w)

] [
P −P

−P P

]

×
[

∆(v) 0

0 ∆(w)

] [
v

w

]
.

(29)

Let us note

A =

[
P −P

−P P

]
, S =

[
∆(v) 0

0 ∆(w)

]
. (30)

Then, by the use of Ostrowski Theorem [13], we have

λk(SAS′) = θk λk(A), (31)

where λ1(SS′) ≤ θk ≤ λn(SS′). Since 0 < λk(SS′) ≤
1, ∀k then, from (31), we conclude that 0 ≤ θk ≤ 1, and
hence,

λk(SAS′) ≤ λk(A), ∀k, (32)
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or equivalently, SAS′ ≤ A, which means that

(
σ(v) − σ(w)

)′

P
(
σ(v) − σ(w)

)
≤

[
v′ w′

] [
P −P

−P P

] [
v

w

]
=

(
v − w

)′

P
(
v − w

)
.

(33)

This ends the proof.

B. Adaptive observer design

The observer design methodology is basically founded on

estimating the bounds of the system states and saturating

the nonlinearities of the observer according to the estimated

levels of variation of the true states. The idea of this new

design is to adapt the observer gain without any care of

the maximum levels that can reach the system states. The

analysis of the observer is summarized in the following

statement.

Theorem 1: Consider the time-delay nonlinear system (2)

under Assumptions 1-4. For a given initial condition x0 ∈
M ⊂ IRn, we assume that there exist positive saturation

levels σ̄1, · · · , σ̄n such that

∀t ≥ 0, |xi(t)| ≤ σ̄i, 1 ≤ i ≤ n, (34)

Let

˙̂x = Ax̂ + f(σ(x̂), σ(x̂τ ), u) − P (γ)C ′(Cx̂ − Cx),

γ̇ = γ̂
∣∣x̂1 − y

∣∣, γ(0) > 1, γ̂ > 0,

P (γ)A′ + AP (γ) − P (γ)C ′CP (γ) + Q(γ) = 0,

P̃A′ + AP̃ − P̃C ′CP̃ + Q̃ = 0,

(35)

be the adaptive observer where ΛQ̃ + Q̃Λ > 0, Λ =
diag(1, 2, · · · , n), Q(γ) = γ2D(γ)Q̃D(γ) and σ(x) =
[σ1(x1), · · · , σn(xn)]′ is a vector of saturation functions

defined as in (26). Then, the observation error e = x̂ − x

that results from (2) and (35) is asymptotically stable for all

x̂(0) ∈ IRn.

Proof: The dynamic equation of the observation error

is given by:

ė = (A − P (γ)C ′C)e

+ f(σ(x̂), σ(x̂τ ), u) − f(σ(x), σ(xτ ), u).
(36)

Let us assign the functional

V (e) = e′P−1(γ)e

+
1

2

∫ t

t−τ

e′(s)P−1(γ)Q(γ)P−1(γ)e(s) d s
(37)

to the dynamics (36). Then, we have

V̇ = ė′P−1(γ)e + e′P−1(γ)ė +
1

2
e′P−1(γ)Q(γ)P−1(γ)e

− 1

2
e′τP−1(γ)Q(γ)P−1(γ)eτ + γ̇e′

dP−1(γ)

dγ
e.

(38)

Since γ̇ > 0 for all t ≥ 0 and
dP−1(γ)

dγ
< 0 for all γ > 0,

see the result of Lemma 1, then

V̇ (e) ≤ ė′P−1(γ)e + e′P−1(γ)ė

+
1

2
e′P−1(γ)Q(γ)P−1(γ)e − 1

2
e′τP−1(γ)Q(γ)P−1(γ)eτ

= e′
(

A′P−1(γ) + P−1(γ)A − 2C ′C

+
1

2
P−1(γ)Q(γ)P−1(γ)

)
e

+ 2e′P−1(γ)

(
f(σ(x̂), σ(x̂τ ), u) − f(σ(x), σ(xτ ), u)

)

− 1

2
e′τP−1(γ)Q(γ)P−1(γ)eτ .

(39)

Using the differential Mean-Value Theorem, we can write

that

f(σ(x̂), σ(x̂τ ), u) − f(σ(x), σ(xτ ), u)

=

∫ 1

0

∂f(α, β, u)

∂α

∣∣∣∣
α=α(λ)
β=β(λ)

(
σ(x̂) − σ(x)

)
dλ

+

∫ 1

0

∂f(α, β, u)

∂β

∣∣∣∣
α=α(λ)
β=β(λ)

(
σ(x̂τ ) − σ(xτ )

)
dλ

(40)

where α(λ) = σ(x̂) − ρ(λ)(σ(x̂) − σ(x)), β(λ) = σ(x̂τ ) −
ρ(λ)(σ(x̂τ ) − σ(xτ )), where

ρ(λ) =

{
λ if , 0 ≤ λ ≤ 1,

1 otherwise.
(41)

Let us note

∂f(α, β, u)

∂α

∣∣∣∣
α=α(λ)
β=β(λ)

= Lα(λ),
∂f(α, β, u)

∂β

∣∣∣∣
α=α(λ)
β=β(λ)

= Lβ(λ)

(42)

This immediately gives

V̇ (e) ≤
∫ 1

0

e′
(
− C ′C − 1

2
P−1(γ)Q(γ)P−1(γ)

)
e dλ

+ 2

∫ 1

0

e′P−1(γ)Lα(λ)
(
σ(x̂) − σ(x)

)
dλ

+ 2

∫ 1

0

e′P−1(γ)Lβ(λ)
(
σ(x̂τ ) − σ(xτ )

)
dλ

− 1

2

∫ 1

0

e′τ
(

P−1(γ)Q(γ)P−1(γ)

)
eτ dλ

(43)

Using the fact that for given vectors ζ1 ∈ IRn, ζ2 ∈ IRn the

following inequality 2ζ ′1ζ2 ≤ ζ ′1Xζ ′1 + ζ ′2X
−1ζ2 holds for
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any X ∈ IRn×n > 0. Then,

2

∫ 1

0

e′P−1(γ)Lα(λ)
(
σ(x̂) − σ(x)

)
dλ

≤
∫ 1

0

e′P−1(γ)e dλ

+

∫ 1

0

(
σ(x̂) − σ(x)

)′
L

′

α(λ)P−1(γ)Lα(λ)
(
σ(x̂) − σ(x)

)

dλ

(44)

and

2

∫ 1

0

e′P−1(γ)Lβ(λ)
(
σ(x̂τ ) − σ(xτ )

)
dλ

≤
∫ 1

0

e′P−1(γ) e dλ

+

∫ 1

0

(
σ(x̂τ ) − σ(xτ )

)′
L

′

β(λ)P−1(γ)Lβ(λ)

×
(
σ(x̂τ ) − σ(xτ )

)
dλ

(45)

Using the result of Lemma 2, we can write that

2

∫ 1

0

e′P−1(γ)Lα(λ)
(
σ(x̂) − σ(x)

)
dλ

+ 2

∫ 1

0

e′P−1(γ)Lβ(λ)
(
σ(x̂τ ) − σ(xτ )

)
dλ

≤ 2

∫ 1

0

e′P−1(γ)edλ +

∫ 1

0

e′L
′

α(λ)P−1(γ)Lα(λ)e dλ

+

∫ 1

0

e′τL
′

β(λ)P−1(γ)Lβ(λ) eτ dλ

(46)

This implies that

V̇ (e) ≤ −1

2

∫ 1

0

e′
(

P−1(γ)Q(γ)P−1(γ)

)
edλ

+ 2

∫ 1

0

e′P−1(γ)edλ +

∫ 1

0

e′L
′

α(λ)P−1(γ)Lα(λ)edλ

+

∫ 1

0

e′τL
′

β(λ)P−1(γ)Lβ(λ) eτ dλ

− 1

2

∫ 1

0

e′τ
(

P−1(γ)Q(γ)P−1(γ)

)
e′τ dλ

(47)

Let us define ξ = D−1(γ)e, ξτ = D−1(γ)eτ . Using the

result of Lemma 1, we have

P−1(γ) =
1

γ
D−1(γ)P̃−1D−1(γ)

Q(γ) = γ2D(γ)Q̃D(γ).

(48)

From (47), we get

V̇ (e) ≤ −1

2

∫ 1

0

ξ′P̃−1Q̃P̃−1 ξ dλ

+
2

γ

∫ 1

0

ξ′P̃−1ξ dλ +
1

γ

∫ 1

0

ξ′D(γ)L
′

α(λ)D−1(γ)P̃−1

× D−1(γ)Lα(λ)D(γ) ξ dλ

+
1

γ

∫ 1

0

ξ′τD(γ)L
′

β(λ)D−1(γ)P̃−1

× D−1(γ)Lβ(λ)D(γ) ξτ dλ

− 1

2

∫ 1

0

ξ′τ P̃−1Q̃P̃−1 ξτ dλ

(49)

This implies that

V̇ (e) ≤
∫ 1

0

(
− 1

2
λmin

(
P̃−1Q̃P̃−1

)

+
λmax(P̃

−1)

γ

[
2 +

∥∥D−1(γ)Lα(λ)D(γ)
∥∥2

])
‖ξ‖2 dλ

+

∫ 1

0

(
− 1

2
λmin

(
P̃−1Q̃P̃−1

)

+
λmax(P̃

−1)

γ

∥∥D−1(γ)Lβ(λ)D(γ)
∥∥2

)
‖ξτ‖2 dλ

(50)

Since the matrixes Lα(λ) and Lβ(λ) are lower triangular

matrices. Then, by the use of iv) of Lemma 1, and using the
fact that 0 ≤ λ ≤ 1, we have

∥∥D−1(γ)Lα(λ)D(γ)
∥∥2 ≤

(
c1(λ) +

c2(λ)

γ

)2

,

∥∥D−1(γ)Lβ(λ)D(γ)
∥∥2 ≤

(
cτ
1(λ) +

cτ
2(λ)

γ

)2

,

(51)

where c1(λ), c2(λ), cτ
1(λ), and cτ

2(λ) are bounded positive

constants that depend on λ. Finally, we can write that

V̇ (e) ≤
∫ 1

0

[
− 1

2
λmin

(
P̃−1Q̃P̃−1

)

+
λmax(P̃

−1)

γ

[
2 +

(
c1(λ) +

c2(λ)

γ

)2]]
‖ξ‖2 dλ

+

∫ 1

0

[
− 1

2
λmin

(
P̃−1Q̃P̃−1

)

+
λmax(P̃

−1)

γ

(
cτ
1(λ) +

cτ
2(λ)

γ

)2
]
‖ξτ‖2 dλ.

(52)

Since γ is increasing whenever x̂1 6= y then, there

exist a finite-time T whereby − 1
2λmin

(
P̃−1Q̃P̃−1

)
+

λmax(P̃−1)
γ

[
2 +

(
c1(λ) + c2(λ)

γ

)2]
< 0, and

− 1
2λmin

(
P̃−1Q̃P̃−1

)
+ λmax(P̃−1)

γ

(
cτ
1(λ) +

cτ
2 (λ)
γ

)2

< 0
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and consequently, V̇ (e) < 0 for all t ≥ T . Since the

dynamics of the nonlinear observer can be rewritten as

˙̂x = (A − P (γ)C ′C)x̂ + f(σ(x̂), σ(x̂τ ), u)

+ P (γ)C ′Cσ(x), γ̇ = γ̂
∣∣x̂1 − y

∣∣, γ(0) > 1, γ̂ > 0,

P (γ)A′ + AP (γ) − P (γ)C ′CP (γ) + Q(γ) = 0,

(53)

The vector f(σ(x̂), σ(x̂τ ), u) can be seen as a bounded

vector that perturbs the stable system ˙̂x = (A−P (γ)C ′C)x̂.
Then, it is easy to prove that the observer state trajectories

are bounded for 0 ≤ t ≤ T whenever u(t) and γ(t) are

bounded. This ends the proof.

In the following statement, we show that we can apply

the previous results for linear systems whose states are not

necessarily bounded. This result is given by the following

statement.

Corollary 1: Consider the time-delay linear system

ẋ(t) = (A + ∆A)x(t) + Ad x(t − τ) + ρ(u)

y(t) = C x(t), x(t) = ψ(t), 0 ≤ t ≤ τ,
(54)

where A ∈ IRn×n and C ∈ IRn are defined as in (3). Let

∆A and Ad be known, real, and lower-triangular matrices

and ρ(u) is an input-injection vector of dimension n. Then

the following system

˙̂x(t) = (A + ∆A) x̂(t) + Ad x̂(t − τ) − P (γ)C ′(Cx̂ − y)

+ ρ(u),

γ̇ = γ̂
∣∣x̂1 − y

∣∣, γ(0) > 1, γ̂ > 0,

P (γ)A′ + AP (γ) − P (γ)C ′CP (γ) + Q(γ) = 0,

(55)

is an asymptotic observer for system (54).

Proof: The matrices ∆A and Ad can be seen as the ma-

trix Jacobian. Therefore, the proof becomes straightforward

as it was developed before.

IV. EXAMPLE

Let us consider the time-delay system

ẋ1(t) = x2(t),

ẋ2(t) = −α x1(t) − β x2(t − τ) cos(x2(t − τ)),

y(t) = x1(t).

(56)

The system nonlinearity is not globally Lipschitz, but the

system states exhibit bounded behaviors for the initial con-

dition x0 = [1 − 1]′ with α = 3.5, β = 1.2, τ = 0.5. By
tacking σ̄1 = 4 and σ̄2 = 8, the saturated-state observer

˙̂x1(t) = x̂2(t) + `1(γ)(y(t) − x̂1(t)),

˙̂x2(t) = −α σ1(x̂1(t)) − β σ2(x̂2(t − τ)) cos(σ2(x̂2(t − τ))),

+ `2(γ)(y(t) − x̂1(t)),

γ̇ = 2|y(t) − x̂1(t)|
(57)

converges as shown in Fig. 1 where P (γ)C ′ =
[`1(γ) `2(γ)]′.
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Fig. 1. The second state x2 and its estimate

V. CONCLUSION

The results given in this paper can been seen as an

extension of the previous results on observation of uniformly-

observable nonlinear systems written is lower-triangular form

[14]. The proposed design is related to neither delay-

independent nor delay-dependent conditions whatever the

size of the delay. We showed that by adaptation of the

observer gain we could eliminate preliminary analysis steps

and avoid excessive high-gain design. The proposed design is

dedicated to a large class of bounded-state nonlinear systems

that are not necessarily globally Lipschitz.
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