
 
Abstract— A new method combining trajectory planning, 

tracking and coordinated control for unmanned surface vessels 
is presented based on nonlinear sliding mode control. A 
limiting factor of sliding mode tracking control is that it can 
only guarantee position tracking as long as the vessel initial 
conditions are on the desired trajectory. In this work, a 
transitional trajectory between the vessel initial condition and 
the desired trajectory path is implemented using a set of two 
ordinary differential equations (ODEs) in terms of the position 
state feedbacks such that the ODE solution converges to the 
desired trajectory path. An additional advantage of this 
approach is that when the ODE represents a limit cycle, it can 
be used for coordinating multiple vessel trajectories without 
any possibility of collision. Several simulations are presented 
where the vessel successfully reaches and follows a desired 
trajectory starting from a variety of initial starting conditions. 
 

I. INTRODUCTION 
Nonlinear position control of underactuated vehicle 

systems is an interesting and complex research topic due to 
modeling uncertainties, underactuation, and only indirect 
control of in-tracking variables through the nonholonomic 
constraints in the equations of motion. For example, 
consider the planar model of a surface vessel shown in Fig. 
1. The control inputs from the two propellers can only 
provide a surge motion and planar rotation. The difficulty 
arises from the fact that only one input (total surge force) 
will appear in the two nonlinear differential equations 
representing the horizontal and vertical motion. Hence, 
tracking a path or trajectory is only possible with the aid of 
the yaw rotation where the mathematical formulation of the 
control problem becomes nontrivial. 

Application of underactuated control approaches to 
unmanned surface vessels (USV) may be divided into set 
point [1-6] and trajectory tracking [7-19] position control 
problems since the respective controllers are different. In 
general, tracking control may only be possible if the 
trajectory to be followed does not include all three position 
variables simultaneously. In other words, the USV position 
can be tracked precisely while the heading angle is 
uncontrolled, i.e. the desired trajectory does not include a 
desired heading angle. In our previous work, such a control 
law was developed where simple straight line or curved 
desired trajectories were considered [17-18]. Further, the 
control law required the vessel’s initial conditions to be on 
the desired trajectory. The design of a new trajectory 
planning and tracking controller for position control of a 
USV from an initial point to a prescribed desired trajectory 
is presented in this work. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Planar model of a surface vessel with two propellers 

 
 
The paper is organized as follows. The kinematic and 

dynamic model of the vessel shown in Fig. 1 is presented. 
Based on this model, an asymptotically stable trajectory 
tracking sliding mode control law is presented using two 
sliding surfaces for calculation of the two propeller forces. 
The first sliding surface is a first order surface comprised of 
position and velocity tracking errors of the surge motion. 
The second surface is second order and defined in terms of 
the vessel’s lateral position, velocity, and acceleration 
tracking errors. Since the resulting control law requires the 
initial conditions to be on the desired trajectory, a new 
transitional trajectory is planned using a set of two ODE’s. 
The two states of this trajectory are defined in terms of the 
position state feedbacks, while their dynamics are 
determined by the ODE’s. The solution of these ODE’s 
provides a smooth transition from any set of initial 
conditions to a desired target trajectory. Hence, the ODE’s 
steady-state solution is the target trajectory. This target can 
be defined as periodic type trajectories that arise from stable 
limit cycles or fixed set points. An additional advantage of 
this approach is that when the ODE represents a limit cycle, 
it can be efficiently used for coordinated control of several 
vessels without any possibility of collision. For this purpose, 
the same ODE is used to generate the trajectories for all 
USV’s starting from different initial conditions (time or 
position). The trajectories can never collide because the 
ODE must satisfy the existence and uniqueness conditions 
of the solution for the limit cycle. Several simulations are 
presented where the vessel reaches and then follows a 
desired circular trajectory at a constant speed or a set point 
starting from different initial conditions. 
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II. NONLINEAR USV MODEL 
The three degree of freedom planar model of the USV 

shown in Fig. 1 is considered in this work. The USV is 
underactuated with two propeller force inputs f1(t) and f2(t) a 
distance B apart. The surge force f(t) and steering torque T(t) 
delivered by the two propeller forces are derived from the 
propeller forces as 
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The kinematic relations between the inertial reference frame 
(X, Y) and the vessel-based body-fixed frame (xb, yb) are 
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In the body-fixed frame, the nonlinear equations of 

motion may be written as 
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where 1122 mmmd −=  and 1122 mm ≠ due to the added 
mass effect. The hydrodynamic damping is modeled as 
power law with exponents αi and coefficients dii, i=1,2,3. 
Note that only forward motion dynamics are considered. 
More details on the USV model derivation and relations are 
presented in [17] and [18]. 
 

III. CONTROLLER DESIGN 
The controller is based on the sliding mode control law 

where the desired state trajectory is described by a nonlinear 
dynamic system as follows 
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where x1(t) and x2(t) are the state variables of the desired 
system trajectory, Di is an open and connected subset of R2, 
and hi is a locally Lipschitz map from Di into R2. Therefore, 
Eq. (4) represents the desired closed-loop system dynamics 
or vessel trajectory in this paper. 

In the sliding mode control approach, a set of 
asymptotically stable surfaces (S) are defined as functions of 
the tracking errors such that all system trajectories converge 
to these surfaces in finite time and slide along them until 
they reach the desired destination at their intersection. The 
reaching conditions are established by defining  2

1 SS T  as 

the Lyapunov function and ensuring that for surface i [20]: 

 0η   , η >−≤ iiiii SSS &               (5) 
 
where the value of the constants   iη (effort parameters) 
determine how fast the trajectory will reach surface i. 

In the case of underactuated surface vessels, two surfaces 
in terms of the surge and lateral velocities are defined to 
determine the two control inputs. The desired state 
trajectories in the inertial reference frame are related to the 
desired surge and lateral velocity and acceleration as: 
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A. Surge Control Law 
The first sliding surface is a first order surface defined in 

terms of the vessel’s surge motion tracking error 
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where “~” is used to denote the tracking errors which is the 
difference between the actual and desired values; i.e. 

)()()(~ tvtvtv xdxx −= . Note that vxd(t) is expressed in terms 
of )(1 tx&  and )(2 tx& , as shown in Eq. (6). The values of )(1 tx&  
and )(2 tx& can either be computed from a desired state 
trajectory )(txd&  and )(tyd&  as proposed in [17], or from Eq. 
(4) in terms of the state position feedbacks x(t) and y(t): 
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Taking the time derivative of the surface and using the 
first relationship in Eq. (3), the surge control input can be 
determined as: 
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where the terms 
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are derived based on the nominal model and its uncertainty 
bounds as presented in [17]. Note that, the wave and wind 
forces may also be modeled [20] with their uncertainties and 
accounted for in Eq. (9). 
 

B. Lateral Motion Control Law 
We define the second sliding surface as a second-order 

surface in terms of the vessel’s lateral motion tracking errors 
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where )()()(~ tvtvtv ydyy −=  and )()()(~ tvtvtv ydyy &&& −= . 

Derivation of the time derivative of the second surface 
requires )(tv y&& . Hence, taking the time derivative of the 

lateral equation of motion in Eq. (3) and substituting for the 
accelerations from the surge and yaw equations, the yaw 
moment control can be calculated. The yaw control moment 
is derived as a function of the surge control force as: 
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are derived based on the nominal model and its uncertainty 
bounds as presented in [17]. Note that the wave and wind 
moments may also be modeled and their uncertainties can be 
accounted for in Eq. (11) through these terms. 
 

IV. STABILITY ANALYSIS 
Proposition 1. The sliding mode control law for the surge 

force and yaw moment presented in Eqs. (9) and (11) is an 
asymptotically stabilizing trajectory tracking controller for 
the desired system trajectory represented by Eq. (4).  

Proof.  The surge and yaw controls presented in Eqs. (9) 
and (11) are derived based on the reaching conditions in Eq. 
(5) and hence guarantee that the system trajectory reaches 
the surfaces defined in Eqs. (7) and (10) in finite time [19, 
21]. Further, the two surfaces are exponentially stable. 
Hence, the system trajectory asymptotically slides to their 
origin: 
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Using the homogeneous transformation of Eq. (2) to obtain 
vx(t) and vy(t) and subtracting Eq. (6) from these values, the 
following relationships 
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follow from the relationships shown in Eq. (12). Hence, the 
USV will track the desired dynamic system trajectory 
defined by Eq. (4) since x1(t) and x2(t) are the set equal to 
the position state feedbacks, i.e. )()(1 txtx =  and 

)()(2 tytx = .□ 
Remark 1. The yaw control moment presented in Eq. (11) 

has a singularity when the vessel is not in motion, i.e. when 
0)( =tvx . 

Proposition 2. The rotational motion of the vessel is 
BIBO stable under the sliding mode control law. 

Proof. Let us define the Lyapunov candidate function 
2

332
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Using Eq. (3), the time derivative of V may be written as:  
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Hence, 0<V&  if )()()()( 3
33 tvtvmtTtωd yxd

α −> . Since 

for any bounded desired trajectory defined in Eq. (4), T(t), 
vx(t), and vy(t) will be bounded due to the control law’s 
asymptotic stability, then )(tω remains bounded since large 
ω values will make V a Lyapunov function. 

V. TRAJECTORY PLANNING AND SIMULATIONS 
The control law developed in our previous work [17-18] 

required the starting point to be on the desired trajectory and 
trajectories were expressed explicitly in terms of time and 
boundary conditions. However, this approach is not feasible 
in many applications. For example, it is physically difficult 
to start on a constant speed circular trajectory. A possible 
solution is to plan an initial trajectory using arcs and straight 
lines such the vessel will join such a desired trajectory [8]. 
However, this approach can result in a discontinuous control 
that may not be achievable due to actuator limitations. In 
this work, a smooth transition to the desired trajectory can 
be achieved through the use of trajectories defined in terms 
of ordinary differential equations. These transitional 
trajectories use the actual position state (x, y) feedback to 
converge to the target desired trajectory.  Examples of such 
trajectories are closed periodic orbits including limit cycles 
and fixed position set points. 

A. Simulations with Isolated Periodic Orbits 
In this example, the USV is required to converge to an 

isolated orbit (limit cycle) with origin (xo, yo) starting from 
any set of initial conditions. The dynamic system describing 
the desired state trajectory is 
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where oxtxtx −= )()(1  and oytytx −= )()(2  are the state 
variables of the desired trajectory, 0))(),(( 21 =txtxg  is the 
equation of the continuously differentiable closed orbit, a1 
and a2 are positive constants, and w(t) ≠ 0 is a continuous 
time function that must converge to the desired angular 
velocity of the vessel on the closed orbit prior to reaching 
the orbit. This function must remain positive for counter 
clockwise rotation around the orbit and negative for 
clockwise rotation before reaching its constant value. 
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Fig. 2. Trajectory tracking from four different starting points for the 
circular-orbit target 
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Fig. 3. USV position time history in inertial reference frame for reaching 
and tracking the circular orbit 
 
 

Parameters a1, a2, and w(t) must be adjusted according to 
actuator saturation or experimental implementation. For 
simulation purposes, however, it can always be assumed that 
a1 = a2 = 1 and w(t) = constant desired angular velocity 
around the closed orbit. An example of such a closed orbit is 
a circle with a radius r similar to the unit radius circle 
presented in [22]: 
 
 22
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The solution to Eq. (17) is a stable limit cycle where all 
trajectories converge to a circle of radius r and origin (xo, yo) 
except the one trajectory starting from the circle’s origin 
which is an unstable equilibrium point. 

In the simulations, the USV model with B = .07m and the 
following data and uncertainty in SI units is used [19]: 
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Fig. 4. USV absolute (top) and angular (bottom) velocities for reaching and 
tracking of the circular orbit 
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Fig. 5. Propeller control forces for reaching and tracking the circular orbit 
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The trajectory parameters selected for the simulations are: xo 
= .965 m, yo = 1.27 m, r = .6 m, and w(t) = .1 rev/s. Typical 
selected control parameters are η1 = .1, η2 = 10, and λ1 = λ 2 
= 2, though the effort parameters may need to be adjusted 
according to the actuator limits. The discontinuous “sign” 
functions were also replaced with continuous saturation 
functions of boundary layer thicknesses φ1 = φ2 = .1 (i.e., 

2,1   ),(sat)sgn( =≈ iSS
i

i
i φ

) to avoid chattering normally 

associated with sliding mode control [22-23]. 
Figure 2 presents the path of convergence of the 

transitional trajectories to the desired closed orbit from 
several different initial conditions. Figure 3 shows the 
convergence of position tracking of the controller to a target 
circular orbit for starting point 1. Figure 4 shows the smooth 
transition of the USV absolute and angular velocities to  
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Fig. 6. Trajectory tracking and coordinated control of four USV’s from the 
initial conditions: 1a, 2a, 3a, and 4a to the circular-orbit target. USV 
positions are shown at times: ta=0s, tb=2.5s, tc=5s, and td=7.5s. 
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Fig. 7. Path tracking from five different starting points for a fixed point 
target          
 
 
constant values on the target circular trajectory. Figure 5 
presents the two control (propeller) forces also smoothly 
converge to constant values at the target trajectory. 
 

B. Coordinated Control 
The second example demonstrates the coordinated 

control of four USV’s, using the trajectories generated in 
section A. Figure 6 shows the coordinated control of four 
different USV’s 1, 2, 3, and 4 starting from different initial 
positions at the same time ta=0. The position of the USV’s at 
times: tb=2.5s, tc=5s, and td=7.5s are also shown and marked 
with the corresponding letters “b”, “c”, and “d”. The ODE’s 
in the Eq. (16), represent a Lipcshitz map, and satisfy the 
Existence and Uniqueness conditions of the solution. Hence, 
there is no possibility of collision among the USV’s starting 
at different times or from different initial positions, by 
appropriately selecting the trajectory parameters and 
disregarding the size and the shape of the vessels. Note that 
according to section A, any isolated closed orbit could be 
used as a limit cycle for coordinated control. 
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Fig. 8. USV position time history in inertial reference frame for a fixed 
point target 
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Fig. 9. Propeller control forces for reaching a fixed point target 
 

C. Fixed Set Point  
The third example demonstrates convergence of the same 

USV to the origin from an arbitrary initial condition. The 
desired state trajectory is a dynamic system with a stable 
node on the equilibrium point: 
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where oxtxtx −= )()(1  and oytytx −= )()(2  are the state 
variables of the transitional trajectory and the constants a1 
and a2 specify the speed of the exponential decay to the 
fixed point. The trajectory and control parameters are xo = 0 
m, yo = 0 m, a1 = .025 a2 = .1, η1 = η2 = .1, λ1 = λ 2 = .5, and 
φ1 = φ2 = .1 where again boundary layers are used to define a 
continuous approximation of the “sign” functions to avoid 
chattering. 

Figure 7 presents the path of convergence of the 
transitional trajectories to the desired fixed point from five 
different initial conditions. Figure 8 shows the convergence 
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of position tracking of the controller to the origin for starting 
point 1. Figure 9 shows the smooth convergence of the two 
control forces to zero at the target fixed point where the 
plots are shown only the first 40 seconds for clarity. 

 

VI. CONCLUSIONS 
A method for combined smooth trajectory planning, 

tracking, and coordinated control is presented. The 
trajectory tracking control law is based on a sliding mode 
control approach where a transitional trajectory is defined by 
using ordinary differential equations in terms of the two 
position state feedbacks which smoothly converges to the 
desired target trajectory. A closed circular orbit, coordinated 
control of multiple vessels, and a fixed set point problem are 
used as examples to demonstrate the transitional trajectory 
planning and the effectiveness of the control law in tracking 
both the transitional and desired target trajectories. 
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