
  

   

Abstract — Swapping modularity refers to the use of common 
units to create product variants. As companies strive to 
rationalize engineering design, manufacturing and maintain 
processes, modularity is becoming a priority. Component 
swapping modularity in control systems can be achieved by 
utilizing “smart” components which can perform control 
actions within the module, and bidirectional network 
communication. In this paper we analyze an engine speed 
control system from the perspective of achieving swapping 
modularity of the throttle actuator. Specifically, we analyze 
approaches to distribute the optimal controller transfer 
function between a throttle actuator time constant dependent 
portion (which is swappable with the actuator) and throttle 
actuator time constant independent portion (which does not 
need to be changed when the actuator is swapped).  Two 
distributed controller architectures, with unidirectional and 
bidirectional communications, are considered.  

 
I. INTRODUCTION 

    Swapping modularity occurs when two or more 
alternative basic components can be paired with the same 
modular components creating different variants belonging to 
the same product family [1].  There are many advantages to 
systems with high component swapping modularity. At 
present, the competitive market necessitates products with 
different suppliers, to meet various standards and 
regulations, and with various levels of performance and cost. 
Swapping modularity enables customization of an available 
product without redesign of the whole system. Increasing 
component swapping modularity can also shorten the 
engineering time and cost [2]. 
    Control systems with modularly swappable components 
can be defined as ones where the initial and final configure-
tions due to a component change operate at their correspon-
ding optimal performance [3].  Fig. 1 shows a control 
system configuration in which many different types of 
actuators may be employed. Traditionally, a change in the 
actuator involves both the actuator and the base controller.  
By including the actuator related control algorithm into the 
actuator component, re-work (in terms of control algorithm, 
software and calibration changes) can be limited to only the 
actuator subsystem, thereby making an actuator a modularly 
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swappable component, or in a way, a ‘plug-n-play’ compo-
nent. With the proliferation of low cost electronics, many 
control system components, such as sensors and actuators, 
can now incorporate on-board computers (i.e. CPU, 
memory, I/O interface), which enable them to perform 
component specific control and diagnostic functions and to 
participate in distributed controller architectures. Bidirec-
tional communication in networked control systems (NCSs) 
among the “smart” actuators and sensors has been shown to 
improve component swapping modularity. e.g., a case study 
of a driveshaft control with a DC motor  considered in [3].  

 
Fig. 1: Control system with modularly swappable actuator component. 

    In this paper we consider a case study of the controller 
design for the throttle actuator swapping modularity from 
the perspective of an automotive engine Idle Speed Control 
(ISC). The primary objective of the ISC system is to regulate 
the engine speed to a set-point despite torque disturbances 
due to accessory loads (e.g., air conditioning, power 
steering, alternator, etc.) and due to engagement of the 
transmission. A typical ISC strategy includes a PID control 
for the air loop, a proportional feedback control for the spark 
loop, and several feed forward controls realizing 
compensations for accessory loads, engine temperature, 
ambient temperature and barometric pressure [4]. 
Approaches to ISC based on modern control theory have 
been also considered, including LQ based optimization [5], 
H∞ control [6], and l1 control [7]. Additional ISC 
improvements are made possible through the preview and 
feed forward control of known or measurable disturbances, 
such as, for example, air conditioning or power steering 
load. A design technique, which includes lead 
compensation, feed forward and a disturbance observer, is 
presented for ISC systems with minimal spark reserve levels 
in [8].   
   The focus of this paper is to analyze the swapping 
modularity of the optimal ISC design for the air path of the 
engine with respect to the throttle actuator time constant.  
Specifically, we seek to distribute an optimal centralized 
ISC into a base controller part which does not depend on 
this time constant and into a time constant-dependent 
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actuator controller part.  While achieving swapping 
modularity of a fixed centralized ISC is relatively easy with 
a low order actuator controller based on pole-zero 
cancellation, our results indicate that achieving swapping 
modularity of an optimal ISC, i.e., that performs optimally 
for each choice of actuator time constant, is comparatively 
more difficult.   In addition, we will demonstrate that the 
bidirectional communication capability can facilitate the 
development of controller architectures which provide 
swapping modularity. 

II. PROBLEM FORMULATION 

    In this section the problem formulation to maximize the 
actuator swapping modularity in a single input single output 
(SISO) linear time invariant (LTI) system is discussed. The 
controller design for swapping modularity includes three 
steps, the centralized controller design, controller distribu-
tion, and swapping modularity optimization. The key idea is 
to match the distributed controller with the centralized 
controller, while maximizing the swapping modularity.  
   First we design the desired centralized controller Cdes(P) 
by any controller design method. Our approach in this paper 
is based on optimization to provide optimal performance of 
the system with each different actuator: 

min ( , )J
C

P C

 
   subject to  

( , ) ≤g P C σ  
    where the elements of the vector P are parameters of the 
actuator; the elements of the vector C are the undetermined 
coefficients of the centralized controller, which are variables 
of the optimization problem; J is a control-oriented 
objective function reflecting performance metrics, such as 
settling time, control effort, etc; g represent all the 
constraints such as an overshoot limit, stability 
requirements, etc.

 

 
    Then the centralized controller is distributed into two 
components, the base controller CBC(xBC) and the actuator 
controller CA(xA), where CBC(xBC) and CA(xA) are controller 
transfer functions, or transfer function matrices, depending 
on the number of the inputs and outputs for each component. 
The vectors xBC, xA represent numerator and denominator 
polynomial coefficients for these functions respectively. The 
distributed controller, Cdis (xBC, xA), is a function of CBC(xBC) 
and CA(xA). 
   The swapping modularity optimization process is to 
maximize the swapping modularity while satisfying Cdes (P) 
= Cdis (xBC, xA), to ensure that the distributed controller 
provides the same performance as the centralized controller. 
The variables in the optimization are the coefficients of the 
actuator controller xA, which depend on the parameters of 
the actuator P, and the coefficients of the base controller 
xBC, which are independent of P, since we only change the 
actuator controller CA when we swap the actuator. 

    The swapping modularity of the actuator MA, is defined in 
reference to Fig. 2 as follows [3]. 

 
Fig. 2: Illustration of set PA for a two parameter system. 

    We assume, for the purpose of illustration, that the 
actuator has two parameters P1 and P2, which can change 
depending on the component.  Let PA be a connected set of 
the two parameters including the nominal parameter set pA

0, 
that satisfies Cdes (P) = Cdis (xBC, xA),  by only changing the 
controller in the swappable component given a distribution 
solution xdist

0
 = {xBC

0, xA
0}, i.e. , 

2{ [ , ]}l h
A A A A A= ∈ ∃ ∈P p R x x x  

such that 0( ) ( , )des dis BC AC C=P x x

 
where  

0
A A∈p P

 
2 1 1 2,A A A A Aε− < ∀ ∈p p p p P

 
And whereε  is a very small positive number. Then the 
swapping modularity MA is defined as  
 0( , , )

A

A A BC A AM d= ∫
P

p x x p  (1) 

corresponds to the area (see Fig. 2) in the parameter space 
around the nominal value, for which optimal performance 
can be achieved by changing only the variables xA  in the 
actuator controller. That is, for a nominal parameter set of 
the actuator pA

0, we search for the base controller variables 
xBC, and the actuator controller variables xA(P), to maximize 
the swappable parameter set PA. 

III. THROTTLE ACTUATOR SWAPPING 
MODULARITY DESIGN FOR ISC 

A.  ISC system description 
   The throttle actuator is modeled as a first order system 
with a time constant τ, 
 

     1( )
1aG s

sτ
=

+
 

 
(2) 

   An engine model [9] linearized around an idle speed 
operating point with the nominal throttle position, load 
torque and engine speed set, respectively, as  uth,0 = 3.15 
(deg), ML = 31.15 (Nm) and N = 800 (rpm), is used to obtain 
the transfer function from the deviation in the throttle 
position (deg) to the deviation in engine speed (rpm) , 

2

572.2997( )
1.545 2.228

dt s
eG s e

s s
−=

+ +
 (3) 
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The transfer function from the deviation in the disturbance 
torque (Nm) to the deviation in the engine speed (rpm) is 
given as, 

2

37.04 57.22( )
1.545 2.228

dt s
l

sG s e
s s

−− −
=

+ +
  (4) 

   The delay dt is between the intake stroke of the engine and 
torque production, and corresponds to 360 degree of 
crankshaft revolution. Consequently, it is given by 

60 0.075 (sec)dt N
= ≈  (5) 

  A first order Padé approximation of the delay has the form, 

2

2

1 1 0.03752
1 0.03751

2

d

d
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t ds

t s
t

s d
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−

−

−

− −
= ≈ =

++
 

 
(6) 

   With this approximation, a pole-zero pair is added to the 
delay-free transfer function, thereby permitting the resulting 
plant model to be treated with conventional linear control 
methods.  

 
B. Centralized controller design 

   The closed-loop system is shown in Fig. 3, 

( )eG s( )aG s( )cG s

( )tG s

 
Fig.3: Feedback control system 

   If we consider an objective of maximizing swapping 
modularity, an actuator controller which uses pole-zero 
cancellation to cancel the dynamics of the new actuator and 
maintain the dynamics of the original/nominal actuator, will 
provide full swapping modularity (within actuator physical 
constraints). The shortcoming of such an approach is that we 
maintain the response of the system designed for the original 
actuator and do not achieve optimality with respect to the 
changed actuator.  It is, thus, of interest to understand if the 
optimal centralized controller, which depends on the throttle 
actuator time constant, can be distributed with only actuator 
controller dependent on the actuator time constant. 
   The open loop system, including the throttle actuator, is 4th 
order, after including the Padé approximation of the delay. 
The controller is assumed to be 4th order, as per equations 
(7)-(9), and includes an integrator to ensure zero steady state 
error: 
 ( ) ( ) ( )cG s S s R s=  (7) 
 ' 3 2

2 1 0( ) ( ) ( )R s sR s s s r s r s r= = + + +  (8) 

 4 3 2
4 3 2 1 0( )S s s s s s s s s s s= + + + +  (9) 

The controller design is formulated as an optimization 
problem in reference to the response of the system to d = 10 
(Nm) load disturbance step and r = 0 (rpm) set-point, and in  
reference to controller and closed-loop pole locations: 

min ( , )st τ
C

C
 

   
subject to

 g1:  _ maxp pM M≤
 

g2:  maxu u≤   
g3:  minu u≥  
g4:  '

1( ( )) 0real root R e+ ≤  
g5:  1( ( )) 0CLreal root A e+ ≤  
g6:  '

2( ( )) 0mag root R e− ≤  
g7:  2( ( )) 0CLmag root A e− ≤

 
    where ts denotes the 2% settling time; variables C 
represent the undetermined controller coefficients s0, s1, s2, 
s3, s4, r0, r1, r2; MP 

represents the maximum deviation from 
the idle speed; u is the throttle actuator position. Since the 
nominal throttle position is uth,0=3.15 (deg), we limit u to the 
range [-2, 12] (deg), and Mp to 10% of the idle speed (800 
rpm). Constraints g4, g5 ensure the stability of the controller 
and the closed loop system, while e1>0 ensures a stability 
robustness margin.  Constraints g6, g7 ensure that the 
magnitude of the poles of the controller and the closed loop 
system are not too large to avoid extending the bandwidth 
into the region where measurement noise and model 
uncertainties are dominant.  
     A parameter study was conducted to find the optimal 
controller coefficients for each time constant of the throttle 
actuator in the range [0.01, 0.21]. The coefficients s0, s1, s2, 
s3, s4, r0, r1, r2 can be derived as polynomial functions of τ 
by curve fitting. With the optimal controllers, the system 
response to 10 (Nm) load torque disturbance is shown in 
Fig. 4. The poles and zeros of the optimal controllers for 
each actuator time constant τ are shown in Fig. 5. 

 
Fig. 4:  Optimal system response to a step disturbance torque 

 
Fig. 5: Optimal controller poles and zeros for τ in [0.01, 0.21] 
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As can be seen from Fig. 4, the optimal system response 
changes as the value of the time constant of the throttle 
actuator decreases. Fig. 5 shows that some of the poles and 
zeros of the optimal controllers are unchanged for a range of 
the actuator time constant τ.  
    If we accept an approximation of the poles and zeros, i.e., 
if the poles (zeros) for different τ are within the circular 
region centered at the pole (zero) of the optimal controller 
corresponding to nominal τ = 0.05, we consider it as 
unchanged.  If we assume the radius of the circular region is 
5% of the absolute value of the pole (zero) for the nominal 
case. We observe the pole p = 0 is unchanged for τ in [0.01, 
0.21], the pole p = - 0.27 is unchanged for τ in [0.03, 0.18], 
and the zeros z1,2= - 2.07±2.3i are unchanged for τ in [0.03, 
0.21].  Now assume the unchanged poles and zeros to be 
fixed at the value for the nominal case, the approximate 
optimal controller poles and zeros are shown in Fig. 6, and 
the closed loop system performances based on the 
approximate optimal controllers are shown in Fig. 7.  

 
Fig. 6: Approximate optimal controller poles and zeros for τ in [0.01, 0.21] 

 
Fig. 7: system response to a step of disturbance torque  

with approximate controllers 

    As shown in Fig. 7, the closed loop system responses with 
the approximate optimal controllers are almost the same as 
that with the original optimal controllers shown in Fig. 4. 
Therefore it is acceptable to take the approximate optimal 
controller for each τ as the desired centralized controllers 

( )desC τ . The approximation made here will be employed in 
step 3) bellow (i.e., swapping modularity design), to 
maximize the actuator swapping modularity. 

C. Controller distribution 
1) With unidirectional communication 

 
Fig. 8:  Controller configuration with unidirectional communication 

    As shown in Fig. 8, the centralized controller is 
distributed into the base controller CBC(xBC) and the actuator 
controller CA(xA), where CBC and CA are both SISO transfer 
functions and can be assumed to be of different orders. For 
example, if CBC is 3rd order and CA  is 1st order, then 

3 2
1 2 3 4

3 2
5 6 7

BC
x s x s x s x

C
s x s x s x

+ + +
=

+ + +
 (11) 

8 9

10
A

x s x
C

s x
+

=
+

 (12) 

    From the perspective of computational efficiency and ease 
of implementation, it is desirable if the two controllers are of 
low order. This is especially desirable for the swappable 
component. Table 1 describes the test cases we used for our 
analysis. The case B4A1, which can achieve consistent 
control for each τ by pole-zero cancellation, is included here 
to investigate if one can achieve the full range of swapping 
modularity while guaranteeing optimal control for each τ . 

TABLE 1 
UNIDIRECTIONAL CASE DESCRIPTIONS 

Case Case description 
B4A0 CBC : 4th order, CA : gain 
B4A1 CBC : 4th order, CA : 1st order 
B3A1 CBC : 3rd order, CA : 1st order 
B2A2  CBC :2nd order, CA : 2nd order 
B1A3  CBC : 1st order, CA : 3rd order 
B0A4  CBC : gain, CA : 4th order 

 
The overall distributed controller with e as the input and q 

as the output is then given by  
( , )dis BC A BC AC C C=x x  (13) 

    where xBC, xA are undetermined coefficients of the 
distributed controllers CBC and CA respectively. Only xA can 
depend on actuator parameters. 

2) With bidirectional communication 
    The communication network is shown in Fig. 9. 

 
Fig. 9:  Distributed controller with bi-directional communication 

    When bidirectional communication between the base 
controller and the actuator controller in the “smart” actuator 
is introduced, CBC and CA become transfer function 
matrices,  
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 [ ]11 12BC BC BCC C=C  (14) 

 11

21

A
A

A

C
C

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
C  (15) 

    Table 2 shows some of the test cases to see the effect of 
the order distribution. From a large set of possible solutions, 
we have selected the relatively low-order ones that provide 
good swapping modularity. 

TABLE 2 
BIDIRECTIONAL CASE DESCRIPTIONS 
Case Case description 

B22A00 CBC11: 2nd order, CBC12: 2nd order, 
CA11: gain, CA21: gain 

B12A10 CBC11: 1st order, CBC12: 2nd order, 
CA11: 1st order, CA21: gain 

B21A01 CBC11: 2nd order, CBC12: 1st order, 
CA11: gain, CA21: 1st order 

B02A11 CBC11: gain, CBC12: 2nd order, 
CA11: 1st order, CA21: 1st order 

B20A11 CBC11: 2nd order, CBC12: gain, 
CA11: 1st order, CA21: 1st order 

B11A11 CBC11: 1st order, CBC12: 1st order, 
CA11: 1st order, CA21: 1st order 

B01A21 CBC11: gain, CBC12: 1st order, 
CA11: 2nd order, CA21: 1st order 

B10A21 CBC11: 1st order, CBC12: gain, 
CA11: 2nd order, CA21: 1st order 

B01A12 CBC11: gain, CBC12: 1st order, 
CA11: 1st order, CA21: 2nd order 

B10A21 CBC11: 1st order, CBC12: gain, 
CA11: 2nd order, CA21: 1st order 

B10A12 CBC11: 1st order, CBC12: gain, 
CA11: 1st order, CA21: 2nd order 

B00A22 CBC11: gain, CBC12: gain, 
CA11: 2nd order, CA21: 2nd order 

 
   By analyzing Fig. 9 and using the notation presented in 
(14)-(15), the equations representing individual signals are 
 11 12ca BC ac BCu C y C e= +  (16) 
 11ac A cay C u=  (17) 
 21A caq C u=  (18) 
   Equations (16)-(18) can be rewritten in matrix form as 

1
11 12

11

1
1 0

ca BC BC

ac A

u C C
e

y C

−−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦⎣ ⎦

 (19) 

[ ]21 0 ca
A

ac

u
q C

y
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (20) 

  Therefore the distributed controller with e as input, q as 
output is given by 

[ ]
1

11 12
21

11

1
( , ) 0

1 0
BC BC

dis BC A A
A

C C
C C

C

−−⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦

x x  

21 12

11 11

( , )
1

A BC
dis BC A

BC A

C C
C

C C
=

−
x x   (21) 

D. Swapping modularity optimization 
   Fig. 10 illustrates the set PA for the case where the actuator 
can be represented using only one parameter (i.e. τ). The 
swapping modularity measure is a real number representing 
the range of this parameter for which swappable modularity 
is achievable. 

 
Fig. 10:  Illustration of set PA for a one parameter system 

     The optimization problem to maximize swapping modu-
larity is formulated as follows,  

( )
BC A A

max max minτ τ−
x x x

 

      subject to: 
h1: ( ) ( , )des dis BC AC Cτ = x x  
g1: stability of each distributed controller 
g2: 0.01 0.21τ≤ ≤  

  Note that the design variables in this optimization problem 
are xBC and xA(τ). This optimization problem was solved 
numerically using the following steps: 

a) Initialize xBC and xA   
b) Vary τ about the nominal value τ0 = 0.05, to find the 

maximum and minimum value of τ that satisfy the 
constraints h1, g1 and g2, by varying xA only, for a 
fixed xBC. Compute

A A
AM max minτ τ= −

x x
 

c)   Repeat step b), choosing different values for xBC; 
Compute and store MA(xBC) 

d)   Determine maximum of MA with respect to tried xBC 

To initialize xBC and xA, one may solve the equality 
constraint h1 (matching the poles and zeros) for the nominal 
value of τ=τ0. Steps c) and d), to search for different xBC for 
MA(xBC) and then maximize MA with respect to xBC, 
represent a nonlinear optimization problem.  If we make use 
of the information that, for a certain range of τ, the poles and 
zeros of the centralized controller ( )desC τ  are constant, as 
illustrated in section B, it is possible to predict an upper 
bound on the maximum MA(xBC) that can be achieved. For 
example, if the distributed controller ( , )dis BC AC x x  has a zero, 
which is determined by xBC only, i.e., it cannot be 
manipulated by xA, then this zero has to be equal to one of 
the constant zeros of ( )desC τ  in order to achieve swapping 
modularity. Since that zero of ( )desC τ  is only constant for a 
certain range, then this range puts an upper bound on the 
maximum MA we can achieve.  In this way, we may 
terminate the search for xBC, if we obtain the predicted upper 
bound on MA. In our case, the predicted upper bound on MA 
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was always achievable, frequently, just for the starting value 
of xBC. 

 
E. Results and discussion 

 We consider the range of the time constant of the actuator 
as [0.01, 0.21]. Note that, for this range, full swapping 
modularity corresponds to MA = 0.2, and implies that any 
actuator with τ in the range [0.01, 0.21] can be used to 
achieve optimal performance by making changes only to the 
gains xA of the actuator controller CA. A value of MA = 0, 
indicates that the optimal performance can only be achieved 
for the nominal value of the time constant, τ = 0.05. Any 
internal value of MA, like 0.15, corresponds to a certain 
range of τ, in which the actuator has swapping modularity. 
Table 3 shows the modularity results for the cases described 
in Table 1, with the configuration in Fig. 8. Table 4 shows 
the modularity results for the cases described in Table 2, 
with the configuration in Fig. 9. 

TABLE 3 
EFFECTS OF CONTROLLER DISTRIBUTION WITH 

UNIDIRECTIONAL COMMUNICATION 
Case MA (range) 

B4A0, B4A1, B3A1 0 (0.05-0.05) 
B2A2, B1A3 0.15 (0.18-0.03) 

B0A4 0.2 (0.21-0.01) 

    The results in Table 3 show that for the configuration 
with unidirectional communication, when the order of the 
actuator controller is of 2 or 3, the swapping modularity is 
0.15. Only when all the control, except a gain, is moved to 
the actuator, can we achieve full range swapping modularity. 
Note that if our objective were to match the performance of 
a fixed centralized controller, the solution in the B4A1 case 
with a first order actuator controller may exist, as this case 
includes an actuator controller based on pole-zero 
cancellation. But the solution for matching the optimal 
centralized controller does not exist in this case.    

TABLE 4 
EFFECTS OF CONTROLLER DISTRIBUTION WITH 

BIDIRETIONAL COMMUNICATION 
Case MA (range) 

B22A00, B12A10, B21A01 0 (0.05-0.05) 
B02A11, B20A11 0.15 (0.18-0.03) 

B11A11, B01A21, 10A21, 
B01A12, B10A21, B10A12 

0.18 (0.21-0.03) 

B00A22 0.2 (0.21-0.01) 

   The swapping modularity results for the bidirectional 
communication configuration are shown in Table 4. We can 
achieve larger swapping modularity when the order of the 
actuator controller is of 2, in case B11A11, and we have 
many controller configurations to achieve larger swapping 

modularity, compared to the unidirectional communication 
configuration. 

IV. SUMMARY AND CONCLUSION 

   Approaches to achieving swapping modularity for an 
engine speed control system with respect to changes in the 
throttle actuator time constant have been analyzed.  It has 
been shown that an optimal centralized controller can be 
distributed between an actuator controller and a base 
controller, where only the actuator controller depends on the 
throttle actuator time constant.  With such a distributed 
controller implementation, a throttle actuator and its 
controller can be swapped without touching the software or 
the calibration of the base controller in such a way that the 
performance of the closed-loop system is automatically 
configured to be optimal for the new throttle component. 
Comparing to the unidirectional communication 
configuration, the bidirection-al communication capability 
provides extra flexibility in developing distributed controller 
architectures which enhance swapping modularity.      

    In this paper we focused on a case study for achieving 
swapping modularity of the engine speed control with 
respect to the throttle actuator time constant. A similar 
approach can be followed to analyze the pathways to 
achieving swapping modularity with respect to other 
components and parameters, including throttle actuator time 
delay, intake manifold volume, engine displacement volume 
and/or engine inertia.  
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