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Abstract— This paper presents improved LMI (linear matrix
inequality) controller design condition for switching fuzzy
model-based control using slack variable approach based on the
inverse use of the elimination lemma. In our previous papers, we
derived controller design conditions for augmented switching
fuzzy model which consists of a switching fuzzy model and
a stable linear system. However, in the papers, we have to
determine the stable linear system in advance. In this paper,
by employing slack variable approach based on the inverse
use of the elimination lemma, we derive LMI controller design
conditions for the switching fuzzy model without determining
the stable linear system in advance. A design example illustrates
the utility of this approach.

I. INTRODUCTION

In general, nonlinear controls require special and rather

involved knowledge [1]. It is not easy to utilize nonlinear

control theories for practical engineers. On the other hand,

Takagi-Sugeno (T-S) fuzzy model-based control which has

been rapidly developed in recent years [2]–[6] is simple

and natural. By employing the T-S fuzzy model [7], which

utilizes local linear system description for each rule, we can

devise a control methodology to fully take advantages of

linear control theory.

However, the complexity of a system makes the number

of rules of a fuzzy model exponentially increase. The curse

of the number of rules makes controller design difficult. To

decrease the number of rules which fire simultaneously, we

proposed a switching fuzzy model [8]. The switching fuzzy

model is constructed by dividing the state space and by

finding the sector which can cover the nonlinear dynamics

[9], [10]. Moreover, we derived controller design conditions

based on the switching Lyapunov function by introducing

the augmented system which consists of the switching fuzzy

model and a stable linear system. The stable linear system

is an additional system in order to derive controller design

condition. However, we have to determine the stable linear

system in advance. Therefore, it is likely that how to deter-

mine the stable system affects stability analysis results and

controller designs.

In this paper, we derive improved LMI controller design

condition for switching fuzzy model-based control. We em-

ploy slack variable approach [13] based on the inverse use
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of the elimination lemma [12]. By utilizing the approach,

a system matrix of the additional stable system can be

converted into a LMI variable. This means that we do not

have to determine the stable system in advance. A design

example illustrates the utility of this approach.

II. PRELIMINARY RESULTS

In this section, we explain switching fuzzy model con-

struction and controller design.

A. Switching Fuzzy Model Construction [9], [10]

Consider the following nonlinear function.

y = f(x) = f(x1, x2, · · · , xn) (1)

where f(0) = 0. In this subsection, we show how to convert

the nonlinear function into the swtiching fuzzy model.

To begin with, determine the dividing planes. We assume

that the dividing planes contain the origin. dividing planes

are represented by the following linear equations.

λγ1x1 + λγ2x2 + · · · + λγnxn = Λγx = 0 (2)

where γ = 1, 2, · · · , Γ and Γ is the number of dividing

planes. One dividing plane divides the state space into the

following two regions.

Sγ = {x|Λγx ≥ 0} , Sγ = {x|Λγx ≤ 0}

The state space is divided into Q regions by Γ dividing

planes. Note that Q = 2Γ is not necessarily satisfied. One

region constructed by dividing planes is defined as follows:

Rq = {x|Λ1x ≥ 0,Λ2x ≤ 0,Λ3x ≤ 0,

Λ4x ≥ 0, · · · ,ΛΓx ≥ 0} (3)

We represent the region as follows:

Rq(s1, s2, s3, s4, · · · , sΓ)

s1 = 1, s4, · · · , sΓ = 1, s2, s3 = 0

or

Rq(1, 0, 0, 1, · · · , 1)

where
{

sγ = 1 Λγx ≥ 0
sγ = 0 Λγx ≤ 0

Next we calculate the continuity matrix Kq ∈ R
(2Γ+n)×n

as follows:

Kq =
[

ηq11Λ
T
1 ηq12Λ

T
2 · · · ηq1ΓΛ

T
Γ

−ηq21Λ
T
1 − ηq22Λ

T
2 · · · − ηq2ΓΛ

T
Γ In

]T
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where

ηq1γ =

{

1 Rq ∈ Sγ

0 Rq /∈ Sγ
ηq2γ =

{

1 Rq ∈ Sγ

0 Rq /∈ Sγ

Sγ = {x|Λγx ≥ 0}, Sγ = {x|Λγx ≤ 0}.

The continuity matrix Kq satisfies the following condition

on region boundaries [11].

Kq1x = Kq2x, x ∈ Rq1 ∩ Rq2 . (4)

By using Kq and solving the following conditions, we

construct the tight sector which can cover the nonlinear

function (1).

minimize
a1, a2

Q
∑

q=1

|Yq1(a1) − Yq2(a2)| (5)

subject to

yq1(a1, x) − f(x) ≥ 0, x ∈ Rq, ∀q

f(x) − yq2(a2, x) ≥ 0, x ∈ Rq, ∀q

where

ai = [ ai1 ai2 · · · ai(2Γ+n) ]

Yqi(ai) = aiKqDq

Dq =

∫

· · ·

∫ ∫

Rq

x dx1dx2 · · ·dxn

yqi(ai, x) = aiKqx

|x1| ≤ d1, |x2| ≤ d2, · · · , |xn| ≤ dn

The sector in qth region is represented by the following two

linear models.

yq1(x) = a1Kqx (6)

yq2(x) = a2Kqx (7)

By using (6) and (7), the switching fuzzy model can be

constructed as follows:

y =

Q
∑

q=1

2
∑

i=1

vq(x)hqi(x)aiKqx (8)

where

vq(x) =

{

1, x ∈ Rq,
0, x /∈ Rq.

(9)

The membership functions are represented by the following

equations.

hq1(x) =
f(x) − yq2(x)

yq1(x) − yq2(x)
(10)

hq2(x) =
yq1(x) − f(x)

yq1(x) − yq2(x)
(11)

where hq1(x) ≥ 0, hq2(x) ≥ 0 and hq1(x) + hq2(x) = 1.

B. Construction of Dynamic Switching Fuzzy Model

This subsection shows the switching fuzzy model con-

struction for the following dynamic state equation.

ẋ(t)=











f1(x(t))
f2(x(t))

...

fn(x(t))











+











g11(x(t)) g21(x(t)) · · · gm1(x(t))
g12(x(t)) g22(x(t)) · · · gm2(x(t))

...

g1n(x(t)) g2n(x(t)) · · · gmn(x(t))











u(t)

(12)

where x(t) = [x1(t) x2(t) · · · xn(t)]T is the state vector,

u(t) = [u1(t) u2(t) · · · um(t)]T is the input vector. fj(x(t))
and gej(x(t)) are scalar linear or nonlinear functions, re-

spectively. j = 1, 2, · · · , n, e = 1, 2, · · · , m. By applying

the switching fuzzy model construction method described in

Section II-A to each fj(x(t)), we can obtain the following

switching fuzzy model.

ẋ(t)=











f1(x(t))
f2(x(t))

...

fn(x(t))











+











g11(x(t)) g21(x(t)) · · · gm1(x(t))
g12(x(t)) g22(x(t)) · · · gm2(x(t))

...

g1n(x(t)) g2n(x(t)) · · · gmn(x(t))











u(t)

=

Q
∑

q=1

vq(x(t))























∑ρ1

i=1 hqi1(x(t))ai1Kqx(t)
+
∑σ1

i=1 wqi1(x(t))bqi1u(t)
∑ρ2

i=1 hqi2(x(t))ai2Kqx(t)
+
∑σ2

i=1 wqi2(x(t))bqi2u(t)
...

∑ρn

i=1 hqin(x(t))ainKqx(t)
+
∑σn

i=1 wqin(x(t))bqinu(t)























=

Q
∑

q=1

ρ1
∑

i
1
=1

ρ2
∑

i
2
=1

· · ·

ρn
∑

i
n

=1

σ1
∑

i
(n+1)

=1

σ2
∑

i
(n+2)

=1

· · ·

σn
∑

i
(2n)

=1

vq(x(t))hqi
1
1(x(t))

×hqi
2
2(x(t)) × · · · × hqi

n
n(x(t))wqi

(n+1)
1(x(t))

×wqi
(n+2)

2(x(t)) × · · · × wqi
(2n)

n(x(t))

×

































ai
1
1

ai
2
2

...

ai
n

n











Kqx(t) +













bqi
(n+1)

1

bqi
(n+2)

2

...

bqi
(2n)

n













u(t)























=

Q
∑

q=1

r
∑

i=1

vq(x(t))ĥqi(x(t)) (Aqix(t) + Bqiu(t)) (13)
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where

ρj =

{

1, fj is linear
2, fj is nonlinear

βej =

{

1, gej is constant
2, gej is a function with respect to x(t)

σj =
m
∏

e=1

βej

r = ρ1 × ρ2 × · · · × ρn × σ1 × σ2 × · · · × σn

aij = [ai1j ai2j · · · ainj ],

bqi
(n+1)

1 = [bq1i
(n+1)

1 bq2i
(n+1)

1 · · · bqmi
(n+1)

1]

bqi
(n+2)

2 = [bq1i
(n+2)

2 bq2i
(n+2)

2 · · · bqmi
(n+2)

2]

...

bqi
(2n)

n = [bq1i
(2n)

n bq2i
(2n)

n · · · bqmi
(2n)

n]

bqeij =







max
x(t)∈Rq

gej(x(t)),

min
x(t)∈Rq

gej(x(t)),

r
∑

i=1

ĥqi(x(t))

:=

ρ1
∑

i1=1

ρ2
∑

i2=1

· · ·

ρn
∑

i
n

=1

σ1
∑

i
(n+1)

=1

σ2
∑

i
(n+2)

=1

· · ·

σn
∑

i
(2n)

=1

×hqi
1
1(x(t))hqi

2
2(x(t)) × · · · × hqi

n
n(x(t))

×wqi
(n+1)

1(x(t))wqi
(n+2)

2(x(t))

× · · · × wqi
(2n)

n(x(t))

r is the number of rules of the fuzzy model in each region.

C. Switching Fuzzy Controller Design

To stabilize the switching fuzzy model (13), we employ

augmented system approach [9]. Consider the following

stable linear system.

˙̂x(t) = −αI2Γx̂(t) (14)

where α is a positive constant, I2Γ is an identity matrix,

x̂(t) = [x̂1(t) x̂2(t) · · · x̂2Γ(t)]T is a state vector for the

linear system (14). By adding the stable linear system (14) to

the switching fuzzy model (13), we construct the following

augmented system.

˙̃x(t)=

Q
∑

q=1

r
∑

i=1

vq(x(t))ĥqi(x(t))
(

Ãqix̃(t) + B̃qiu(t)
)

(15)

where

x̃(t) = [xT (t) x̂
T (t)]T

= [x1(t) · · · xn(t) x̂1(t) · · · x̂2Γ(t)]T

Ãqi =

[

Aqi 0

0 −αI2Γ

]

, B̃qi =

[

Bqi

0

]

By employing the so-called parallel distributed compen-

sation (PDC) [2], [3], the switching fuzzy controller is

represented as

u(t) = −

Q
∑

q=1

r
∑

i=1

vq(x(t))ĥqi(x(t))F qiEqx̃(t) (16)

where F qi ∈ Rm×(2Γ+n) is a feedback gain and

Eq = [Kq K
⊥

q ] (17)

K
⊥

q is the orthogonal complement of Kq . Note that Eq

becomes a nonsingular matrix because of the property of

the orthogonal complement. The feedback gain F qi can be

determined by solving controller design conditions (18), (19)

and (20) in Theorem 1.

Theorem 1: [9], [10] If there exist positive definite matrix

X ∈ R(2Γ+n)×(2Γ+n) and M qi ∈ Rm×(2Γ+n) satisfy-

ing (18), (19) and (20) and the initial state is x̃(0) =
[xT (0) 0

T ]T , then the augmented system (15) can be stabi-

lized by the switching fuzzy controller (16).

X > 0, (18)

EqÃqiE
−1
q X + XE

−T
q Ã

T

qiE
T
q

−EqB̃qiM qi − M
T
qiB̃

T

qiE
T
q < 0, ∀i, q, (19)

EqÃqiE
−1
q X + XE

−T
q Ã

T

qiE
T
q

+EqÃqjE
−1
q X + XE

−T
q Ã

T

qjE
T
q

−EqB̃qiM qj − M
T
qjB̃

T

qiE
T
q

−EqB̃qjM qi − M
T
qiB̃

T

qjE
T
q < 0, ∀i, q, i < j, (20)

where F qi = M qiX
−1.

III. MAIN RESULT

In our previous approach, we utilized simple and stable

linear system (14) in order to derive LMI controller de-

sign condition. In this section, we derive controller design

condition without determining stable system in advance by

employing slack variable approach [13] based on the inverse

use of elimination lemma [12].

Recall the switching fuzzy model (13).

ẋ(t)=

Q
∑

q=1

r
∑

i=1

vq(x(t))ĥqi(x(t)) (Aqix(t) + Bqiu(t))

(21)

For the above system, we consider the following additional

nonlinear system instead of Eq. (14).

˙̂x(t) =

Q
∑

q=1

r
∑

i=1

vq(x(t))ĥqi(x(t))Cqix̂(t) (22)

where Cqi is a matrix variable which is determined with

feedback gains of the fuzzy controller. Important property of

this system is x̂(t) = 0 when x̂(0) = 0 even if vq(x(t))
and ĥqi(x(t)) are not zero. By adding (22) to (21), we can

obtain the following augmented system.

[

ẋ(t)
˙̂x(t)

]

=

Q
∑

q=1

r
∑

i=1

vq(x(t))ĥqi(x(t))

×

([

Aqi 0

0 Cqi

] [

x(t)
x̂(t)

]

+

[

Bqi

0

]

u(t)

)

(23)
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To stabilize the augmented system (23), we employ the

following switching fuzzy controller.

u(t) = −

Q
∑

q=1

r
∑

i=1

vq(x(t))ĥqi(x(t)) [F 1qi F 2qi]

[

x(t)
x̂(t)

]

(24)

where F 1qi and F 2qi are feedback gains. By substituting

(24) into (23), we can obtain the following switching fuzzy

control system.

[

ẋ(t)
˙̂x(t)

]

=

Q
∑

q=1

r
∑

i=1

r
∑

j=1

vq(x(t))ĥqi(x(t))ĥqj(x(t))

×

([

Aqi 0

0 Cqi

]

−

[

Bqi

0

]

[F 1qj F 2qj ]

)[

x(t)
x̂(t)

]

=

Q
∑

q=1

r
∑

i=1

r
∑

j=1

vq(x(t))ĥqi(x(t))ĥqj(x(t))

×

([

Aqi 0

0 0

]

−

[

Bqi 0

0 −I2Γ

] [

F 1qj F 2qj

0 Cqj

])[

x(t)
x̂(t)

]

=

Q
∑

q=1

r
∑

i=1

r
∑

j=1

vq(x(t))ĥqi(x(t))ĥqj(x(t))

×
(

Ăqi − B̆qiF̆ qj

)

x̃(t). (25)

where

Ăqi =

[

Aqi 0

0 0

]

, B̆qi =

[

Bqi 0

0 −I2Γ

]

,

F̆ qj =

[

F 1qj F 2qj

0 Cqj

]

The feedback gain F̆ qi can be determined by solving con-

troller design conditions (26), (27) and (28) in Theorem 2.

Note that (26), (27) and (28) are represented in terms of

LMIs. Hence we can effectively determine the feedback gain

by computer software like MATLAB.

Theorem 2: If there exist positive definite matrix X ∈
R(2Γ+n)×(2Γ+n) and block upper triangular matrices V ∈
R(2Γ+n)×(2Γ+n) and M̆ qi ∈ Rm×(2Γ+n) satisfying (26),

(27) and (28) and the initial state is x̃(0) = [xT (0) 0
T ]T ,

then the augmented system (23) can be stabilized by the

switching fuzzy controller (24).

X > 0, (26)














(

ĂqiV + V
T
Ă

T

qi

−B̆qiM̆ qi − M̆
T

qiB̆
T

qi

)

∗





ε
(

ĂqiV − B̆qiM̆ qi

)T

−V + E
−1
q XE

−T
q



 −εV − εV T















< 0 (27)

∀i, q







































ĂqiV + V
T
Ă

T

qi

ĂqjV + V
T
Ă

T

qj

−B̆qiM̆ qj − M̆
T

qjB̆
T

qi

−B̆qjM̆ qi − M̆
T

qiB̆
T

qj













∗







ε

(

ĂqiV − B̆qiM̆ qj

ĂqjV − B̆qjM̆ qi

)T

−V + E
−1
q XE

−T
q






−εV − εV T



























< 0 (28)

∀i, q, i < j

where

V =

[

V 1 V 2

0 V 3

]

V 1 ∈ Rn×n, V 2 ∈ Rn×2Γ, V 3 ∈ R2Γ×2Γ

M̆ qi =

[

M1qi M 2qi

0 M 3qi

]

M 1qi ∈ Rm×n, M2qi ∈ Rm×2Γ, M3qi ∈ R2Γ×2Γ

ε is a line-search parameter [13]. The symbol ∗ denotes

the transposed matrices for symmetric positions. F̆ qi =
M̆ qiV

−1.

[proof]

We consider the following switching Lyapunov function.

V (x̃(t))=



















x̃
T (t)ET

1 PE1x̃(t) x(t) ∈ R1

x̃
T (t)ET

2 PE2x̃(t) x(t) ∈ R2

...

x̃
T (t)ET

QPEQx̃(t) x(t) ∈ RQ

(29)

To prove the theorem, we have to show V (x̃(t)) > 0,

V̇ (x̃(t)) < 0 in each region and the continuity of V (x̃(t)) on

the region boundaries. V (x̃(t)) > 0 and the continuity of the

Lyapunov function on the region boundaries are explained

in [9]. We show only V̇ (x̃(t)) < 0. This proof focuses

on the switching Lyapunov function in the qth region. The

same technique can be applied to the other regions. The

time derivative of (29) along the trajectories of the system

is represented as follows:

V̇ (x̃(t)) = ˙̃xT (t)ET
q PEqx̃(t) + x̃

T (t)ET
q PEq

˙̃x(t) (30)

By substituting (25) into (30),

V̇ (x̃(t)) =

Q
∑

q=1

r
∑

i=1

r
∑

j=1

vq(x(t))ĥqi(x(t))ĥqj(x(t))

×x̃
T (t)

[

(

Ăqi − B̆qiF̆ qj

)T

E
T
q PEq

+E
T
q PEq

(

Ăqi − B̆qiF̆ qj

)]

x̃(t)

=

Q
∑

q=1

r
∑

i=1

vq(x(t))ĥ2
qi(x(t))

×x̃
T (t)

[

(

Ăqi − B̆qiF̆ qi

)T

E
T
q P Eq

+E
T
q PEq

(

Ăqi − B̆qiF̆ qi

)]

x̃(t)
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+

Q
∑

q=1

r
∑

i=1

∑

i<j

vq(x(t))ĥqi(x(t))ĥqj(x(t))

×x̃
T (t)

[

(

Ăqi − B̆qiF̆ qj

)T

E
T
q P Eq

+
(

Ăqj − B̆qjF̆ qi

)T

E
T
q PEq

+E
T
q PEq

(

Ăqi − B̆qiF̆ qj

)

+E
T
q PEq

(

Ăqj − B̆qjF̆ qi

)]

x̃(t)

Therefore, V̇ (x̃(t)) < 0 at x̃(t) 6= 0 when the following

conditions are satisfied.

(

Ăqi − B̆qiF̆ qi

)T

E
T
q P Eq

+E
T
q PEq

(

Ăqi − B̆qiF̆ qi

)

< 0, ∀q, i (31)

(

Ăqi − B̆qiF̆ qj

)T

E
T
q PEq

+
(

Ăqj − B̆qjF̆ qi

)T

E
T
q P Eq

+E
T
q PEq

(

Ăqi − B̆qiF̆ qj

)

+E
T
q PEq

(

Ăqj − B̆qjF̆ qi

)

< 0, ∀q, i, i < j (32)

We focus on (31). By multiplying E
−1
q XE

−T
q =

(ET
q P Eq)

−1 on the left and right side, we can obtain the

following inequality.

E
−1
q XE

−T
q

(

Ăqi − B̆qiF̆ qi

)T

+
(

Ăqi − B̆qiF̆ qi

)

E
−1
q XE

−T
q < 0 (33)

By applying the inverse of elimination lemma [12] to (33)

with −2εX < 0 where ε is a positive scalar variable, (33)

is converted into the following form.

[

0 E
−1
q XE

−T
q

E
−1
q XE

−T
q 0

]

+

[

Ăqi − B̆qiF̆ qi

−I

]

V [I εI]

+

[

I

εI

]

V
T
[

(Ăqi − B̆qiF̆ qi)
T − I

]

< 0

where V is a block upper triangular matrix. By defining

M̆ qi = F̆ qiV and M̆ qi is a block upper triangular matrix,

we can obtain (27). Note that F̆ qi = M̆ qiV
−1 becomes a

block upper triangular matrix if M̆ qi and V
−1 are block

upper triangular matrices. By applying same procedure to

(32), we can obtain (28).

IV. DESIGN EXAMPLE

Consider the following nonlinear system [9], [10].

ẋ(t) =

[

ẋ1(t)
ẋ2(t)

]

=





x2(t)
−x3

1(t) − x3
2(t) + 5x2

1(t)x2(t) + 5x1(t)x
2
2(t)

−3x1(t)x2(t) − x1(t) − x2(t)





+

[

0
−0.7 + x1(t)x2(t)

]

u(t),

−d ≤ x1 ≤ d, −d ≤ x2 ≤ d.

We select the following four dividing planes.

x2(t) = [0 1]x(t) = Λ1x(t) = 0,

x1(t) − x2(t) = [1 − 1]x(t) = Λ2x(t) = 0,

x1(t) = [1 0]x(t) = Λ3x(t) = 0,

x1(t) + x2(t) = [1 1]x(t) = Λ4x(t) = 0

The state space is divided into the following eight regions

by these dividing planes.

R1(1, 1, 1, 1), R2(1, 0, 1, 1)

R3(1, 0, 0, 1), R4(1, 0, 0, 0)

R5(0, 0, 0, 0), R6(0, 1, 0, 0)

R7(0, 1, 1, 0), R8(0, 1, 1, 1)

The continuity matrices are obtained as follows:

K1 =

[

0 1 1 1 0 0 0 0 1 0
1 −1 0 1 0 0 0 0 0 1

]T

K2 =

[

0 0 1 1 0 −1 0 0 1 0
1 0 0 1 0 1 0 0 0 1

]T

K3 =

[

0 0 0 1 0 −1 −1 0 1 0
1 0 0 1 0 1 0 0 0 1

]T

K4 =

[

0 0 0 0 0 −1 −1 −1 1 0
1 0 0 0 0 1 0 −1 0 1

]T

K5 =

[

0 0 0 0 0 −1 −1 −1 1 0
0 0 0 0 −1 1 0 −1 0 1

]T

K6 =

[

0 1 0 0 0 0 −1 −1 1 0
0 −1 0 0 −1 0 0 −1 0 1

]T

K7 =

[

0 1 1 0 0 0 0 −1 1 0
0 −1 0 0 −1 0 0 −1 0 1

]T

K8 =

[

0 1 1 1 0 0 0 0 1 0
0 −1 0 1 −1 0 0 0 0 1

]T

When d = 0.836, by applying the switching fuzzy model

construction method described in Section II-A, the switching

fuzzy model (13) is constructed as

ẋ(t)=
8
∑

q=1

4
∑

i=1

vq(x(t))ĥqi(x(t)) (Aqix(t)+Bqiu(t)) (34)
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where

Aq1 = Aq3 =

[

0 1
a1Kq

]

Aq2 = Aq4 =

[

0 1
a2Kq

]

a1 = [1.900 0.101 2.220 − 1.221 1.299

0.0314 2.590 0.129 0.076 − 0.670]

a2 = [−3.731 0.991 − 4.48 1.701 − 4.425

0.241 − 3.265 0.884 0.0880 0.09]

B11 = B12 = B21 = B22

= B51 = B52 = B61 = B72 =

[

0
−1.301

]

B13 = B14 = B23 = B24

= B53 = B54 = B63 = B74 =

[

0
−2

]

B31 = B32 = B41 = B42

= B71 = B72 = B81 = B82 =

[

0
−2

]

B33 = B34 = B43 = B44

= B73 = B74 = B83 = B84 =

[

0
−2.699

]

The membership functions ĥqi(x(t)) are omitted due to lack

of space. By constructing the switching fuzzy control system

(25) and solving Theorem 2 with ε = 1, the switching fuzzy

controller (24) is designed. Figures 1 and 2 show the control

result and the time trajectory of the switching Lyapunov

function, where initial states are x(0) = [0.1 − 0.6]T .

The designed controller can stabilize the nonlinear system

(34) and the switching Lyapunov function continuously and

monotonously decrease.

V. CONCLUSIONS

In this paper, we have derived improved LMI controller

design condition for switching fuzzy model-based control by

employing slack variable approach based on the inverse use

of the elimination lemma. By utilizing the approach, we have

shown that a system matrix of the additional stable system

can be converted into a LMI variable. A design example has

illustrated the utility of this approach.

Our future work is to apply this approach to real compli-

cated systems.
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