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Abstract— In early computer control, only one centralized
computer was responsible for executing the algorithms for a
particular system. Increasingly, computer control algorithms
reside inside individual system components in a distributed
fashion. Variable Camshaft Timing (VCT) is an appealing
feature for automotive engines because it allows optimization
of the cam timing over a wide range of operating conditions.
In this paper, a method to distribute the discrete MIMO
controller for the VCT Engine to improve the component
swapping modularity of the VCT Actuator and the EGO Sensor
components using network communications is presented. First
a discrete LQG controller was designed then this controller
was distributed to the ECU, the VCT controller and the EGO
sensor controller in order to improve the component swapping
modularity of the system. A control oriented pre-optimization
technique, which simplifies the optimization problem and a can-
didate solution was devised to maximize component modularity.

I. INTRODUCTION

Although in the early days of computer control, only one

centralized computer was responsible for executing the algo-

rithms for a particular system, increasingly, computer control

algorithms reside inside individual system components in a

distributed fashion. For example, there are up-to 80 micro-

controllers in today’s high-end vehicles and it is expected

that by 2010, 90% of all computer code will reside in such

embedded systems [1].

As control systems are implemented in an increasingly

distributed fashion, modularity of the overall system be-

comes an important design decision. Ulrich and Tung [2]

define modularity in terms of two characteristics of product

design: (1) Similarity between the physical and functional

architecture of the design and (2) Minimization of incidental

interactions between physical components. They also state

that “component-swapping modularity occurs when two or

more alternative basic components can be paired with the

same modular components creating different product vari-

ants belonging to the same product family”.

Fig. 1 describes physical and functional boundaries for

a networked control system with bi-directional communi-

cations and smart components. When a component change

occurs (sensor or actuator shown in Fig. 1-a) both overall

controller (Fig. 1-b) and overall plant dynamics (Fig. 1-

c) are affected. Control systems with modularly swappable

components can then be defined as systems in which the

initial and final configurations due to a component change

operate at their corresponding optimal performance. By

using the additional design freedom, with networked control
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systems with bi-directional communications, it is possible

to improve component swapping modularity of the system

by containing the plant dynamics and corresponding control

algorithm changes only in the affected components physical

boundaries [3], [4].

Variable Camshaft Timing (VCT) is an appealing feature

for automotive engines because it allows optimization of the

cam timing over a wide range of operating conditions [5].

VCT schemes not only improve fuel economy [6], [7], [8],

but also reduce emissions [9], [10] while improving full load

performance [11].

VCT schemes increase internal residual gas by affecting

the intake, combustion and exhaust phases of the engine

cycle. Increase in internal residual gas reduces the com-

bustion temperature which decreases nitrogen oxide, NOx,

formation. The internally recirculated exhaust gas is rich

in unburned hydrocarbons, HC, which can be burned in

the next cycle. Application of VCT schemes, since they

require higher manifold pressure, decrease pumping losses

which results in improved fuel economy. However, dilution

of the in-cylinder mixture adversely affects the engine torque

response. These factors define the trade-off between good

emissions and good drivability for VCT engines. In [12], the

detailed operation of a continuous variable cam timing com-

ponent is described. This variable camshaft timing system

works on the principle of sliding helical gears controlled by

a hydraulic piston.

In this paper, we present the design and distribution of

a discrete MIMO controller for a variable camshaft timing

(VCT) engine. The resulting distributed controllers maximize
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the component swapping modularity of the smart VCT Unit

and smart EGO Sensor. In the next section, the VCT engine

model used in the controller design and the discrete MIMO

controller design will be presented. Next, distribution of the

controller design to engine control unit (i.e. ECU), VCT

Controller and EGO controller to maximize component-

swapping modularity will be discussed. Subsequently, we

present our conclusions and research plan for future steps

in the last section.

II. ENGINE MODELING AND MIMO CONTROL DESIGN

A. VCT Engine Model

The development of a continuous, non-linear, low-

frequency, phenomenological and control oriented VCT en-

gine model was discussed in [13] based on the model

structure given in [14] and other references. The input/output

relationship of the plant model developed is given in Fig. 2.
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Fig. 2. Input Output relationship of the dynamic plant model for control
development.

In previous work an experimental setup was used to

develop relationships for the engine breathing process, torque

generation and feedgas HC and NOx emissions were de-

veloped. Details of this work will not be discussed here, and

the reader is referred to [13] and [5].

B. Dynamics of the VCT Unit and EGO Sensor

In order to model the VCT actuator dynamics, a first order

transfer function where τv,a = 0.0371 will be used:

Yc,act(s) =
−0.013s + τv,a

s + τv,a

Qc(s) (1)

where Qc is the commanded cam phase angle. The non-

minimum phase zero observed in Eqn. (1) is an artifact of

the identification process.

For the VCT sensor, a delay of two fundamental sampling

periods was assumed, modeled as a first order Pade approx-

imation with parameter τv,s. For an n cylinder engine at a

speed of N rpm the fundamental sampling rate is defined as

[13]:

∆T =
120

Nn
(2)

The dynamics of the EGO sensor is modeled as first order

with a time constant τe = 70ms:

Yafr(s) =
1/τe

s + 1/τe

Yafr,exh(s) (3)

The Matlab/Simulink plant model for the VCT engine was

developed based on the information and regression data given

in [13]. The response of the overall model was then validated

using loop model results in [13], [15].

C. Discrete-time MIMO Controller Design

The dynamic engine model described in the previous

section is linearized around the nominal inputs, i.e CAM

Angle = 10◦, Fuel = 0 grams and Throttle Angle = 9.33◦,

and the corresponding steady state internal states using

Matlab/Simulink.

The linearized model is then discretized with a sampling

period ∆T to obtain

x(k + 1) = Adx(k) + Bdu(k) + Br1,drθ(k) (4)

y(k) = Cdx(k) + Ddu(k) + Br1,drθ(k) (5)

where

Ad =
[

Ad1 Ad2

]

Ad1 =























0.8984 −0.01638 0.02042 0.0025 0.0003

0 0.8169 0 0 0

0 0.1153 0.3679 0 0

0 −0.00107 0.0307 0.9435 0.022

0 0 0 0 0.7575

0 0.0045 0 0 0

0 1e − 6 −7e − 5 0.0002 1e − 5

0 −0.0238 −0.0032 0.0456 0.0054

0 −7e − 5 −0.0003 0.0005 5e − 5























Ad2 =























0.1543 −656.314 −0.8944 10.1589

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0.944 0 0 0

0 0.3679 0 0

0.2551 −1240 0.466 −14.0665

0.0011 −6.3646 0.0053 0.9407























[Br1,d,Bd] =























0.00038175 −5.354e − 5 0.14931

0 0.0067904 0

0 0.00046453 0

0.00024734 −7.5544e − 6 0

0.018606 0 0

0.0024429 1.5316e − 5 0

2.2866e − 7 2.2808e − 8 0.0047409

0.00052672 −6.6406e − 5 1.4671

1.5265e − 6 −1.3251e − 7 0.014705























Cd =

[

14.2857 0 0 0 0 0 0 0 0

0 −27.310 266.667 0 0 0 0 0 0

]

Dd =

[

0 0 0

0 0.013 0

]

Since maintaining the stoichiometric air fuel ratio, and

zero steady state error in cam timing, is important during

throttle angle changes, integral control of the plant outputs

is implemented. This is done by augmenting the state vector

with the integral of the output tracking errors:

x̂(k+1) =

[

Ad 0

∆TCd I

] [

x(k)
xI(k)

]

+

[

Bd

−∆TCd

]

u(k)
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+

[

Br1,d 0

0 −TsI

]





rθ(k)
rcam(k)
rafr(k)



 (6)

By using the discrete-time linear system above an LQR

controller with the state feedback gains, Kd was obtained:

KT
d =





































−0.00029813 −0.013001
22.2911 0.0006195
126.643 −0.0087846

2.84e − 5 0.025793
−2.79e − 6 0.0030435
−0.00010603 −0.038505

1.6371 65.1827
−0.00029203 −0.0079145
−0.065519 −2.647
0.0001704 0.0085496
−40.1194 0.00095088





































(7)

Since the only measurements available are the cam timing

measurement and the air-fuel measurement, a Kalman Filter

is designed to estimate the remaining states with the gains:

Ld =





























0.095152 8.486e − 5
−9.9756e − 11 0.00020019
−1.8683e − 11 0.0014151
−2.6077e − 8 0.00012182
−1.0599e − 10 −4.7379e − 15
2.8741e − 8 1.495e − 005
−9.9113e − 7 −2.9073e − 7
−0.015256 −6.9183e − 6
0.00014419 −1.3294e − 6





























(8)

The closed loop system with the discrete MIMO controller

is given in Fig. 4. The resulting closed loop (i.e. discrete

controller + nonlinear plant model) response to a throttle

profile is shown in Fig. 3.

III. DISTRIBUTION PROBLEM

The block diagram representing the plant and controller

relationship for the discrete-time MIMO controller in the

previous section is given in Fig. 4. With the controller

distribution problem our aim is to find component controllers,

Cecu, Cv , Ce which improve the component swapping

modularity of the system by using bi-directional network

communications. The block diagram of the proposed dis-

tributed system with the proposed communication is given

in Fig. 5.

A generic optimization problem formulation for maximiz-

ing the component swapping modularity of an actuator com-

ponent was given in [4]. Given nominal settings for the plant

parameters (denoted as p0
cs, p0

v , p0
e for the controlled system

i.e., rest of the engine, VCT component and EGO sensor,

respectively), we can formulate the distribution problem

which maximizes VCT component swapping modularity, Mv

while the distribution constraint, desired overall controller

must be equal to the overall effect of the distributed controller

(i.e Cdes = Cdis) holds.

In short, Mv represents the size of the region in the param-

eter space, which includes the nominal VCT parameters, for
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which we can ensure the distribution constraint, by changing

only gains of the VCT controller.

A. Formulation of Cdes

In this section, the formulation for the desired centralized

controller, Cdes, given plant parameters p0
cs, p0

v , p0
e is

presented. Given the optimal state feedback matrix Kd =
[K1d,K2d] and linear observer gain Ld, the state space

representation of the discrete MIMO controller in Fig. 4 can

be given as

xc(k + 1) = Acd

[

xc

xc,I

]

(k) + Bcdu(k)

+Bcd,r





rθ

rcam

rafr



 (k) (9)

q(k) = Cd

[

xc

xcI

]

(k) (10)

where

Acd = (11)
[

Ad − LdCd − BdK1d + LdDdK1d LdDdK2d − BdK2d
0 I

]

Bcd =

[

Ld

−TsI

]

(12)

Bcd,r =

[

Brd − LdDrd 0

0 TsI

]

(13)

Ccd =
[

−K1d −K2d

]

(14)

We compute the z-transform equivalent transfer function

matrix for the discrete state space system given in Equations

9-10 in the form

C =

[

N11(z)/D11(z) · · · N15(z)/D15(z)
N21(z)/D21(z) · · · N25(z)/D25(z)

]

(15)

N11 and D11 are polynomials with vectors xn11 and xd11

of controller gains (Eqn. (16)) respectively,

C11(xn11,xd11, z) =
N11(xn11, z)

D11(xd11, z)
=

xn11,mzm+1 + ... + xn11,n+2z + xn11,n+1

xd11,nzn+1 + ... + xd11,2z + xd11,1

(16)

Then we can define Cdes(pv,pe,pecu) as

Cdes(pv,pe,pcs) =

C({x∗

nij ,x
∗

dij |i = 1, 2; j = 1, 2, ..., 5}) (17)

where {x∗

nij ,x
∗

dij |i = 1, 2; j = 1, 2, ..., 5} = argmin
JC(P,C) = Σ∞

1 (x(k)′Qx(k)+u(k)′Ru(k)) s.t. x(k+1) =
Adx(k) + Bdu(k).

The pcs, pv , pe are parameter vectors representing the

controlled system (rest of the engine), VCT component

and EGO sensor parameters respectively. These polynomial

constants vary as VCT and EGO plant parameters change

and can be implemented in the numerical solution phase of

the problem as lookup tables or regression equations.

B. Formulation of Cdist

For the control system given in Fig. 5 and with an a real-

time distributed controller schedule which assumes perfect

completion of the communication schedule, discrete MIMO

equations to calculate the overall controller equation can be

written to obtain the equation given in (18).

Cdist(z) = −

[

Cv13 0 0 0 0 Cv14

0 0 0 Cecu13/z Cecu12 0

]













−1 0 0 Cecu23/z Cecu22 0

0 −1 0 Cecu33/z Cecu32 0

Cv23 0 −1 0 0 Cv24

Cv33 0 0 −1 0 Cv34

0 Ce14/z Ce13/z 0 −1 0

0 Ce24/z Ce23/z 0 0 −1













−1













Cecu21 0 0 0 0

Cecu31 0 0 0 0

0 0 Cv21 0 Cv22

0 0 Cv31 0 Cv32

0 Ce11 0 Ce12 0

0 Ce21 0 Ce21 0













+

[

0 0 Cv11 0 Cv12

Cecu11 0 0 0 0

]

(18)

In order to solve the above distribution constraint numer-

ically, we need to make assumptions regarding the order

of polynomial transfer function matrices Cecu, Cv , Ce.

Although the most straightforward approach would be to

assume all, Cecu, Cv , Ce are composed of transfer functions

of the same order of the centralized controller Cdes, this

may not be preferable, since it increases the numerical

burden of the problem substantially. For the application we

are considering here our desired controller transfer matrix

consists of polynomials of 11th order which means our non-

linear optimization problem would have almost 600 design

variables and constraints to handle.

A better way to tackle the numerical burden of the

distribution problem is to perform some pre-optimization

analysis to better understand and simplify the problem. Fig.

6 shows a typical pole zero map of the desired optimal

controller, Cdes, obtained in the previous section as the VCT

Component parameters τv,a and τv,s vary.

As shown in Fig. 6 in the elements of the desired controller

transfer function matrix one can observe some stationary

poles and zeros as well as varying poles and zeros which can

be exploited for the purposes of improving the modularity.

The static pole and zero elements can be placed in the

ECU and EGO sensor controller while varying poles can

be placed in the VCT Controller. Analyzing the pole zero

plots carefully for each element we note that swapping the

VCT component with another one would only effect the

elements C11, C12, C13, C14, C15, C23, C25 (due to varying

poles, zeros or both similar to shown in Fig. 6 of our desired

optimal controller, Cdes).
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In order to simplify the numerical optimization problem

and obtain a good candidate distribution solution to start the

search algorithm we used a two step configuration design

process once the Pole-Zero mapping of Cdes(pcs,pv,pe, z)
elements versus the VCT component plant variables, pv is

obtained:

1) Identify proper transfer functions Cs
des,ij(z) and

Cv
des,ij(z) such that Cdes,ij(z) = Cs

des,ij(z)Cv
des,ij(z),

2) Find Cecu(z), Cv(z) (with kth row lth column element

denoted as Cv,kl(z)) , Ce(z) satisfying (a) and (b):

a) Cdist(Cecu,Cv,Ce, z) is equal to

Cdes(pcs,pv,pe, z)
b) For all Cv

des,ij(z) (identified in Step 2)

there exists Cv,kl(z) such that Cdist,ij =
Cs

des,ij(z)Cv,kl(z). Therefore Cv,kl(z) can be

picked to be Cv
des,ij(z) for different VCT com-

ponents.

The superscript ”s” denotes the stationary pole/zero pairs

that do not change as τv,a and/or τv,s change while the

superscript ”v” denotes those that do vary. It is important to

note that the primary goal of this procedure is to place vary-

ing poles and zeros to the target component controller while

satisfying the distribution constraint in Step 2(a). Therefore,

it is still acceptable if there are cases where some or all of

the stationary poles/zeros reside ( e.g., EGO sensor controller

as shown in Table II) to satisfy the distribution constraint

in Step 2(a). The pre-optimization method described above

is generic. However, the results (i.e., number of pole zero

cancellations, identifying stationary transfer function matrix

elements and/or poles and zeros in these elements) would

change from one application to another.

Based on the procedure given above, we obtained a candi-

date solution that maximizes VCT component modularity as

shown in Table I. Implementation of this distribution would

result in an overall controller:

Cdist = [
Cv13Cecu21 Cv14Ce21 Cv11

Cecu11 Cecu12Ce11 Cecu13Cv31/z

Cv14Ce22 Cv12

Cecu12Ce12 Cecu13Cv32/z
] (19)

Element Solution Element Solution

Cecu11 C21 Cecu12 1

Cecu13 Cs
23/z Cecu21 Cs

11

Cv11 C13 Cv12 C15

Cv13 Cv
11 Cv14 Cv

14

Cv31 Cv
23 Cv32 Cv

25

Ce11 C22 Ce12 C24

Ce21 Cs
12 Ce22 Cs

14

TABLE I

TRANSFER FUNCTIONS FOR THE MODULAR VCT CONTROLLER

SOLUTION

Element Solution Element Solution

Cecu11 C21 Cecu12 1

Cecu13 1 Cecu31 Cs
11

Cv11 C13 Cv12 C15

Cv14 1 Cv31 C23z
Cv32 C25z Ce11 C22

Ce13 C24 Ce21 Cs
12C

v
12

Ce22 C14 Ce24 Cd
11z

TABLE II

TRANSFER FUNCTIONS FOR THE MODULAR EGO CONTROLLER

SOLUTION

The closed-loop response of this solution is virtually indis-

tinguishable from the overall controller response presented

in Fig. 3. The solution for the optimization problem to

maximize VCT component modularity (i.e parameters for

Cecu, Cv , Ce transfer function matrices) is the same as the

candidate solution as presented in Table I. The numerical

value of M∗

v is 60 ∗ 10 = 600(ms)2. An interpretation of

this number can be given as follows: Assuming the default

configuration for other components, optimal controllers can

be obtained by only adjusting VCT component controller

for VCT plant parameters changing in the ranges τv,a =
[7, 67]ms and τv,s = [10, 20]ms.

The same steps can also be followed to obtain a candidate

solution to maximize EGO sensor modularity: After a similar

pole/zero analysis to the one shown in Fig. 6, we have

identified only C11 and C12 elements have varying elements

as the EGO sensor changes. By applying the pre-optimization

procedure the candidate solution is obtained. As in the VCT

case, closed loop response of this solution is virtually indis-

tinguishable from the overall controller response presented

in Fig. 3. Since our static pole/zero numerical threshold is

within the distribution constraint limits in the optimization

problem our candidate solution (Table II) is verified as the

optimal distribution which results in M∗

e = 60ms (i.e.

given the default configuration, optimal controllers can be

obtained by only changing EGO controller in the range

τe = [40, 100]ms).
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IV. CONCLUSION

In this paper, a method to distribute the discrete MIMO

controller for the VCT engine to improve the component

swapping modularity of the VCT actuator and the EGO

sensor components is presented. This work is an extension

of the method described in [3], [4] to a discrete MIMO

controller applied to a more complex system. In Section II-C,

a discrete LQG controller was designed based on the work

from [13]. In Section III-B, this controller was distributed

to ECU, a VCT controller and an EGO sensor controller in

order to improve the component swapping modularity of the

system. In Section III-B, we also present a control oriented

pre-optimization technique which simplifies the optimization

problem, and which results in shorter computation times

to obtain a solution. The pre-optimization method identifies

and groups together controller poles/zeros which change, or

remain unchanged, as the VCT or EGO parameters vary. A

candidate solution was devised and used in the optimization

problem as the initial solution. Resulting solutions maximiz-

ing VCT Component modularity and EGO sensor modularity

are given in Tables I and II respectively. The performances

of these distributed controllers are indistinguishable from the

performance of the original controller as shown in Fig. 3.

The range of the obtained solutions depends on stability

and properness of the overall controller and distributed

controllers as well as the optimization toleration settings.

These distributed controllers provide component-swapping

modularity which does not exist in the case of implementing

the whole algorithm using a single centralized controller (i.e.

using the ECU only). The MIMO controller was designed

using a linearized model around a specific operation point.

It is expected that the practical implementation of this

controller would be done by designing the MIMO controller

for various operating points of the VCT engine and then

using gain scheduling to calibrate the controller for different

operating points. The same schedule oriented approach can

be applied to the distributed controller by solving the distri-

bution problem for all of the operating points considered.

The minimum component swapping modularity obtained

among operating points would then be used for optimization

problem purposes.

Future work on this topic will include consideration of

VCT and EGO modularity concurrently.
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