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Abstract— This paper addresses the problem of synchroniza-
tion errors in distributed dynamical systems. In particular,
it focuses on the question of stability for the case where all
subsystems have the same sampling frequency, but different
switching times. In contrast to previous work, the approach
taken here models the set of system matrices that arise using
a polytopic uncertainty approach, where a polytope vertex
corresponds to a possible state matrix of the overall system.
System stabilization is then approached through state feedback
and LMI techniques are used to generate the control law
matrices. A method to handle the combinatorial explosion of
the number of polytope vertices is developed and illustrated
using an example from swarm system navigation.

I. INTRODUCTION

Classical digital signal processing and control system
analysis techniques are based on the fundamental fact that all
components of the overall system switch at exactly the same
time instant. In other words, it is assumed that the system
is driven by a single clock and that the differences in clock
propagation time between the different system components
are negligible. Over the last decade, many applications have
emerged that routinely violate this basic assumption. Typical
examples include wireless sensor networks, vehicle networks
and swarms, tele-operation-systems, and distributed actuator
systems.

Synchronization of different system components to a de-
gree that would allow them to be treated as a synchronous
system is either impossible or very expensive. Consequently
it is essential to shed more light on the modeling, analysis
and design of asynchronous systems. Compared to other
networking effects [1], such as delay, packet drop and
bandwidth limitations, the area of synchronization errors has
received relatively little interest in the literature. Increasingly,
synchronization errors play an important role in both net-
worked systems and high speed circuitry. Even though high
speed high speed circuits have been designed to function as a
synchronous system, extremely high clock speed could result
in propagation delay differences of the order of a period of
the system clock.

Several approaches to tackling this problem have already
been investigated [2]-[4]. It was shown in [5] that most
synchronous systems totally change their response if op-
erated asynchronously. Even stability is often lost [5]-[6]
and there is generally no stability robustness with respect
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to synchronization errors, with the exception of work in [7],
[8] that are very limited in terms of application to practically
relevant cases.

In general, two types of asynchronous behavior can
arise [5], where in one all subsystems are driven by the same
clock but switching times are different between subsystems,
and in the other individual subsystems are driven by the same
clocks with different frequencies. In the first case, switching
patterns are simple but in the second case are very hard
to specify [9]. The first case typically describes high speed
circuits and low speed networked systems that periodically
re-synchronize. The second case typically occurs in high
speed control networks or networked systems where local
system time is not monitored and corrected.

In this paper we consider the first case. Previous work has
addressed system models and the resulting stability behavior
[5]-[9], but no attempt has been made to stabilize the overall
asynchronous system network. In this paper we give major
new results in this area by showing how to stabilize an
asynchronous network of systems through state feedback.

In this paper Γ � 0 and Γ ≺ 0 respectively are used to
denote symmetric matrices which are positive definite and
negative definite respectively.

II. BACKGROUND

A discrete time system in this work is taken to mean any
processing block that takes an input sequence of samples an
produces an output sequence of samples. Here we consider
the linear time-invariant case with state-space model

x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k) + Du(k), (1)

where at time k, x(k) is the n × 1 state vector, y(k) is
the m × 1 output vector, u(k) is the l × 1 input vector,
and A,B,C and D are matrices of compatible dimensions
with real entries. Asynchronous switching in a linear time-
invariant systems is discussed in, for example, [6], [7] and
here we begin from the problem setup considered in this
previous work.

We consider the case where every state vector entry xi is
fed by a clock with rate Ti, i = 1, 2, ..., n. The clock rates
are equal (Ti = T, i = 1, 2, ..., n) but the associated signals
are out of phase. In order to capture effects of asynchronous
switching, an event driven time index k is introduced, which
is increased by an integer equal to the number of variables
that switch simultaneously.
Following [6] we assume that after each switching event
the time index is incremented by the number of simulta-
neously switching variables. Consequently over a full clock
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period the time index is incremented by n, but there is no
information about the order in which these variables have
been updated. Also the system output samples can only be
read periodically at the sampling times. We also assume
that the input is updated periodically in similar way as the
subsystems, but without increasing the time index.

Suppose that there are d switching events in one full
clock period, where these are described by the sequence s
of mutually disjoint subsets of indices

s = (i1, i2, . . . , id), ij ⊆ {1, . . . , n}, j = 1, . . . , d. (2)

These subsets satisfy

p 6= r ⇒ ip ∩ ir = ∅ p, r = 1, . . . , d, (3)

and
d⋃

j=1

ij = {1, . . . , n}. (4)

The number of elements of the each subset ij

hj = card(ij), (5)

is the number of entries that switch simultaneously during
the event j and it is straightforward to see that

h1 + · · ·+ hd = n. (6)

Now the equation for a single event numbered j can be
written as

x(ld + h1 + · · ·+ hj) = Aijx(ld + h1 + · · ·+ hj−1)
+ Bij

u(ld + h1 + · · ·+ hj−1),
(7)

where the model matrix Aij
∈ Rn×n given, for example,

ij = {. . . , p, . . . , q, . . .} is

Aij
=



1 0 . . . 0 0
0 1 . . . 0 0

. . . . . . . . . . . . . . .
ap1 ap2 . . . ap(n−1) apn

. . . . . . . . . . . . . . .
aq1 aq2 . . . aq(n−1) aqn

. . . . . . . . . . . . . . .
0 0 . . . 1 0
0 0 . . . 0 1


, (8)

and the corresponding input matrix Bij
∈ Rn×l is

Bij =



0 0 . . . 0 0
0 0 . . . 0 0

. . . . . . . . . . . . . . .
bp1 bp2 . . . bp(l−1) bpl

. . . . . . . . . . . . . . .
bq1 bq2 . . . bq(l−1) bql

. . . . . . . . . . . . . . .
0 0 . . . 0 0
0 0 . . . 0 0


. (9)

Here Aij contains only those rows from the state-space ma-
trix A that are relevant to simultaneously switched variables
(one at least), and all remaining rows are taken from the

identity matrix. The matrix B is constructed in a similar
way where all rows except p and q have only zero entries.
In general, after a clock period, all d entries have switched
and consequently the index l is incremented by n over a full
clock period.
Consider now an n-variable system with event pattern de-
scribed by the sequence s = (i1, . . . , id). Then for l =
0, 1, . . .

x(ln + h1) = Ai1x(ln) + Bi1u(ln)
x(ln + h1 + h2) = Ai2x(ln + h1)

+Bi2u(ln + h1)
. . . . . . . . .
x(ln + h1 + · · ·+ hd−1) = Aid−1x(ln + h1 + · · ·+ hd−2)

+Bid−1u(ln + h1 + · · ·+ hd−2)
x(ln + n) = Aid

x(ln + h1 + · · ·+ hd−1)
+Bid

u(ln + h1 + · · ·+ hd−1).

Suppose also that the inputs are updated just after the new
full state vector has been created and hence

u(ln+h1 + · · ·+hd−1) = · · · = u(ln+h1) = u(ln), (10)

and by back-substitution we obtain

x(ln + n) = Aid
· · ·Ai1x(ln)

+(Bid
+ Aid

Bid−1 + · · ·+ Aid
· · ·Ai2Bi1)u(ln).

(11)
For a given sequence s = (i1, . . . , id) define

As = Aid
· · ·Ai1 , (12)

and

Bs = Bid
+ Aid

Bid−1 + · · ·+ Aid
· · ·Ai2Bi1 . (13)

Then we can write (11) as

x(ln + n) = Asx(ln) + Bsu(ln), (14)

and returning to the full period counter the state equation
(14) can be written in the standard form as

x(k + 1) = Asx(k) + Bsu(k). (15)

III. STABILITY AND ROBUSTNESS

Consider again the discrete linear system (1), which is
asymptotically stable if, and only if, the spectral radius (if H
is a h×h matrix with eigenvalues λi, i ≤ i ≤ h, its spectral
radius, written r(H), is given by r(H) = max1≤i≤h |λi|)
of the system matrix A is less than unity, or there exists a
symmetric positive definite matrix P, written P � 0, such
that

AT PA− P ≺ 0. (16)

It is well known [6], [7] that the synchronization errors
can effect the stability of the overall system, i.e. a system
with no synchronization errors described by (1) can be stable
but some of the systems (14) resulting from synchronization
errors can be unstable. Also the exact time sequence of
arriving signals to subsequent sub-systems is not known,
which makes stability analysis very difficult. In this paper,
we develop methods for this task by treating the complete
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set of possible systems as the effects of uncertainty on some
nominal model. This releases Lyapunov type methods from
robust control of linear time-invariant systems for use in this
problem area where, as a starting point, we use a polytopic
robustness characterization.

A. Polytopic Uncertainty Analysis

For a linear time-invariant system of the form (1) the
assumption is that in the presence of uncertainty the system
matrix A takes values in a fixed polytope (see, for example,
[10]):

A ∈ Co{A1, A2, . . . , Ah}, (17)

where matrices A1, A2, . . . , Ah are given ”vertices” and

Co{A1, A2, . . . , Ah} =

{
h∑

k=1

αkAk : αk ≥ 0,
h∑

k=1

αk = 1

}
,

(18)
denotes the convex hull of A1, . . . , Ah , (the polytope of
matrices with given vertices A1, . . . , Ah). To investigate sta-
bility in the presence of such uncertainty it is only necessary
to check if this property holds for the polytope vertices as this
guarantees that every system matrix formed from a convex
combination of them is also stable [10]. Hence only the
following set of Linear Matrix Inequalities (LMI’s) needs
to be satisfied for robust stability to hold

AiT
PAi − P ≺ 0, (19)

for i = 1, 2, . . . , h where P � 0.
For the system with no input and clock synchronization

errors characterized by the d-element sequence of events s =
{i1, . . . , id} i.e.

x(ln + n) = Asx(ln), (20)

the system matrix As takes values in the polytope

As ∈ Co{Ai : i = 1, . . . , h}. (21)

Hence, to check the stability for every possible synchroniza-
tion errors it is sufficient to solve the LMIs (19) for all
vertices. Note here that the interior of the polytope newer
occurs as a switching matrix and hence only the vertices are
important for our analysis.

Consider now the system with clock synchronization
errors characterized by the d-element sequence of events
s = {i1, . . . , id}

x(ln + n) = Asx(ln) + Bsu(ln), (22)

where system matrices As and Bs take values in the polytope

[As Bs] ∈ Co{[Ai Bi] : i = 1, . . . , h}, (23)

and apply the state feedback control law

u(ln) = Kx(ln). (24)

Then
x(ln + n) = (As + BsK)x(ln), (25)

where

As + BsK ∈ Co{Ai + BiK : i = 1, . . . , h}. (26)

Hence (25) is stable if there exists a P � 0 such that the
following system of inequalities is satisfied

(Ai+BiK)T P (Ai+BiK)−P ≺ 0 i = 1, . . . , h. (27)

The difficulty now is that this last system is not linear
with respect to the matrix K and therefore cannot be easily
solved numerically. However, using the Schur’s complement
formula and the approach in [11] we can replace (27) by the
following system of LMIs[

−Q AiQ + BiR

QAiT + RT BiT −Q

]
≺ 0 i = 1, . . . , h,

(28)
Also if this LMI system is feasible

K = RQ−1, (29)

is a stabilizing control law matrix.
The solution of (28) can be conservative since we solve

the system of LMIs with common decision matrix Q ( or
Lyapunov function). To reduce this, it is possible to use, for
example, variable Lyapunov functions [10]. Also an estimate
of the number of sequences (n.o.s) for given n is

n! ≤ n.o.s ≤ 2n−1n!. (30)

The solution developed here consists of the following
steps.

1) Calculate the vertices of a polytope that contains all
product matrices representing system behavior in case
of synchronization errors.

2) Find a stabilizing control by solving the set of LMI’s
(28) for the vertices obtained in the previous set.

In order to efficiently compute the solution the number of
polytope vertices obtained in the first step here should be
significantly smaller than the number of product matrices.
Moreover, the accuracy of the polytope should guarantee
that the control law can be found if it exists but currently
available LMI solvers do not guarantee that this can be
achieved. Hence in order to manage the compromise between
speed, accuracy and number of vertices a new algorithm is
developed in the remainder of this paper and compared in
tests against direct computation.

IV. FAST ALGORITHM FOR POLYTOPE COMPUTATION

The basis of the algorithm given below is to treat all
the product matrices as vectors and, by linear operations,
to enclose them in a simple structure (unit ball) and hence
lessen the computational load incurred in obtaining the
convex hull containing them. Each step is now detailed.
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1) Mapping matrices onto vectors: Let Mm×n(R) be the
space of the m× n matrices with real entries, write

M = [ mij ]1≤i≤n,1≤j≤m x = [xk ]1≤k≤mn

and define the invertible map φ : Mm×n(R) → Rm×n as

x = φ(M),
= [m11,m21, . . . ,mm1,m12,m22, . . . ,mm2, . . .

. . . , m1n, m2n, . . . mmn], (31)

and

M = φ−1(x) =


x1 xm+1 . . . x(n−1)·m+1

x2 xm+2 . . . x(n−1)·m+2

. . . . . . . . . . . .
xm x2m . . . xn·m

 .

(32)
Then it is easy to show that this map is linear and continuous.
Also Let Mp ⊂ Mn×n+l(R) denote the input set of
compound product matrices, i.e.

Mp = {[Asi, Bsi] : 1 ≤ i ≤ np}, (33)

where np is the number of product matrices. Then the image
of Mp is

P = φ(Mp). (34)

2) Calculation of the center of mass and translation:
Introduce

c = − 1
np

np∑
i=1

xi, (35)

and

P(c) = τc(P) = {x ∈ Rn2+n·l : x− c ∈ P}, (36)

i.e. the translation of the set P by the vector c. Then
the subspace spanned by P(c) is denoted by Vc and is
isomorphic to Rd, where d denotes the dimension of Vc.

3) Calculating the orthonormal basis of subspace spanned
and new coordinates: Let

B1 = {b1,b2, . . . ,bd}, (37)

be the orthonormal basis of Vc and introduce Bn2+n·l×d

representing the coordinates of the orthonormal basis as

B = [b1,b2, . . . ,bd]. (38)

Then BT ·B = I and let x′ denote the vector of coordinates
x ∈ P(c) in the basis of Vc, i.e.

x = x′1b1 + · · ·+ x′dbd = Bx′. (39)

Hence
x = Bx′ x′ = BTx, (40)

and we now introduce

R = BT(P(c)) ∈ Rd. (41)

4) Minimal volume ellipsoid: Computations can now be
performed in Rd, where d has been defined above, i.e. a
much reduced dimension in comparison to the direct method.
Using any of the available methods, we can now compute the
minimal volume ellipsoids, i.e. the matrix E and the point
e, such that the set

E? = {y ∈ Rd : (y − e)TE(y − e) ≤ 1}, (42)

is of minimal volume and contains R.
5) Changing ellipsoid into the ball of unit radius: The

matrix E in (42) is symmetric and positive definite and by
using a Cholesky factorization we can obtain H such that

E = HTH. (43)

Now let
z = Hy, f = He, (44)

and the set H(E?) can be written as

H(E?) = {z ∈ Rd : (z− f)T(z− f) ≤ 1} = B(f , 1), (45)

and H : Rd → Rd :

z = Hy y = H−1z. (46)

maps the ellipsoid into the unit radius ball centered at f .
6) Choosing vertices of the target convex hull: Let k > 0

be fixed and D be the set of vectors dij , 1 ≤ i ≤ d, j ∈
{1, 2}, such that

d11 = [−k, 0, 0, . . . , 0]T + f ,

. . . . . . . . . ,

dd1 = [ 0, 0, 0, . . . ,−k ]T + f ,

d12 = [ k, 0, 0, . . . , 0 ]T + f ,

. . . . . . . . . ,

dd2 = [ 0, 0, 0, . . . , k ]T + f ,

i.e.
D = {dij ∈ Rd : 1 ≤ i ≤ d, j ∈ {1, 2} }. (47)

Now consider the points di2, i = 1, . . . , d, with positive
entries. These span the (d − 1)-dimensional hyperplane in
Rd and

p = [ p1, p2, . . . , pd ]T ∈ Rd, (48)

belongs to this plane if

(p1 − f1) + (p2 − f2) + · · ·+ (pd − fd) = k. (49)

By symmetry, the point d? of the plane that is closest to the
center of the ball is the one with all coordinates equal, where
these also have to satisfy (49). Hence

d? = [
k

d
, . . . ,

k

d
]T + f , (50)

and the distance to the center f is

‖d? − f‖2 =

√
d · k2

d2
=

√
k2

d
=

k√
d
, (51)
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but, since this point belongs to the surface of the ball

k√
d

= 1 ⇒ k =
√

d. (52)

By symmetry we also have that if we take the vertices

V =
{
vij ∈ Rd :

vij = (−1)j · [ 0, . . . , 0, (
√

d)ith entry, 0, . . . , 0 ]T

+ f , i = 1, .., d, j = 1, 2} , (53)

then the ball B(f , 1) belongs to the convex hull with vertices
V .

7) Obtaining the coordinates of the vertices in the original
space: All of the transformations used in the steps above
are linear and invertible. Hence it is routine to argue that
the convex hull in Rd remains convex in Mm×n(R). The
polytope obtained is now used to produce the set of LMI’s.
If these are feasible then we accept them as a solution.

V. TEST RESULTS

The main advantage of the algorithm developed in the
previous section is that is fast and requires the solution of
a much lower number of LMI’s. If n is the state dimension
of the system, the number of vertices of the polytope is
2(n2 − n). The table below gives a comparison of the time
needed to compute the solution by both methods. Note

direct computation
n computation with new algorithm

avg time (sec) avg time(sec)
1 - -
2 0.187 0.3
3 0.829 0.7
4 10.109 2.8
5 148.14 11.2
6 12000 101.8
7 — 6000

that for n = 6 the method is over 100 times faster than
direct computation and this advantage should increase for
n > 6. An interior point algorithm, which is a polynomial
algorithm, is used to solve the set of LMI’s for both (direct
and the one developed here) methods, but here the number
of input matrices is reduced to polynomial of order n
using a fast polytope computation algorithm (which is also
polynomial) and then solves the LMI’s. The other new step
is a polynomial algorithm of the number of input matrices
but of lower dimension than the interior point method.
Also the number of input matrices can be approximated by√

2
n · n!.

VI. AN EXAMPLE

Consider a swarm system that consisting of M agents each
of which is modeled as»

x1

x2

–
i

(n+1) =

»
δi −ωi

ωi δi

–
·
„»

x1

x2

–
i

(n) −
»

u1

u2

–
i

(n)

«
,

(54)
where i = 1, 2, . . . M and

δ2
i + ω2

i = 1− ε. (55)

The agents work together and aim to meet at the rendezvous
point. The process input [u1 u2]Ti is[

u1

u2

]
(n) =

1
M

(
M∑
i=1

[
x1

x2

]
i

(n)

)
+
[

e1

e2

]
i

(n), (56)

where [ e1, e2 ]Ti , i = 1, . . . ,M denotes an independent
agent input vector.

Introducing the variables x′ ∈ R2M and u′ ∈ R2M as

x′j =

{
(x1) j+1

2
if j is odd

(x2) j
2

if j is even j = 1, 2, . . . 2M,

(57)

u′j =

{
(e1) j+1

2
if j is odd

(e2) j
2

if j is even j = 1, 2, . . . , 2M,

(58)
enables the system model to be written as

x′(n) = A1x′(n)−A1 · (A2x′(n) + u) , (59)

or
x′(n) = A1 (I −A2)x′(n)−A1u′, (60)

where

A1 =



δ1 −ω1 0 . . . . . . 0
ω1 δ1 0 . . . . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . δi −ωi . . . 0
0 . . . ωi δi . . . 0

. . . . . . . . . . . . . . . . . .
0 . . . . . . 0 δM −ωM

0 . . . . . . 0 ωM δM


, (61)

and

A2 =



1
M 0 . . . . . . 1

M 0
0 1

M . . . . . . 0 1
M

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
1
M 0 . . . . . . 1

M 0
0 1

M . . . . . . 0 1
M

 . (62)

Introducing

A′ = A1 · (I −A2) B′ = −A1, (63)

yields the state-space model

x′(n + 1) = A′x′(n) + B′u′. (64)

In order to deal with synchronization errors we assume that
agents’ clocks are out of phase but they have the same time
period T . Then we can use the model of the synchronization
errors with only minor modifications. We consider only those
product matrices that are relevant to the agent’s work , i.e.
we assume that pairs xi, xi+1, i = 1, 3, 5, . . . , 2M − 1.
work synchronously. Then we apply the algorithm to find
an admissible control law.

Suppose that the parameters in the model here vary as
follows

ε ∈ [0, 1] ωi ∈ [0,
√

1− ε] δ2
i + ω2

i = 1− ε, (65)
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Then in Fig. 1 synchronization errors occur in the dark grey
region, i.e. some product matrices are unstable. The stable
region is marked in light grey.

Fig. 1. Unstable region; dark grey, stable region: light grey.

Consider now the above system for M = 6 with

δi = δj ωi = ωj i, j = 1, 2, . . . , 6, (66)

where ε = 0.1819, ω1 = 0.9 → δ1 = 0.09 and the
system is controllable. If we assume that each agent
works synchronously and that synchronization errors
only arise when agents are performing common tasks,
we have only 4683 product matrices. As the sequence
{{9, 10, 11, 12}, {7, 8}, {5, 6}, {3, 4}, {1, 2}} illustrates,
some of these product matrices are unstable. Using the
algorithm developed here we can find a control law to
guarantee that the closed-loop system is stable independent
of the synchronization errors. The computation time was 500
sec as compared to 640 sec for direct computation and this
advantage should increase with the number of agents present.

VII. CONCLUSIONS

Synchronization error induced instability of dynamical
systems is of particular relevance to networked control
systems, sensor-actuator networks, tele-operation systems,
and many other network centric applications. This paper
has developed a computationally feasible approach to the
problem of distributed system stabilization in the presence of
such errors. Using state feedback, with LMI based computa-
tions, it has been shown how distributed dynamical systems
can be stabilized by also making use of the well known
polytopic uncertainty description from robust control theory
for linear systems. The method developed drastically reduces
the complexity of the polytope, i.e. the number of system
vertices that need to be stabilized. The effectiveness of the
method was illustrated using navigation control in a multi-
agent swarm.
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