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Abstract— Computational methods of filter and observer
design are presented for a class of polynomial systems with L2-
bounded disturbance via convex optimization. A measurement
and estimated state dependent polynomial filter gain stabilizes
the origin of the error dynamics in an invariant set. In
addition to the stability of the error dynamics, a polynomial
observer gain guarantees a stability of the origin of the closed-
loop system in another invariant set for a given polynomial
dependent estimated state feedback law. To compute the filter
and observer gains and the invariant sets, matrix sum of
squares relaxation and semidefinite programming are effectively
applied. Numerical examples illustrate the design methods of
the paper.

I. I

The availability of all the state for direct measurement

is a rare occasion in practical feedback control systems. In

most cases, there is a true need for a reliable estimation of

unmeasurable state variables, especially when they are used

for the synthesis of model-based controllers or for process

monitoring purposes. For these purposes, a state observer

is usually employed, in order to accurately reconstruct the

unmeasurable state variables. There are several approaches

in observer design for nonlinear systems. To discuss our

results, we should mention three approaches in the literature

[1], [2], [3], [4], [5], [6]. The first approach is based on a

canonical form with linear techniques to design the observer

[1] but this approach necessitates conservative conditions.

The second approach is based on a decomposition into a

linear part and a vector of nonlinear function for a class

of nonlinear systems [2], [3], [4], [7], [8]. Observer gains

have been designed for Lipschitz nonlinear systems [2],

[4] and for a specific class of sector-bounded nonlinear

systems [7], [8]. In particular, computational methods by

using semidefinite programming (SDP) are discussed [4],

[8]. This approach gives better performance than the first

approach. However, almost observer gains are restricted to

constant matrices. The third approach is high-gain observer

[5], [6] which is based on output feedback stabilization to

overcome a peaking phenomenon by saturating the control

when a global stabilizable state feedback controller is given.

From a viewpoint of output feedback stabilization, the third

approach is quite different from other two approaches. Global

stabilization of nonlinear systems is sometimes hard by state

feedback control.

Recently, sum of squares (SOS) relaxation [9], [10] using

SDP has been applied to state feedback controller design

[11], [12], [13], [14] for polynomial control systems. One of

Department of Systems Design and Informatics, Kyushu Institute of
Technology, 680-4 Kawazu Iizuka Fukuoka 820-8502, JAPAN. E-mail:
ichihara@ces.kyutech.ac.jp

the advantages to adopt such controller design is that local

stabilization is liable to be achieved even if it is difficult to

design a global stabilizable controller. A performance index

is introduced to the controller design [13] and stabilization

of the systems with bounded disturbances are discussed [11],

[14]. Then invariant sets with respect to the closed-loop

systems can be obtained. Observer design for polynomial

systems using SOS relaxation has been proposed for global

stabilization of the error dynamics [12]. Since problems

of global stabilization of the error dynamics are hard to

solve, we have proposed a convex formulation of locally

stabilization of the error dynamics and closed-loop system

with observer for given estimated state feedback law [15].

However, in [15], the observer gains have been limited to

constant matrices , and class of the disturbance has not

been specified. These issues may restrict the performances

of observer.

In this paper, we propose an observer design method

for polynomial systems by using SOS relaxation and SDP

without any assumptions about nonlinear terms of the error

dynamics except polynomially. To improve performance of

observer design, we make the filter and observer gains

depend on measurement and estimated state in polynomially.

Then local stabilization of the error dynamics is studied on

the basis of Lyapunov’s stability theorem and invariance prin-

cipal. Since unbounded disturbances may unstable the system

locally, we consider bounded disturbances by L2 gain. In the

paper, firstly, an observer design without control input, that

is, a state estimator, will be discussed. Secondly, another

observer design will be discussed for a given estimated state

feedback law. It is assumed that the feedback law stabilizes

the closed-loop system in an invariant set if we apply the law

as state feedback control not as estimated state feedback. In

each design, invariant sets of the error dynamics as well as

the closed-loop system are obtained.

The paper is organized as follows. Section II describes

observer problems we are interested in. A class of polyno-

mial systems are clarified. Section III presents the observer

design without control for polynomial systems, the filter

design. The error dynamics is locally stabilized. A class of

L2-disturbance are defined. Section IV presents the observer

design with control for polynomial systems. The closed-loop

system as well as the error dynamics is locally stabilized. A

class of estimated state feedback law are described. Section

V illustrates examples. Lastly, section VI concludes with

remarks.
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Notation: The notation used is standard. For a vector

x ∈ Rn, Rp×q means the real matrix of size p × q, Sm

means the symmetric matrix of size m × m, R[x] means

the ring of real polynomials of x, and
∑

[x] means the SOS

polynomials of x. X ≻ (�)0 means that a matrix X ∈ Sm is

positive (semi)definite. R[x]p×q means the ring of real matrix

polynomials of size p× q, and
∑

[x]m means the matrix SOS

polynomials of size m×m. For a vector x ∈ Rn, ‖x‖2 = (xT x)
1
2 ,

and ‖x‖L2
=
(∫ ∞

0
‖x‖2

2
dt
)

1
2
.

II. F  O

We first describe a filtering problem. Consider the follow-

ing polynomial system:

ẋ = f (x) + Bw(x)w (1)

y = Cx (2)

where x ∈ Rn is the state, y ∈ Rr is the measurement, w ∈

WL2
(β) is the disturbance,

WL2
(β) =

{

w(t) ∈ Rmw | ‖w‖2L2
< β
}

(3)

f (x) ∈ R[x]n with f (0) = 0, Bw(x) ∈ R[x]n×mw , and C ∈ Rr×n.

A filter to estimate x from y will have the form

˙̂x = f (x̂) + L(y, x̂)(y −Cx̂) (4)

where x̂ ∈ Rn is the estimated state, L(y, x̂) ∈ R[y, x̂]n×r is

the filter gain matrix polynomial of y and x̂ to be designed

to ensure convergence of x̂ to x. L(y, x̂) is detailed with
∑

π∈F yρ x̂σLπ where yρ = y
ρ1

1
y
ρ2

2
· · · y

ρr

r and x̂σ = x̂
σ1

1
x̂
σ2

2
· · · x̂

σn
n

, π = {ρ, σ} , Lπ ∈ R
n×r, and F is the set of indexes on

monomials in y and x̂, respectively. For example, in the case

where the maximum degree of L(y, x̂) is 2, r = 1, and n = 2,

F is {000, 100, 010, 001, 200, 020, 002, 110, 011, 101}, L(y, x̂)

is
L(000) + yL(100) + x̂1L(010) + x̂2L(001)

+y2L(200) + x̂2
1
L(020) + x̂2

2
L(002)

+yx̂1L(110) + x̂1 x̂2L(011) + yx̂2L(101).

To study the convergence and performance of this filter, we

look at the dynamics of the estimation error defined by e =

x − x̂. The resulting error dynamics is

ė = f (x) − f (x̂) − L(y, x̂)Ce + Bw(x)w. (5)

The purpose here is to design a filter gain L(y, x̂) to converge

the estimation error e to zero. In general, it has been difficult

to design the gain by constructive methods except a few

special cases on the nonlinear terms of the right hand of

(5) [5], [7]. We will discuss the filtering problem in section

III under no assumptions about the nonlinear terms except

polynomially.

Next we also describe an observer problem for the poly-

nomial systems. Consider the system (1) with control inputs

such as

ẋ = f (x) + B(x)u + Bw(x)w (6)

where u ∈ Rmu is the control input and other signals follow

in (1). Since full measurement is not available, there is no

choice than using state estimators. An observer to estimate

x from y, x̂ and u will have the form

˙̂x = f (x̂) + B(x̂)u + L(y, x̂)(y −Cx̂) (7)

and (2) where L(y, x̂) is an observer gain to be designed to

ensure convergence of x̂ to x under some control inputs. To

construct a closed-loop system, we need a given estimated

state feedback such as

u = k(x̂) (8)

where k(x̂) ∈ R[x̂]. We assume that the state feedback u =

k(x) stabilize the equilibrium point x = 0 of the system (6)

and a positively invariant set with respect to the closed-loop

system, ẋ = f (x) + B(x)k(x), is known. The error dynamics

is

ė = f (x) − f (x̂) + (B(x) − B(x̂))k(x̂)

− L(y, x̂)Ce + Bw(x)w. (9)

One of the purposes here is to design an observer gain

L(y, x̂) to converge the estimation error to zero with a given

estimated state feedback. It has been difficult to design the

observer gain for the same reason as the filter design. In

addition to the purpose of regulating the error dynamics,

another purpose will naturally appear. That is, the closed-

loop system from (6), (2), (7), and (8) must be stabilized

because a given estimated state feedback does not always

stabilize the closed-loop system with an observer that is able

to regulate the estimation error. This purpose is important

from practical viewpoint of observer design. We will discuss

the observer design problem in section IV.

III. F D  P S

In this section, the error dynamics (5) is stabilized to

estimate the state of the system (1). At first, we define two

sets XS of states and XE of estimation errors:

XS =
{

x ∈ Rn | gS (x) ≥ 0, gS (x) ∈ R[x]
}

XE =
{

e ∈ Rn | gE(e) ≥ 0, gE(e) ∈ R[e]
}

where gS (x) has the form 1 − xT S X x with S X ≻ 0 and

gE(x) has the form 1 − eT S Ee with S E ≻ 0. We consider

the trajectories of x and e on these given sets.

A candidate Lyapunov function of the error dynamics is

V(e) = eT S e where S ∈ Sn. If the trajectories of e beginning

from every point in

Ee(S , α) =
{

e ∈ Rn | V(e) ≤ α
}

(10)

will remain in Ee(S , α+ β) where α > 0, then Ee(S , α+ β) is

an invariant set with respect to the error dynamics under a

bounded disturbance w ∈ WL2
(β). Negativity of V̇(e)− ‖w‖2

2

on Ee(S , α + β) must be guaranteed to make the invariant

set positive. Since we consider the error dynamics on XE ,

Ee(S , α + β) should be inside of XE :

Ee(S , α + β) ⊆ XE . (11)

Here we make two assumptions on initial point and the sets

XS and XE for simplicity.
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Assumption 1: x̂(0) = 0 and e(0) ∈ Ee(S , α).

Assumption 2: XS and XE satisfy XS ⊆ X̃E where

X̃E =
{

x ∈ Rn | XE with x̂ = 0
}

.

From Assumption 1, x(0) must satisfy x(0)T S x(0) ≤ α.

X̃E is introduced into Assumption 2 for comparing the two

sets XS and XE . XS ⊆ X̃E is a necessary condition of that

Ex(S , α) = { x ∈ Rn | xT S x ≤ α } is an admissible set to be

able to put initial states x(0).

Under these assumptions, we need a relation that the

admissible set of x(0) is a subset of XS at least. If the

following relation:

Ex(S , α + β) ⊆ XS (12)

holds, then the admissible set becomes a subset of XS

because of Ex(S , α) ⊂ Ex(S , α + β). From (12) and XS ⊆ X̃E

in Assumption 2, we have

Ex(S , α + β) ⊂ X̃E . (13)

The above relation satisfies (11) numerically. That is, if (11)

and (13) are reduced to LMI conditions, the LMI condition

from (13) satisfies that from (11). Thus, if we take into

account of (12), then we do not need (11) any more. The

following theorem gives an answer to the filtering problem.

Theorem 1: Under Assumption 1 and 2, consider the

system (1) and (2), and the filter (4). If there exist S (≻ 0),

H(y, x̂) ∈ R[y, x̂]n×r, α(> 0), s10(x, x̂), s11(x, x̂), s12(x, x̂),

s21(x, x̂), s22(x, x̂) ∈
∑

[x, x̂], s30(x), s31(x) ∈
∑

[x], S 20(x, x̂) ∈
∑

[x, x̂]n+mw satisfying

V(e) − s11(x, x̂)gS (x) − s12(x, x̂)gE(e)

= s10(x, x̂) ∀(x, x̂) ∈ Rn×Rn (14)
[

F 11
2

(x, x̂) (∗)T

Bw(x)T S e −I

]

= −S 20(x, x̂)

∀(x, x̂) ∈ Rn×Rn (15)

s31(x)gS (x) − (α + β − V(x)) = s30(x)

∀x ∈ Rn (16)

where F 11
2

(x, x̂) and h(x, x̂) are

h(x, x̂) + s21(x, x̂)gS (x) + s22(x, x̂)gE(e)

and

2eT {S ( f (x) − f (x̂)) − H(y, x̂)Ce} ,

respectively, then a filter gain L(y, x̂) is S −1H(y, x̂), and

trajectories of the estimation error beginning from Ee(S , α)

remain in Ee(S , α + β) and converge to zero.

Proof: If (14) holds, then V(e) > 0 for all x ∈ XS

and e ∈ XE and thus V(e) could be a candidate Lyapunov

function of the error dynamics (5). Using Lemma 1, we can

write that the derivative of V(e) along (5) is

V̇(e) = h(x, x̂) + 2eT S Bw(x)w

≤ h(x, x̂) + wT w + eT S Bw(x)Bw(x)T S e.

If (15) holds, then V̇(e(τ)) ≤ ‖w(τ)‖2
2

for all x ∈ XS and e ∈

XE . Integrating both side of the above inequality from τ = 0

to t, we have a relation: e(t)T S e(t) ≤ e(0)T S e(0) + ‖w(t)‖2
L2

.

From Assumption 1 and w ∈ WL2
(β), e(t)T S e(t) ≤ α + β,

e(t) ∈ Ee(S , α+β). That is, Ee(S , α+β) is a positively invariant

set of the error dynamics, and thus the trajectories beginning

from Ee(S , α) remain in Ee(S , α+β) and converge to zero. To

be sure that XS includes x(0) and XE includes Ee(S , α + β),

we need (16) that means (12).

Remark 1: To find a feasible solution of Theorem 1, the

SOS techniques [9], [16], [17] are available for reducing the

problem to SDP. See the appendix.

Remark 2: Although we restrict the state of the system

(1) by XS , such an arbitrary restriction itself does not

guarantee that trajectories of x will remain in XS . If a

trajectory comes out from XS , then there is a possibility the

error will not converges to zero even if the error is inside of

Ee(S , α + β) at the present time.

IV. O D  P S

The closed-loop system from (6), (2), (7), and (8), as well

as the error dynamics (9), is stabilized in this section by

choosing an observer gain. We define a set of states in the

closed-loop system and the error dynamics:

XF =
{

(x, x̂) ∈ Rn×Rn | gF(x, x̂) ≥ 0
}

where gF(x, x̂) has the form 1+β− xT Px−eT S Ee with P ≻ 0

and S E ≻ 0. Here we make an assumption on P and k(·).

Assumption 3: XS =
{

x ∈ Rn | xT Px ≤ 1 + β
}

is a

positively invariant set with respect to the closed-loop system

without observer,

ẋ = f (x) + B(x)k(x) + Bw(x)w, w ∈ WL2
(β).

That is, the trajectories beginning from
{

x ∈ Rn | xT Px ≤ 1
}

remain in XS and converge to the origin.

Remark 3: A state feedback gain k(x) satisfying As-

sumption 3 has been available in [18], [13], [14].

A candidate Lyapunov function of the closed-loop system

is

U(x, x̂) = (α + β)xT Px + eT S e, α > 0 (17)

where S ∈ Sn. We also make an assumption on initial point.

Assumption 4: (x(0), x̂(0)) ∈ XΩ(α) where

XΩ(α) =
{

(x, x̂) ∈ Rn×Rn | U(x, x̂) ≤ β(α + β) + α
}

.

If the trajectories (x, x̂) beginning from every point in

XΩ(α) will remain in

XΩ(α + β) =
{

(x, x̂) ∈ Rn×Rn | U(x, x̂) ≤ (1 + β)(α + β)
}

then XΩ(α + β) could be an invariant set with respect to

the closed-loop system under bounded disturbances w ∈

WL2
(β). Negativity of U̇(x, x̂) − ‖w‖2

2
on XΩ must be guar-

anteed to be the invariant set positive.

On the other hand, we readopt V(e) = eT S e as a candidate

Lyapunov function for the error dynamics (9). From the

similar discussion in section III, we will guarantee that
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V̇(e) − ‖w‖2
2

is negative on Ee(S , α + β) under Assumption

1 and 2. Let gS (x) and gE(e) be 1+β− xT Px and 1− eT S Ee.

Then the following theorem gives an answer to the observer

problem.

Theorem 2: Under Assumption 1, 2, 3, and 4, consider

the system (6) and (2), the estimated state feedback (8) and

the observer (7). If there exist S (≻ 0), H(y, x̂) ∈ R[y, x̂]n×r,

α(> 0), s10(x, x̂), s11(x, x̂), s12(x, x̂), s21(x, x̂), s22(x, x̂),

s40(x, x̂), s41(x, x̂), s51(x, x̂) ∈
∑

[x, x̂], s30(x), s31(x) ∈
∑

[x],

S 20(x, x̂), S 50(x, x̂) ∈
∑

[x, x̂]n+mw satisfying (14), (16),

[

F̄ 11
2

(x, x̂) (∗)T

Bw(x)T S e −I

]

= −S 20(x, x̂)

∀(x, x̂) ∈ Rn×Rn (18)

U(x, x̂) − s41(x, x̂)gF(x, x̂) = s40(x, x̂)

∀(x, x̂) ∈ Rn×Rn (19)
[

F̄ 11
5

(x, x̂) (∗)T

Bw(x)T ((α + β)Px + S e) −I

]

= −S 50(x, x̂)

∀(x, x̂) ∈ Rn×Rn (20)

where F̄ 11
2

(x, x̂), hK(x, x̂), F̄ 11
5

(x, x̂), and hF(x, x̂) are

hK(x, x̂) + s21(x, x̂)gS (x) + s22(x, x̂)gE(e),

h(x, x̂) + 2eT S
(

B(x) − B(x̂)
)

k(x̂),

hF(x, x̂) + s51(x, x̂)gF(x)

and

2

[

x

e

]T




















(α + β)P( f (x) + B(x)k(x̂))
( S ( f (x) − f (x̂))

+S (B(x) − B(x̂)) − H(y, x̂)Ce

)





















,

respectively, then an observer gain L(y, x̂) is S −1H(y, x̂), and

trajectories of the estimation error beginning from Ee(S , α)

remain in Ee(S , α+ β) and converge to zero, and trajectories

of the closed-loop system beginning from XΩ(α) remain in

XΩ(α + β) and converge to zero.

Proof: It is required to show that both the error dy-

namics and the closed-loop system have positively invariant

set, respectively. In a similar way in the proof of Theorem 1,

Ee(S , α+β) is a positively invariant set of the error dynamics

(9) from (14), (16), and (18). Note that (16) means (11). On

the other hand, if (19) holds, then U(e) > 0 for all (x, x̂) ∈ XF

and thus U(e) could be a candidate Lyapunov function of

the closed-loop system. Using Lemma 1, the derivative of

U(x, x̂) along the closed-loop system is

U̇(x, x̂) = hF(x, x̂) + 2[(α + β)xT P + eT S ]Bw(x)w

≤ hF(x, x̂) + wT w

+[(α + β)xT P + eT S ]Bw(x)Bw(x)T [(∗)]T .

If (20) holds, then U̇(x, x̂) ≤ ‖w‖2
2

for all (x, x̂) ∈ XF . From

Assumption 4 and w ∈ WL2
(β), we can write that U(x, x̂) ≤

β(α + β) + α + β = (1 + β)(α + β). That is, XΩ(α + β) is a

positively invariant set of the closed-loop system, and thus

the trajectories beginning from XΩ(α) remain in XΩ(α + β)

and converge to zero. The remainder is to show that XF

includes XΩ(α + β). From the relation (11), we can write

that
(

xT Px + eT S e/(α + β)
)

−
(

xT Px + eT S Ee
)

= eT (S/(α + β) − S E) e ≥ 0.

This relation means XΩ(α + β) ⊆ XF .

Remark 4: An admissible region to be able to put the

initial state x(0) to converge both the error dynamics and the

closed-loop systems is the intersection of the two ellipsoids

E(S , α) and XΩ(α), that is, x(0) must satisfy V(x(0)) ≤ α and

U(x(0), 0) ≤ β(α + β) + α.

Remark 5: In case the error is zero, we may expect the

estimated state feedback recovers the performance as the

same level as the full measurement feedback. If the error is

occurred, the invariant set XΩ(α + β) becomes smaller than

XS of the invariant set of the full measurement feedback.

V. N E

We show two examples to illustrate the results of the

previous sections. The examples are computed by using

Matlab, YALMIP [19] and SeDuMi [20].

Example 1: The Van der Pol oscillator, the polynomial

system (1) and (2) with

f (x) =

[

x2

−x1 + x2 − x2
1
x2

]

, Bw(x) =

[

0
0.5x1 x2

]

, CT =

[

1
0.5

]

illustrates the filter design presented in Theorem 1. Both two

matrices S X in the set XS and S E in the sets XE are chosen as

diag
[

1 1
]

/102, and β is given by 10. The highest degree

of L(y, x̂) is fixed at 2.

The resulting variables of a feasible solution are

α = 48.1173, S =

[

13.6473 1.1770

1.1770 0.7097

]

and

L(y, x̂) =

[

−0.9041

87.7033

]

+

[

0.0000

−0.0001

]

y +

[

0.0000

0.0001

]

x̂1

+

[

0.0000

0.0004

]

x̂2 +

[

1.3759

24.9577

]

y2 +

[

−0.0197

7.5759

]

x̂2
1

+

[

0.2344

4.6782

]

x̂2
2
+

[

−0.5009

5.3669

]

yx̂1 +

[

0.0640

0.2783

]

x̂1 x̂2

+

[

−0.6079

4.5145

]

yx̂2.

A trajectory of the estimated state and the invariant set of

the error dynamics are shown in Fig. 1. In some cases where

highest degree of L(y, x̂) is smaller than 2 for y and x̂,

problems could be infeasible or coefficient matrices of L(y, x̂)

tend to be very large.

Example 2: The polynomial system (6) and (2) with

f (x) =

[

x2

−x1 − x2 + x3
2
/10

]

, B(x) =

[

0

1 + x1/20

]

Bw(x) =
[

1 0
]T
, C =

[

0.5 1
]
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Fig. 1. Trajectory of estimated state and error, and invariant set:
In upper left, solid curve shows the state trajectory of the oscillator
from x(0) = [2 − 4]T , and dashed curve shows the estimated state
trajectory from x̂(0) = [0 0]T . In upper right, time history of the
error e(t) is shown. In lower left, dashed curve shows the error
trajectory from e(0), solid ellipsoid shows XE , outer chain ellipsoid
shows Ee(S , α + β), and inner chain ellipsoid shows Ee(S , α). In
lower right, solid curve shows time history of V(e(t)), and dashed
line shows α.

illustrates the observer design presented in Theorem 2. A

estimated state feedback gain k(x̂) is given by

−0.012139x1 − 0.042499x2 − 0.0015438x2
2

+0.0016002x2
1
+ 0.0072906x1x2 − 0.022431x3

1

−0.13984x2
1
x2 − 0.014513x1x2

2
− 0.080659x3

2
.

Both two matrices S X and S E are given by

[

0.0316 0.0035

0.0035 0.0316

]

and β is given by 1. The highest degree of L(y, x̂) is fixed at

2.

The resulting variables of a feasible solution are

α = 4.0967, S =

[

0.8362 0.8479

0.8479 1.0356

]

and

L(y, x̂) =

[

−196.9951

245.9035

]

+

[

−0.1948

0.1656

]

y +

[

0.0288

−0.0384

]

x̂1

+

[

−0.1634

0.1394

]

x̂2 +

[

−214.7819

266.2865

]

y2 +

[

−206.5736

261.4746

]

x̂2
1

+

[

−211.0425

265.1378

]

x̂2
2
+

[

−73.2845

85.6688

]

yx̂1 +

[

59.0844

−66.1435

]

x̂1 x̂2

+

[

−124.5001

155.7589

]

yx̂2.

A trajectory of the error dynamics and the state of the closed-

loop system are shown in Fig. 2.
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Fig. 2. Trajectories of estimated state and error, and invariant sets:
In upper left, solid curve shows the state trajectory of the system
from x(0) = [4 − 2]T , and dashed curve shows the estimated state
trajectory from x̂(0) = [0 0]T . In upper right, time history of
error e(t) is shown. In middle left, dashed curve shows the error
trajectory from e(0), solid ellipsoid shows XE , outer chain ellipsoid
shows Ee(S , α + β), and inner chain ellipsoid shows Ee(S , α). In
middle right, solid curve shows time history of V(e(t)), and dashed
line shows α. In lower left, solid curve shows time history of
y, and dashed curve also shows time history of y in the case of
full measurement feedback. In lower right, solid curve shows time
history of U(x(t), x̂(t)), and dashed line shows β(α + β) + α.

VI. C

The filter and observer design were proposed for the

polynomial systems with L2-bounded disturbance using the

sum of squares relaxations. The origin of the error dynamics

was locally stabilized by a measurement and state estimate

dependent polynomial filter/observer gain, and positively

invariant sets were obtained. The origin of the closed-loop

system was also locally stabilized assuming that a given

estimated state feedback law for the bounded disturbance is

able to stabilize an another closed-loop system when the law

was applied to as state feedback not estimated state feedback,

and a positively invariant set of the observer-based closed-

loop system was also obtained. The both design problems

were reduced to the convex conditions.

A

Lemma 1: For any η(x, x̂) ∈
∑

[x, x̂],

2ζ(x, x̂)Bw(x)w ≤ η(x, x̂)wT w

+η(x, x̂)−1ζ(x, x̂)T Bw(x)Bw(x)T ζ(x, x̂)

holds for all (x, x̂) ∈ Rn×Rn and w ∈ Rmw .
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B   SOS 

Let us consider a symmetric matrix polynomial F(x) =
∑

α∈F Fαxα ∈ S[x]m , where x ∈ Rn, xα = x
α1

1
· · · x

αn
n and

F =
{

α ∈ Rn
∣

∣

∣

∑n
i=1 αi ≤ 2N

}

. For some polynomial G(x) ∈

R[x]q×m, F(x) = G(x)T G(x) is a matrix SOS polynomial [17],

or F(x) ∈
∑

[x]m, where G(x) ∈ R[x]k×m.

Lemma 2 ([17]): F(x) ∈ S[x]m is a matrix SOS polyno-

mial if and only if there exists Q ∈ S
md[N]

+ satisfying

F(x) = (Im ⊗ z[N])
TQ(Im ⊗ z[N]) ∀x ∈ Rn, (21)

where z[N] = z[N](x) ∈ Rd[N] is a monomial vector of x whose

highest degree is N.

Lemma 3 ([17]): There exists Q ∈ S
md[N]

+ satisfying (21)

if and only if there also exists it satisfying

< (Im ⊗ Aα),Q >m= Fα ∀α ∈ F , (22)

where Aα ∈ S
d[N] satisfies z[N]z

T
[N]
=
∑

α∈F Aαxα.

The relationship between the above facts is as follows:

F(x) ∈ S+[x]m ⇐ F(x) ∈
∑

[x]m

⇔ ∃Q ∈ S
md[N]

+ s.t. (21)

⇔ ∃Q ∈ S
md[N]

+ s.t. (22)

If F(x) is SOS, then F(x) is positive semidefinite for all

x ∈ Rn. All real matrix polynomials having the representation

F(x) = G(x)T G(x) is SOS, which is equivalently written

with a matrix quadratic form (21). Finding Q in (21) is the

certification of F(x) being a matrix SOS polynomial. The

certification is reduced to solving the SDP (22).

R
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