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Abstract— An adaptive neural network control(ANNC) is
proposed for a class of strict-feedback uncertain nonlinear sys-
tems with unknown system nonlinearities and unknown virtual
control gain nonlinearities. Combining the dynamic surface con-
trol(DSC) technique with minimal-learning-parameters(MLP)
algorithm, a systematic procedure for synthesis of ANNC is
developed based on the universal approximation of neural
networks. An important feature of the proposed algorithm
is that the number of parameters updated on line for each
subsystem is reduced only to one, both problems of “explosion
of complexity” and “curse of dimension” are solved simulta-
neously, such that the computation load is reduced drastically
and it is convenient to implement the controller in applications.
It is shown that all closed-loop signals are semi-global uniform
ultimate bound(SGUUB) via Lyapunov stability theory. Finally,
simulation results are presented to demonstrate the effectiveness
of the proposed scheme.

Index Terms— Uncertain nonlinear systems, neural networks,
adaptive control, dynamic surface control, minimal-learning
parameters.

I. INTRODUCTION

IN the past decades, the adaptive control of nonlin-

ear systems with linearly parameterized uncertainty has

achieved significant progress (see [1]∼[3] and references

therein). For systems with high uncertainty, which can-

not be modelled or repeatable, adaptive control approach

obtained further development by means of neural net-

work (NN) control schemes(e.g., [4]∼[7]) or fuzzy control

schemes(e.g., [8]∼[10]) based on the idea of backstepping.

However, there is a substantial “dimension curse” restric-

tion in the aforementioned works. That is, the number of

hidden units becomes prohibitively large as we move to

high dimensional systems, which imposes that there are

many parameters need to be tuned in the approximator-based

adaptive control schemes, such that the time-consuming

process is unavoidable during the implementation of these

schemes. This drawback restricts the applicability of these

methods. This problem has been first researched in [11] and

[12], and further discussed in [13]∼[15] when using adaptive

fuzzy control schemes or NN control schemes.
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On the other hand, there is a well-known drawback of “ex-

plosion of complexity” with the conventional backstepping

technique. That is, the complexity of a controller grows dras-

tically as the order of the system increases. This “explosion

of complexity” is caused by the repeated differentiations of

certain nonlinear functions. In [16], a dynamic surface control

(DSC) technique was proposed to eliminate this problem by

introducing a first-order filtering of the synthetic input at

each step of the traditional backstepping approach. In [17],
this DSC method was extended to adaptive systems in which

the nonlinearities are linear in the uncertain parameters. In

[18], the DSC method was first extended to adaptive tracking

control via neural networks for a class of strict-feedback

uncertain systems without external disturbances, and the

asymptotic semiglobal stability was achieved.

In this paper, incorporating the DSC technique into the

MLP algorithm in [15], a new systematic procedure is

developed for the synthesis of stable adaptive NN tracking

controllers. RBF NNs are used to approximate the unknown

functions. The controller guarantees that the resulting closed-

loop system is SGUUB. The main features of the controllers

are that 1) the adaptive mechanism with minimal learning

parameterizations is achieved, i.e., the number of parameters

updated on line for each subsystem is reduced to one,

and 2) both problems of “explosion of complexity” and

“curse of dimension” are solved simultaneously. Therefore,

the computation burden is reduced dramatically and it is

convenient to implement the algorithm in applications.

II. PRELIMINARIES

A. PROBLEM FORMULATION

Consider an uncertain nonlinear dynamic system in the

following form






ẋi = gi(x̄i)xi+1 + fi (x̄i) , 1 ≤ i ≤ n− 1
ẋn = fn (x) + gn(x)u
y = x1

(1)

where x = (x1, x2, ..., xn)T ∈ Rn is the system state, u ∈ R
is the control input, y ∈ R is the output of the system and w
is the model uncertainty belonging to a compact set, which

includes uncertain parameter vector of the system. Let x̄i =
[x1, x2, ..., xn]

T
. fi (x̄i) i = 1, 2, ..., n are uncertain smooth

system functions with fi (0) = 0 and gi (x̄i) i = 1, 2, ..., n
are uncertain smooth virtual control gain functions, all of

which may not be linearly parameterized.

The following assumption is introduced.
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Assumption 1: The uncertain virtual control gain func-

tions gi (x̄i) i = 1, 2, ..., n are confined within a certain range

such that

0 < bmin ≤ |gi (x̄i) | ≤ bmax (2)

where bmin and bmax are the lower and upper bound of the

gain functions, respectively.

The aforementioned assumption implies that the smooth

virtual control gain functions gi (x̄i) i = 1, 2, ..., n are strictly

either positive or negative. From now on, without loss of gen-

erality, we will assume 0 < bmin ≤ gi (x̄i) , i = 1, 2, ..., n.

Assumption 1 is reasonable because gi(x̄i) being away from

zero is the controllable conditions of (1).

Assumption 2: The reference signal yd(t) is a sufficiently

smooth function of t and yd, ẏd, ÿd are bounded, that is, there

exists a positive constant B0, such that Π0 := {(yd, ẏd, ÿd) :
yd

2 + ẏd
2 + ÿd

2 ≤ B0}.

Remark 1: [18] In the traditional backstepping-based

adaptive tracking control design, since the information of

ith time derivative of yd(t) is needed when designing the

virtual controller at Step (i+ 1), so the requirement that the

reference signal yd(t) is assumed to be available together

with its n time derivatives is imposed ([13]).
The control objective is to develop an adaptive NN track-

ing controller such that all the solutions of the resulting

closed-loop system are SGUUB, and the tracking error z1 =
y(t) − yd(t) can be rendered small.

B. RBF Neural Network

In control engineering, RBF neural networks are usually

used as a tool for modelling nonlinear functions because

of their good capabilities in function approximation. They

belong to a class of linearly parameterized networks. For

comprehensive treatment of neural networks approximation,

see [4]. RBF neural networks can be described as wTS(z)
with input vector z ∈ Rn, weight vector w ∈ Rl, node

number l, and basis function vector S(z) ∈ Rl. Universal

approximation results indicate that, if l is chosen sufficiently

large, then wTS(z) can approximate any continuous function

to any desired accuracy over a compact set. In this paper,

we use the following RBF neural networks to approximate

a smooth function h(z) : Rq → R

hnn(z) = wTS(z) (3)

where the input vector z ∈ Ω ⊂ Rn, weight vector w =
[w1, w2, . . . , wl]

T ∈ Rl, the neural network node number

l > 1, and S(z) = [s1(z), s2(z), . . . , sl(z)]
T , with si(z)

being chosen as the commonly used Gaussian functions,

which have the form

si(z) = exp

[
−(z − µi)

T (z − µi)

η2
i

]
, i = 1, 2, . . . , l

where µi = [µi1, µi2, . . . , µin]T is the center of the receptive

field and ηi is the width of the Gaussian function.

For the unknown nonlinear function f(x), we have the

following approximation over the compact sets Ω

f(x) = w∗TS(x) + ε. ∀x ∈ Ω ⊆ Rn (4)

where S(x) is the basis function vector, ε is the approxi-

mation error, and w∗ is an unknown ideal constant weight

vector.

The ideal weight vector w∗ in (4) is an “artificial” quantity

required only for analytical purposes. Typically, w∗ is chosen

as the value of w that minimizes | ε | for all x ∈ Ω, where

Ω ⊆ Rn is a compact set, i.e.,

w∗ := arg min
w∈Rn

{
sup
x∈Ω

| f(x) − wTS(x) |

}
.

We make the following assumption on the approximation

error.

Assumption 3: Over a compact region Ω ∈ Rn

| ε |≤ ε∗

where ε∗ > 0 is an unknown bound.

The following lemma provides a new description for the

continuous function by using continuous function separation

technique and RBF NN approximation, which enables one

to deal with nonlinear parameterization and will result in

a solution to the robust adaptive NN control problem of

nonlinear parameterized systems.

Lemma 1: [14] For any given real continuous function

f(x, θ) with f(0, θ) = 0, when the continuous function

separation technique and RBF NN approximation technique

are used, then f(x, θ) can be denoted as follows

f(x, θ) = S̄(x)Ax (5)

where S̄(x) = [1, S(x)] = [1, s1(x), s2(x), · · · , sl(x)],
si(x), i = 1, 2, · · · , l are the RBF basis functions which

are known and l is the node number. AT = [ε,WT ],
εT = [ε1, ε2, · · · , εn] is a vector of the approximation error

and W =




w∗

11 w∗

12 · · · w∗

1n

w∗

21 w∗

22 · · · w∗

2n
...

... · · ·
...

w∗

l1 w∗

l2 · · · w∗

ln


 is a weight matrix.

III. DESIGN OF ROBUST ADAPTIVE FUZZY

TRACKING CONTROL

A. Design of Robust Adaptive NN Tracking Control

Now we will incorporate the DSC technique into a RBF

NN based robust adaptive tracking design scheme for (1).
Similar to the traditional backstepping method, the recursive

design procedure contains n steps. At each step, the virtual

controller αi+1, i = 1, 2, . . . , n − 1 shall be developed.

Finally an overall control law u is constructed at step n.

Step 1: Define the 1st error variable z1 = x1 − yd, then

ż1 = g1(x1)x2 + f1 (x1) − ẏd (6)

Since f1 (x1) is an unknown continuous function, accord-

ing to Lemma 1, RBF NN f̂1 (x1, A1) with input vector

x1 ∈ Ux1
, where Ux1

is some compact set, is proposed

here to approximate uncertain function f1 (x1) with A1 a

matrix containing unknown constants. Then f1 (x1) can be

expressed as

f1 (x1) = ξ1 (x1)A1x1 + ε1

2947



= ξ1 (x1)A1z1 + ξ1 (x1)A1yd + ε1

= cθ1ξ1 (x1)ω1 + ξ1 (x1)A1yd + ε1 (7)

where ε1 is a parameter denoting approximating accuracy,

and cθ1 = ‖A1‖, Am
1 = A1/ ‖A1‖. Thus one has ‖Am

1 ‖ ≤ 1
and ω1 = Am

1 z1.

Substituting (7) into (6) , we get

ż1 = g1(x1)x2 + cθ1ξ1 (x1)ω1 + v1 − ẏd (8)

where v1 = ξ1 (x1)A1yd + ε1 and cθ1 is an unknown

constant, and there exists a bound for v1 as follows

‖v1‖ ≤ ‖ξ1 (x1)A1yd + ε1‖ ≤ bminθ1ψ1 (x1) (9)

where θ1 = b−1
min max (‖A1yd‖ , ‖ε1‖) and ψ1 (x1) = 1 +

‖ξ1‖.

Now we choose a virtual controller α2 for x2 in the

subsystem (8) and the update law for λ̂1 as

α2 = −
(
k1 + λ̂1Φ1(x1)

)
z1 + ẏd (10)

˙̂
λ1 = Γ1[Φ1(x1)z

2
1 − σ1(λ̂1 − λ0

1)] (11)

where k1,Γ1, σ1 and λ0
1 are positive design constants. λ̂1

are the estimates of λ1 = b−1
minmax(c

2
θ1, θ1

2) . Φ1(x1) and

Φi(x̄i), i = 2, ..., n in the sequel are defined after Eq.(34).

Introduce a new variable s2 and let α2 pass through a

first-order filter with time constant η2

η2ṡ2 + s2 = α2, s2 (0) = α2 (0) . (12)

Step i (2 ≤ i ≤ n− 1): A similar procedure is employed

recursively for each step i (2 ≤ i ≤ n− 1). Define the ith
error variable zi = xi − si, and we have

żi = gi(x̄i)xi+1 + fi (x̄i) − ṡi (13)

We also use RBF NN to approximate the unknown func-

tion fi (x̄i) leading to

fi (x̄i) = ξi (x̄i)Aix̄
T
i + εi

= ξiAi




z1 + yd

z2 + s2
...

zi + si




T

+ εi = cθiξiωi + vi

(14)

where cθi =
∥∥A1

i

∥∥ = λ
1/2
max

(
A1T

i A1
i

)
, Am

i = A1
i /
∥∥A1

i

∥∥,

thus ‖Am
i ‖ ≤ 1 and ωi = Am

i z̄i. vi = ξiA
1
i yd+ξi

i∑
j=2

Aj
isj+

εi.

Then (13) can be converted as follows

żi = gi(x̄i)xi+1 + cθiξiωi + vi − ṡi (15)

and note that

‖vi‖ ≤

∥∥∥∥∥∥
ξiA

1
i yd + ξi

i∑

j=2

Aj
i sj + εi

∥∥∥∥∥∥
≤ bminθiψi (16)

with θi = b−1
min max

(
∥∥A1

i yd

∥∥ ,
∥∥∥∥∥

i∑
j=2

Aj
isj

∥∥∥∥∥ , ‖εi‖

)
, ψi =

1 + ‖ξi‖.

Similarly, choose a virtual controller αi+1 and the update

law for λ̂i as follows

αi+1 = −
(
ki + λ̂iΦi(x̄i)

)
zi + ṡi (17)

˙̂
λi = Γi[Φi(x̄i)z

2
i − σi(λ̂i − λ0

i )] (18)

where ki,Γi, σi and λ0
i are positive design constants. λ̂i are

the estimates of λi = b−1
minmax(c

2
θi
, θi

2) .

Now, introduce a variable si+1 and let αi+1 pass through

a first-order filter with time constant ηi+1

ηi+1ṡi+1 + si+1 = αi+1, si+1 (0) = αi+1 (0) . (19)

Step n: Define the nth error variable zn = xn − sn, then

żn = gn(x)u + fn (x) − ṡn (20)

Similarly, fn (x) can be expressed as

fn (x) = ξn (x)Anx
T + εn

= cθnξnωn + vn (21)

where cθn =
∥∥A1

n

∥∥ = λ
1/2
max

(
A1T

n A1
n

)
, Am

n = A1
n/
∥∥A1

n

∥∥,

thus ‖Am
n ‖ ≤ 1 and ωn = Am

n z with z = [z1, ..., zn]T .

vn = ξnA
1
nyd + ξn

n∑
j=2

Aj
nsj + εn. Then one has

żn = gn(x)u + cθnξnωn + vn − ṡn (22)

and

‖vn‖ ≤

∥∥∥∥∥∥
ξnA

1
nyd + ξn

n∑

j=2

Aj
nsj + εn

∥∥∥∥∥∥
≤ bminθnψn (23)

with θn = b−1
min max

(
∥∥A1

nyd

∥∥ ,
∥∥∥∥∥

n∑
j=2

Aj
nsj

∥∥∥∥∥ , ‖εn‖

)
, ψn =

1 + ‖ξn‖.

Now, we choose the control input u and the update law

for λ̂n as follows

u = −
(
kn + λ̂nΦn(x)

)
zn + ṡn (24)

˙̂
λn = Γn[Φn(x)z2

n − σn(λ̂n − λ0
n)] (25)

where kn,Γn, σn and λ0
n are positive design constants. λ̂n

are the estimates of λn = b−1
minmax(c

2
θn
, θn

2) .

Remark 2: It can be observed from the form of the

virtual controllers αi+1, i = 1, ..., n − 1 and the controller

u proposed in this paper, together with the properties of

equation (34), that we does not estimate the unknown gain

functions gi(x), i = 1, ..., n. In such a way we can not

only avoid the possible controller singularity problem usually

met with feedback linearization design when the adaptive

NN controller is executed, but also removed the number

of parameters needed to be updated on-line for ĝi(x), i =
1, ..., n.
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Remark 3: It is worth noting in our algorithm that, the

RBF NNs are only used to approximate those unstruc-

tured system functions, especially, the number of parameters

updated on line for each RBF NN in each subsystem is

reduced to only one, which thus avoid the problem of

”dimension curse”. In addition, the proposed scheme avoids

both problems of “dimension curse” and “explosion of com-

plexity” simultaneously, which result in a minimal learning

parameterizations algorithm with a much simpler structure.

Consequently, the computation burden of the adaptive control

algorithm is reduced drastically and the algorithm is easy to

be implemented in applications.

B. Stability Analysis

Define new error variables

yi+1 = si+1 − αi+1, i = 1, 2, . . . , n− 1 (26)

Note that ṡi = −(si + αi)/ηi = −yi/ηi, then

ẏ2 = ṡ2 − α̇2

= − y2

η2
+
(
−∂α2

∂z1
ż1 −

∂α2

∂x1
ẋ1 −

∂α2

∂λ̂1

˙̂
λ1 + ÿr

)

= − y2

η2
+B2

(
z1, z2, y2, λ̂1, yr, ẏr, ÿr

) (27)

Obviously, B2 (·) is a continuous function with respect to

variables
(
z1, z2, y2, λ̂1, yr, ẏr, ÿr

)
.

Similarly, we have

ẏi+1 = ṡi+1 − α̇(i+1) = − yi+1

ηi+1
+

Bi+1

(
z1, . . . , zi+1, y2, . . . , yi, λ̂1, . . . , λ̂i, yr, ẏr, ÿr

)

(28)

where i = 2, . . . , n− 1.

Consider xi+1 = zi+1 +si+1 and si+1 = yi+1 +αi+1, the

overall error systems can be expressed as

ż1 = g1z2 + g1y2 + g1α2 + cθ1ξ1 (x1)ω1 + v1 − ẏd

żi = gizi+1 + giyi+1 + giαi+1 + cθiξi (x̄i)ωi + vi − ṡi

... i = 2, . . . , n− 1,
żn = gnu+ cθnξn (x)ωn + vn − ṡn

(29)

We are now in a position to state our main result on

semiglobal stable robust adaptive NN controller.

Theorem 1: Consider the closed-loop system composed

of (27)∼(29), the controllers (10),(17) and (24), and

the updated laws (11),(18) and (25), given any pos-

itive number p, for all initial conditions satisfying

Π :=
{∑n

j=1

(
z2

j + λ̃T
j bminΓ−1

j2 λ̃j

)
+
∑n

j=2 y
2
j < 2p

}
,

i = 1, . . . , n, there exist ki, γi, δi, ηi, σi and Γi, such that

the solution of the closed-loop control system is uniformly

ultimately bounded. Furthermore, given any µ > 0, we can

tune our controller parameters such that the output error

z1 = y (t) − yd (t) satisfies limt→∞ |z1 (t)| ≤ µ.

Proof: Choosing the Lyapunov function candidate as

V =
1

2

n∑

i=1

(
z2

i + λ̃T
i bminΓ−1

i λ̃i

)
+

1

2

n−1∑

i=1

y2
i+1 (30)

where θ̃i = θi− θ̂i, λ̃i = λi− λ̂i, Γi1 and Γi2, i = 1, 2, . . . , n
are positive definite matrix to be determined later. The time

derivative of V along the system trajectories is

V̇ =

n∑

i=1

(
ziżi − λ̃T

i bminΓ−1
i

˙̂
λi

)
+

n−1∑

i=1

yi+1ẏi+1

≤

n−1∑

i=1

(
−bminkiz

2
i + gizi+1zi + cθiξi (x̄i)wizi + vizi

− bminλ̂iΦi(x̄i)z
2
i − λ̃T

i bminΓ−1
i

˙̂
λi + giyi+1zi

)

− bminknz
2
n +

n∑

i=2

(giṡizi − ṡizi) + g1ẏdz1

− ẏdz1 + cθnξn (x)wnzn + vnzn − bminλ̂nΦn(x)z2
n

− λ̃T
n bminΓ

−1
n

˙̂
λn +

n−1∑

i=1

(
−
y2

i+1

ηi+1
+ |yi+1Bi+1|

)
(31)

It is noted that

cθiξi (x̄i)wizi =cθiξi (x̄i)wizi − γ2
i w

T
i wi + γ2

iw
T
i wi

≤
c2θi

4γ2
i

ξiξ
T
i z

2
i + γ2

i w
T
i wi

(32)

and

νizi ≤ θiψi(x̄i) ‖ zi ‖≤
θ2i
4ι2i

ψ2
i (x̄i)z

2
i + ι2i (33)

with ιi and γi being any given positive constant, and

ψi(x̄i) = 1+ ‖ ξi ‖.

Combining (32) and (33) yields

cθiξiwizi + νizi

≤bminλiΦi(x̄i)z
2
i + γ2

i ω
T
i ωi + ι2i

≤bminλ̂iΦi(x̄i)z
2
i + bminλ̃iΦi(x̄i)z

2
i + γ2

i ω
T
i ωi + ι2i

(34)

where Φi(x̄i) = 1
4γ2

i

ξiξ
T
i + 1

4ι2
i

ψ2
i , λi =

max(b−1
minc

2
θ1, b

−1
minθ

2
i ), λ̃i = (λi − λ̂i) and λ̂i is the

estimate of λi.

And noting that

giṡizi − ṡizi ≤
1 + bmax

4ηi
z2

i +
bmax + 1

ηi
y2

i , (35)

g1ẏdz1 − ẏdz1 ≤
bmax + 1

4
z2
1 + (bmax + 1)B2

0 , (36)

and the fact that gizi+1zi ≤ z2
i + bmax

4 z2
i+1 and giyi+1zi ≤

z2
i + bmax

4 y2
i+1, then (31) becomes
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V̇ ≤

n−1∑

i=2

(
−

(
bminki − 2 −

1 + bmax

ηi

)
z2

i +
bmax

4
z2

i+1

)

− (bmink1 − 2 −
bmax + 1

4
)z2

1

− (bminkn −
1 + bmax

ηi
)z2

n +

n∑

i=1

(
γ2

i ω
T
i ωi + δ′i

)

−

n∑

i=1

(
σi

2λmax

(
bminΓ−1

i

) λ̃T
i Γ−1

i λ̃i

)

+

n−1∑

i=1

(
bmax

4
y2

i+1 −
3 − bmax

4ηi+1
y2

i+1 + |yi+1Bi+1|

)

(37)

where δ′i = (bmax + 1)B2
0 + bmaxδi + σi

2

∣∣λ∗i − λ0
i

∣∣2.

Now we investigate the characteristics of Bi+1, i =
1, 2, . . . , n− 1.

Since the sets Π0 ∈ R3 and Πi ∈ R(
∑

i
j=1

Nj+2i−1) ,

where Nj is the dimension of θ̃j , are compact, Π0 × Πi ∈

R(
∑ i

j=1
Nj+2i+2) is also compact. Therefore, |Bi+1| has a

maximum Mi+1 on Π0 × Πi.

Let 1
ηi+1

= (3−bmax

4 )−1( bmax

4 +
M2

i+1

2α +α0), and note that

|Bi+1yi+1| ≤
y2

i+1B2
i+1

2α + α
2 , where α0 and α are positive

constants. Then we arrive at

(
bmax

4
−

3 − bmax

4ηi+1

)
y2

i+1 + |Bi+1yi+1| ≤ −α0y
2
i+1 +

α

2
(38)

Let σi1

/
2λmax

(
bminΓ−1

i1

)
= σi2

/
2λmax

(
bminΓ−1

i2

)
=

α0, and k1 = b−1
min(2 + bmax+1

4 + α0), ki = b−1
min(2 +

1+bmax

4ηi
+ bmax

4 +α0)(i = 2, . . . , n−1), kn = b−1
min( bmax+1

4ηi
+

α0), then (37) can be further expressed as

V̇ ≤− α0

n∑

i=1

z2
i − α0

n∑

i=1

(
λ̃T

i bminΓ−1
i λ̃i

)

− α0

n−1∑

i=1

y2
i+1 +

n∑

i=1

(
γ2

i ω
T
i ωi

)
+ ρ

≤− 2α0V + γ2‖ω‖
2

+ ρ (39)

where ρ =
n∑

i=1

(δ′i)+
n−1∑
i=1

(α/2), γ = (γ2
1 +γ2

2 + · · ·+γ2
n)1/2,

ω = [ω1, ω2, ..., ωn]
T

.

Note that ωi = Am
i z̄

T
i and ‖Am

i ‖ ≤ 1, i = 1, ..., n, so we

obtain

ω =




ω1

ω2

...

ωn


 =




Am
1 0 · · · 0

Am1
2 Am2

2 · · · 0
...

... · · ·
...

Am1
n Am2

n · · · Amn
n







z1
z2
...

zn


 = Az

and

‖ ω ‖≤‖ A ‖‖ z ‖≤‖ z ‖ (40)

Now, if choosing γ < 1, then (39) can be converted into

V̇ ≤ −2α0V + ‖z‖
2

+ ρ ≤ −c1V + ρ (41)

where c1 = (2α0 − 1) .

From (41), we obtain

V (t) ≤
ρ

c1
+

(
V (t0) −

ρ

c1

)
e−(t−t0)

It follows that , for any µ1 > (ρ/c1)
1/2, there exists a

constant T > 0 such that ‖z1 (t)‖ ≤ µ1 for all t ≥ t0 + T ,

and the tracking error can be made small since (ρ/c1)
1/2

can be made arbitrarily small if the design parameters γ1,

δ1, η2, σ1 and Γ1 are chosen appropriately. Theorem 1 is

thus proved.

IV. APPLICATION EXAMPLES

In this section, we will present an example of an one-link

robot system with the inclusion of motor dynamics to reveal

the control performance of the proposed algorithm.

Consider an one-link manipulator with the inclusion of

motor dynamics[13]. The robot model is

{
Dq̈ +Bq̇ +Nsin(q) = τ + τd
Mτ̇ +Hτ = u−Kmq̇

(42)

where q, q̇ and q̈ denote the link position, velocity and

acceleration, respectively. τ and τ̇ are the motor shaft angle

and velocity. τd represents the torque disturbance. u is the

control input used to represent the motor torque. Eq.(42) can

be expressed in the form (1) by noting that

x1 = q, x2 = q̇, x3 = τ
D , f1(x1, w) = 0, f2(x1, x2, w) =

−Nsin(x1)−Bx2

D , f3(x1, x2, x3, w) = −Kmx2−HDx3

MD , d1 = 0,

d2 = τd

D , d3 = 0.

The parameter values with appropriate units are given by

D = 1, B = 1, M = 0.05, H = 0.5, N = 10, Km = 10.

The torque disturbance τd = sin(t).
In simulation, we choose Gaussian function as the

form aforementioned, the RBF NNs for f2 and f3 con-

tain 25 nodes, respectively, with centers evenly spaced in

[−2.5, 2.5]× [−2, 2] for f2 and [−2.5, 2.5]× [−2, 2]× [−2, 2]
for f3 and widths ai,l = 5, i = 2, 3, l = 1, ..., 25. The initial

conditions for x1, x2 and x3 are 0.2, 2π and 0.

Remark 4: We found a fact in the simulation that the

nodes number in each RBF NN does not have obvious

effect on the controller performance and the time consumed

when executing the algorithm proposed in this paper. For

example, the control performance and the consumed time

of the controller with fewer nodes(such as five nodes) are

similar to those of the controller with much more nodes(such

as twenty-five or one-hundred nodes). This is one of the

significant advantages of our algorithm against those NN-

based adaptive control schemes in the literature.

Figs.1∼2 illustrate the simulation results of the one-link

robot system for tracking a reference signal yd = sin(πt).
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Fig. 1. Simulation results for one-link robot system: (a) system output
y (dot line) and reference signal yd (solid line), (b) tracking error z1, (c)
control signal u.
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Fig. 2. Simulation results for one-link robot system: (a) parameter estimate
λ2; (b) parameter estimate λ3.

V. CONCLUSION

In this paper, the tracking control problem has been

considered for a class of strict-feedback uncertain nonlinear

systems. Combining the DSC technique with the MLP algo-

rithms, an adaptive NN tracking control scheme is developed

based on Lyapunov direct method. It is shown that the closed-

loop system is SGUUB. The main features of the proposed

algorithms are that the adaptive mechanism with minimal

learning parameterizations is achieved, and both problems of

“explosion of complexity” and “curse of dimension”, as well

as the possible controller singularity problem in some of the

existing adaptive control schemes with feedback linearization

techniques, are circumvented. The proposed adaptive control

algorithm is in a much simpler form and its computation

load is reduced dramatically, and thus it is much easier to

implement this algorithm for applications.
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