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Abstract— Given an interconnected system, this paper is
concerned with the time complexity of verifying if any given
unrepeated mode of the system is a decentralized fixed mode
(DFM). It is shown that checking the decentralized fixedness of
any distinct mode is tantamount to testing the strong connectiv-
ity of a digraph formed based on the system. It is subsequently
proved that the time complexity of this decision problem using
the proposed approach is the same as the complexity of matrix
multiplication. This work concludes that the identification of
distinct decentralized fixed modes (by means of a deterministic
algorithm, rather than a randomized one) is computationally
very easy, although the existing algorithms for solving this
problem would wrongly imply that it is cumbersome. This paper
provides not only a complexity analysis, but also an efficient
algorithm for tackling the underlying problem.

I. INTRODUCTION

An interconnected system consists of a number of inter-
acting subsystems, which could be homogeneous or hetero-
geneous. It is evident that many real-world systems can be
modeled as interconnected systems, some of which are com-
munication networks, large space structures, power systems,
and chemical processes [1], [2], [3], [4], [5]. The classical
control techniques often fail to control such systems, in light
of some well-known practical issues such as computation or
communication constraints. This has given rise to the emer-
gence of the decentralized control area which aims to design
non-classical structurally constrained controllers [6]. More
precisely, a (conventional) decentralized controller comprises
a set of non-interacting local controllers corresponding to
different subsystems.

The notion of decentralized fixed modes (DFM) was
introduced in [7] to characterize those modes of the system
which cannot be moved using a linear time-invariant (LTI)
decentralized controller. Several methods have been proposed
in the literature to find the DFMs of a system [8], [9], [10],
[11]. For instance, an algebraic characterization of DFMs
was provided in [8]. The method given in [9], on the other
hand, characterizes the DFMs of a system in terms of its
transfer function. It was also shown in [12] that the DFMs of
any system can be found by checking the transmission zeros
of a set of artificial systems derived from the original system.
In [10], an algorithm was presented to identify the DFMs
of the system by computing the rank of a set of matrices.
Unfortunately, the number of the systems whose transmission
zeros need to be checked in [12] and the number of matrices
whose ranks are to be computed in [10] depend exponentially
on the number of subsystems of the original system.
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On the other hand, a method is delineated in [13] stating
that in order to numerically find the DFMs of a system, it is
sufficient to apply a randomly generated static decentralized
controller to the system, and then verify what modes of the
system are still fixed. Nevertheless, this method is often inac-
curate for large-scale systems. More precisely, calculating the
eigenvalues of a large-size matrix is normally associated with
some errors (especially when the matrix possesses complex
eigenvalues), which makes it impossible to distinguish the
fixed modes from the approximate fixed modes [14]. Another
issue is that a generic static decentralized controller may not
be able to sufficiently displace a mode so that it is recognized
as a non DFM.

A graph-theoretic method was proposed in the recent work
[11], which constructs a bipartite graph corresponding to
each unrepeated mode of the system. This work states that
the mode is a DFM if and only if the graph contains a bi-
partite subgraph satisfying two specific properties. Although
this method turns out to be extremely simpler than other
available methods, it is not clear how to systematically verify
the existence of such a subgraph.

Consider a decision problem, whose answer to be found
is “yes” or “no”. An algorithm provided for this problem
is efficient if its time complexity is satisfactory. Informally
speaking, the time complexity measures the number of
machine instructions executed during the running time of
the algorithm (as a function of the size of the input). It is
well-understood in computer science that if there exists an
efficient randomized algorithm for a decision problem, nor-
mally there should also exist a deterministic algorithm with
similar complexity. In other words, randomized algorithms
cannot be far more efficient than deterministic algorithms.
Regarding the decentralized question posed here (i.e. finding
the DFMs of a system), the work [13] shows that there exists
an efficient randomized algorithm, whereas the available
deterministic algorithms have high time complexities. Based
on the above-mentioned discussion, one would conjecture
that there exists an efficient deterministic algorithm for the
underlying decentralized problem. Finding such an algorithm
and investigating its properties are central to the current
work.

Given an LTI interconnected system realized in the canoni-
cal form, consider a distinct mode of the system. The primary
objective of this paper is to determine the time complexity
of deciding whether this mode is a DFM of the system.
To tackle this decision problem, a digraph is constructed by
means of an algorithm, whose time complexity is the same
as the complexity of matrix multiplication. It is then shown
that the answer to the posed decision problem is affirmative
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if and only if the digraph is not strongly connected. The
time complexity of the latter problem (checking the strong
connectivity) is quadratic with respect to the number of
subsystems of the system. It is eventually concluded that
the time complexity of the original decision problem is
the same as that of matrix multiplication, being at most
equal to O(n2.376), where n denotes the order of the given
system. Note that it is extremely unlikely to find another
algorithm for this decentralized problem which uses only
matrix operations with (complexity) exponents lower than
that of matrix multiplication (i.e. the ordinary operations
multiplication, inversion, determinant, rank, cannot be used
in that algorithm). This signifies that the obtained complexity
order is believed to be the best possible one.

The paper is organized as follows. The problem is formu-
lated in Section II, where some preliminaries are provided.
The main results are developed in Section III, followed by a
numerical example in Section IV. Finally, some concluding
remarks are drawn in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider an LTI interconnected system S consisting of ν
subsystems S1, S2, ..., Sν , represented by:

ẋ(t) = Ax(t) +
ν∑

j=1

Bjuj(t)

yi(t) = Cix(t) +
ν∑

j=1

Dijuj(t), i ∈ ν := {1, 2, ..., ν}
(1)

where x(t) ∈ <n is the state, and ui(t) ∈ <mi and yi(t) ∈
<ri , i ∈ ν, are the input and the output of the ith subsystem,
respectively. Define now:

B :=
[

B1 · · · Bν

]
,

C :=
[

CT
1 · · · CT

ν

]T
,

D :=

 D11 · · · D1ν

...
. . .

...
Dν1 · · · Dνν

 ,

m :=
ν∑

i=1

mi, r :=
ν∑

i=1

ri

(2)

A (conventional) decentralized controller for the system S
is composed of a set of ν local controllers, where the ith

local controller, i ∈ ν, observes only the local output yi(t)
to construct the local input ui(t) of the ith subsystem. The
following definition was presented in [7] for strictly proper
systems and generalized in [10] to proper systems.

Definition 1: A mode σ is said to be a decentralized
fixed mode (DFM) of the system S if there exists no
static decentralized controller to displace this mode. In other
words, σ is a DFM of the system S if the relation:

σ ∈ sp
(
A + BK(I −DK)−1C

)
(3)

holds for every block diagonal matrix K whose ith block
entry, i ∈ ν, is a matrix of dimension mi × ri, where sp(·)
stands for the matrix spectrum.

It is noteworthy that as shown in [10], a DFM is fixed with
respect to not only static decentralized controllers but also
all types of LTI decentralized controllers. In what follows,
different methods for finding the DFMs of a system are
outlined.

A. Matrix rank checking

According to [10], a mode σ is a DFM of the system S if
and only if there exist a permutation of {1, 2, ..., ν} denoted
by (i1, i2, ..., iν) and an integer p ∈ [0, ν] such that the rank
of the following matrix is less than n:

A− σIn Bi1 Bi2 . . . Bip

Cip+1 Dip+1i1 Dip+1i2 . . . Dip+1ip

Cip+2 Dip+2i1 Dip+2i2 . . . Dip+2ip

...
...

...
. . .

...
Ciν Diν i1 Diν i2 . . . Diν ip

 (4)

This clearly signifies that computing the DFMs of the system
S using this method is cumbersome, due to the necessity of
checking the rank of 2ν matrices, in general.

B. Randomized algorithm

Pick a matrix K ∈ <r×m at random and consider the
matrices A and A+BK(I−DK)−1C. The works [13] and
[10] state that the DFMs of the system are, almost surely,
the common eigenvalues of these two matrices. This gives
rise to a randomized algorithm that almost always works
correctly. As explained in the introduction, this method suf-
fers from some numerical issues. Nonetheless, this technique
indicates that there is a simple randomized algorithm for
finding DFMs, whose complexity is much lower than the
deterministic one explained above (i.e. testing the rank of an
exponential number of matrices).

C. Derandomization

The work [10] proposes a derandomization technique for
the randomized algorithm given in [13] (discussed above).
Observe that a decentralized gain matrix K has

∑ν
i=1 miri

free parameters, sitting on the block diagonal of this ma-
trix. For every natural number j satisfying the inequality
j ≤

∑ν
i=1 miri, pick j of these free parameters, give

arbitrary nonzero values to them, and set the remaining free
parameters to zero. This leads to a structured decentralized
gain matrix. Repeating this procedure for all possible com-
binations yields p block-diagonal matrices K1,K2, ...,Kp,
where:

p = 2
Pν

i=1 miri − 1 (5)

The derandomized algorithm says that the DFMs of the
system are the common eigenvalues of the matrices A +
BKi(I − DKi)−1C, i = 1, 2, ..., p. Note that although the
randomized algorithm mentioned in the preceding subsection
runs in polynomial time, its derandomized counterpart runs
in exponential time.
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D. Graph-theoretic approach

Assume that σ is an eigenvalue of A with multiplicity 1,
which is also an observable and controllable mode of the
system S. With no loss of generality, suppose that the matrix
A is in the following canonical form:

A =
[

σ 0
0 A

]
(6)

where A is a matrix of appropriate dimension (this can be
achieved by using a proper similarity transformation, if need
be). Define now:

M(σ) : = C(A− σIn−1)−1B−D (7)

where:
• C is derived from C by eliminating its first column.
• B is obtained from B by removing its first row.

Denote the (i, j) block entry of M(σ) with Mij(σ) ∈
<ri×mj , for every i, j ∈ ν.

Definition 2: Let G(σ) be a bipartite graph constructed as
follows:
• Consider two sets of vertices, namely set 1 and set 2,

with ν vertices in each of them.
• For every i, j ∈ ν, i 6= j, connect vertex i in set 1 to

vertex j in set 2 if all of the following conditions are
satisfied:

– The first column of Ci is zero.
– The first row of Bj is zero.
– Mij(σ) is a zero matrix

We proposed the next result in [11] to verify whether or
not σ is a DFM of the system S.

Theorem 1: The mode σ is a DFM of the system S if and
only if the graph G(σ) contains a subgraph Go(σ) with the
following properties:
• It is complete bipartite.
• If (i1, i2, ..., ip) and (j1, j2, ..., jq) represent the sets of

vertices of Go(σ) (i.e. set 1 and set 2 of Go(σ)), then
(i1, ..., ip, j1, ..., jq) is a permutation of the set ν.

Although this method seems to be far simpler than the
deterministic methods outlined above, it is not clear how to
verify the existence of such a subgraph Go(σ) systematically.

E. Objective of this work

This work develops the result of [11] under the assumption
that the matrix A is in the canonical form (6). The objective is
twofold. First, it is desired to propose a simple deterministic
algorithm to check whether σ is a DFM of the system S.
Second, it is aimed to figure out the time complexity of this
problem using deterministic algorithms.

III. MAIN RESULTS

Assume that the quantities m, r, ν are all less than or equal
to n. This realistic assumption is made so that the complexity
of computing the DFMs of S can be written only in terms
of n. The following definitions turn out to be convenient in
proceeding with the development of the paper.

Definition 3: Define G̃(σ) to be a directed graph (digraph)
constructed as follows:
• Consider ν vertices, labeled as 1, 2, ..., ν.
• For every i, j ∈ ν, i 6= j, connect vertex i to vertex

j by means of a directed edge if any of the conditions
given below is satisfied:

– The first column of Ci is a nonzero vector.
– The first row of Bj is a nonzero vector.
– Mij(σ) is not a zero matrix.

Definition 4: The digraph G̃(σ) is said to be strongly
connected if there exists a directed path from vertex v1

to vertex v2, for every disparate vertices v1 and v2 of the
digraph.

It is well-known from graph theory that G̃(σ) can be
uniquely decomposed as a union of strongly connected
components, namely C1, C2, ..., Ck, such that:
• Ci, i = 1, 2, ..., k, is a strongly connected induced

subgraph of G̃(σ).
• For every i, j ∈ {1, 2, ..., k}, i < j, there is no directed

edge going from Cj to Ci.
This fact will be exploited in the sequel to present one of

the main results of the paper.
Theorem 2: The mode σ is a DFM of the system S if and

only if the digraph G̃(σ) is not strongly connected.
Proof of sufficiency: Assume that the digraph G̃(σ) is not

strongly connected. In light of the discussion given prior
to this theorem, the set {1, 2, ..., ν} can be partitioned as
{i1, i2, ..., ip} and {j1, j2, ..., jq} such that there exits no
directed edge from vertex iα to vertex jβ in the digraph
G̃(σ), for all α ∈ {1, 2, ..., p} and β ∈ {1, 2, ..., q}. Consider
vertices i1, i2, ..., ip in set 1 and vertices j1, j2, ..., jq in set 2
of the bipartite graph G(σ). Denote with Go(σ) the bipartite
subgraph induced by these vertices. It is straightforward
to observe that this subgraph is complete bipartite (using
Definitions 2 and 3). On the other hand:

{1, 2, ..., ν} = {i1, i2, ..., ip} ∪ {j1, j2, ..., jq} (8)

Now, it follows immediately from Theorem 1 that σ is a
DFM.

Proof of necessity: Assume that σ is a DFM. It is to
be proved that the digraph G̃(σ) is not strongly connected.
To this end, one can utilize Theorem 1 to deduce that
the graph G(σ) possesses a bipartite subgraph Go(σ) with
the two properties mentioned earlier. Denote the sets of
vertices of this bipartite subgraph with {i1, i2, ..., ip} and
{j1, j2, ..., jq}. Due to the properties of Go(σ), not only is
the relation (8) satisfied, but the following are true for every
α ∈ {1, 2, ..., p} and β ∈ {1, 2, ..., q}:
• The first column of Cα is zero.
• The first row of Bβ is zero.
• Mαβ(σ) is a zero matrix.

This, together with the relation (8), means that the two
subgraphs of G̃(σ) induced by the respective sets of vertices
{i1, i2, ..., ip} and {j1, j2, ..., jq} cover all vertices of the
digraph G̃(σ) and, besides, there is no directed edge from the
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subgraph induced by {i1, i2, ..., ip} to the other one. Hence,
the digraph G̃(σ) is not strongly connected. �

Theorem 2 states that checking the decentralized fixed-
ness of σ reduces to testing the strong connectivity of the
digraph G̃(σ). Fortunately, the latter problem is a very simple
combinatorial problem, for which several methods have been
developed. For instance, one can use Kosaraju’s algorithm,
which has been regarded as the simplest method for this
graph problem [15]. This algorithm performs two complete
traversals of the graph and the idea behind it is a depth-first
search. Alternatively, Tarjan’s algorithm can be employed,
whose efficiency is better than Kosaraju’s algorithm [16].
Another efficient algorithm, which is mostly suitable for
dense graphs, is the Cheriyan/Mehlhorn/Gabow algorithm
[17]. Let Tarjan’s algorithm be adopted in this paper to check
the strong connectivity of G̃(σ). Note that this algorithm
has been implemented in the Bioinformatics Toolbox of
MATLAB.

Theorem 3: Consider the decision problem “whether or
not the mode σ is a DFM”. Let the time complexity of matrix
multiplication in <n×n be denoted by O(nω), where ω is a
positive real.

i) The posed decision problem can be solved in O(nω)
time by computing the matrix M(σ), and then testing
the strong connectivity of its associated digraph G̃(σ).

ii) If there exists another algorithm for this decision prob-
lem which runs in O(nω̄) where ω̄ < ω, the algorithm
must not use any of the following operations over
arbitrary unstructured matrices of approximate dimen-
sion n × n: matrix multiplication, matrix inversion,
determinant, LUP-decomposition, computing the char-
acteristic polynomial, orthogonal basis transformation,
matrix rank.

Proof of Part (i): Denote the number of edges of G̃(σ) with
η. It is well-known that Tarjan’s algorithm runs in O(ν + η)
time in order to test the strong connectivity of G̃(σ). Since η
is less than or equal to ν(ν − 1), the complexity of checking
the connectivity of the graph G̃(σ) is at most O(ν2). On
the other hand, it is known that matrix inversion and matrix
multiplication have the same time complexity exponent [18].
Since M(σ) is computed by one matrix inversion and
two matrix multiplications, M(σ) can be found in O(nω)
time. Moreover, the complexity of matrix multiplication over
<n×n is at least O(n2), because there are n2 entries in the
matrix which must be part of any computation. Hence, the
quantity ω is at least equal to 2. These results lead to the
conclusion that checking the decentralized fixedness of σ can
be accomplished in O(nω)+O(ν2) = O(nω) time (note that
ν ≤ n, by assumption).

Proof of Part (ii): The proof of this part follows from
part (i) and the fact that the operations pointed out in the
theorem have (complexity) exponents greater than or equal
to that of matrix multiplication [18]. �

Remark 1: If the standard method of matrix multiplication
is used to compute M(σ), the time complexity of checking
the decentralized fixedness of σ turns out to be O(n3), in
light of Theorem 3. However, one can employ Coppersmith-

Winograd algorithm for matrix multiplication to reduce this
complexity to O(n2.376) [19].

IV. NUMERICAL EXAMPLE

Let S be composed of 10 single-input single-output inter-
connected subsystems, with the state-space matrices given
in (9). Notice that the matrix A is already in the canonical
form (6) for σ = 1.

It is desired now to check whether the mode σ = 1
is a DFM of the system. To this end, the matrix M(σ)
introduced in (7) should be computed first. The digraph G̃(σ)
constructed in terms of this matrix is depicted in Figure 1.
This graph has 10 vertices and 47 edges. Tarjan’s Algorithm
can be employed to traverse all these edges and vertices
in order to find the strongly connected components of this
graph. This is carried out in the Bioinformatics toolbox of
MATLAB using the command “graphconncomp”. Vertices 1,
2 and 3 in Figure 1 have been colored dark blue, meaning that
MATLAB has detected them as a connected component of
the digraph and the remaining vertices as another component.
Consequently, the digraph is not strongly connected, and
hence σ = 1 is a DFM. Note that even though the graph G̃(σ)
seems to be complex, its connectivity verification is an easy
job which can be accomplished in quadratic running time
(in terms of ν). In this regard, it is worth mentioning that
computing the matrix M(σ) is more involved than testing
the connectivity of G̃(σ). This clearly shows the simplicity
of the method proposed here.

V. CONCLUSIONS

This paper deals with the time complexity of checking
the existence of a stabilizing linear time-invariant (LTI) de-
centralized controller for a given LTI interconnected system.
In particular, the complexity of computing the decentralized
fixed modes (DFMs) of a system is studied. It is well-known
that the existing deterministic methods for this problem are
computationally intractable, whereas the available random-
ized numerical method is fairly simple. The objective is
to determine the true complexity of solving this problem
using a deterministic algorithm. To this end, it is shown that
checking whether a certain (unrepeated) mode of the system
is a DFM amounts to testing the strong connectivity of some
digraph. This gives rise to proving that the verification of
the decentralized fixedness of a distinct mode of the system
has the same time complexity as matrix multiplication and
inversion.
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