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Abstract— Mechanical systems subject to friction hysteresis
exhibit amplitude dependent frequency responses. This paper
derives the describing function (DF) of the Dahl friction model
subject to a sinusoidal input. This DF is useful for analysis
and modeling of systems subject to friction hysteresis from
frequency response data.

I. INTRODUCTION

The use of frequency response data of mechanical systems

for analysis, modeling, and controller design has been com-

mon practice for decades. While frequency response tech-

niques are most useful for linear systems, the DF (amplitude

dependent frequency response at the excitation frequency)

can be used for some systems with nonlinear components [9],

[10]. The Fourier series representation of the periodic output

of the nonlinearity subject to a sinusoidal input as a function

of the frequency and input amplitude enables researchers to

relate analytical DF results to models typically examined in

the time domain.

There are many models of hysteretic friction, [2], [3], [4],

[5], [8]. The Dahl friction model [6] is one of the most popu-

lar because of its simplicity and its ability to capture much of

the behavior of hysteretic friction observed in practice. The

Dahl model lacks the nonlocal memory property of friction,

but the exact Fourier series representation of other models

does not currently exist in the literature [2]. The objective

of this paper is to derive an analytical expression for the

DF of the Dahl friction model for use in identifying and

understanding friction in the frequency domain.

This paper is organized as follows. Section II introduces

the Dahl model and derives its Fourier series. Section III

illustrates the Fourier components modeling the linear Dahl

model, and it shows the DFs for several different combina-

tions of the parameters of the linear Dahl model. Section IV

provides concluding remarks.

II. FOURIER SERIES OF THE DAHL MODEL

To derive the DF of the Dahl friction model, we determine

the Fourier series represenation

Fhys(t) = a0 +
∞

∑
k=1

ak cos(kωt)+bk sin(kωt) (1)

where Fhys is the output of Dahl dynamic model subject to a

sinusoidal input. The Dahl model consists of the following
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Fig. 1. Linear Dahl model in the displacement domain with Fmax and σ
defined pictorially.

nonlinear first order differential equation in the displacement

variable x

dFhys

dx
= σ

(

1−
Fhys

Fmax

sgn(ẋ)

)α

(2)

where Fmax is the maximum value of the friction. This paper

employs a frequently used simplification of this model where

the exponent α = 1. This simplification is called the linear

Dahl model. For the linear Dahl model, the solution is

exponential with respect to position, and σ represents the

slope of the friction with respect to position at the zero

crossing, as shown in Figure 1.

A. Time Domain Solution of the Dahl Model

This derivation of the Fourier coefficients starts with the

output of the Dahl model as a function of time. Integrating

the differential equation of the Dahl model with respect to x

in one direction gives the hysteresis force as a function of x.

Substituting x(t) for x gives the solution to the Dahl model

as a function of time as long as the sign of the velocity does

not change.

Fhys(t) = sgn(ẋ(t))

(

−F0 +

+(Fmax +F0)
(

1− e
− σ

Fmax
|x(t)−x0|

)

)

(3)

where x0 is the initial position and F0 is the hysteresis force

at that position.

For the purposes of determining the Fourier series, we

assume the position x(t) is given by

x(t) = Acos(ωt) (4)

The variable x0 represents the position at the time of direction

reversals. During steady state oscillations

x0 = −sgn(ẋ(t))A =

{

−A ẋ > 0

A ẋ ≤ 0
(5)
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Fig. 2. F0 and −F0 on a hysteresis loop where Fmax = 1, σ = 1, and A = 1

If F0 is the friction at x(t) = A, the point where ẋ(t)
changes from positive to negative, then −F0 is the friction

value when x(t) = −a, the point where ẋ(t) changes from

negative to positive during steady state oscillations. Figure

2 shows F0 and −F0 on a hysteresis loop where Fmax = 1,

σ = 1, and A = 1.

Taking x0 = −A with corresponding friction value −F0 in

Eqn. 3, the following relation holds when x(t) = A

F0 = −F0 +(Fmax +F0)
(

1− e
−2 σ

Fmax
A
)

(6)

At this point it is convenient to define the constant β to

simplify notation

β
△
=

σA

Fmax

(7)

Solving for F0 gives

F0 =
Fmax

(

1− e−2β
)

(

1+ e−2β
) = Fmax tanh(β ) (8)

Substituting back into the Dahl model Eqn. 3

Fhys(t) = sgn(ẋ(t))

(

−Fmax +Fmax(1+ tanh(β ))∗

∗e
− σ

Fmax
|x(t)+Asgn(ẋ(t))|

)

(9)

When the velocity ẋ(t) is positive, x(t)+ Asgn(ẋ(t)) > 0

the solution is

Fhys(t) = Fmax −Fmax(1+ tanh(β ))e−
σ

Fmax
(x(t)+A)

(10)

When the velocity ẋ(t) is negative, x(t)+Asgn(ẋ(t)) < 0 then

Fhys(t) = −Fmax +Fmax(1+ tanh(β ))e
σ

Fmax
(x(t)−A)

(11)

B. Cosine Terms

The Fourier coefficients for the cosine and sine are

a0 =
1

T

∫ T
2

− T
2

Fhys(t)dt (12)

ak =
2

T

∫ T
2

− T
2

Fhys(t)cos(kωt)dt (13)

bk =
2

T

∫ T
2

− T
2

Fhys(t)sin(kωt)dt (14)

where T = 2π
ω and k is an integer greater than zero. This

section presents the derivation of the cosine coefficients ak.

The symmetry of Fhys(t) over one period implies that a0 =
0. Determining the other cosine coefficients, ak, begins with

the substitution of Fhys into Eqn. 13. For clarity the integral

is split into the periods based on the change in the sign of

the velocity allowing direct substitution of Eqn. 10 and 11.

ak =
2Fmax

T

[

∫ 0

− T
2

(

1− (1+ tanh(β ))e−
σ

Fmax
(x(t)+A)

)

∗

∗cos(kωt)dt +

+
∫ T

2

0

(

−1+(1+ tanh(β ))e
σ

Fmax
(x(t)−A)

)

∗

∗cos(kωt)dt

]

(15)

The constant terms cancel, leaving

ak =
2Fmax

T

[

∫ T
2

0
(1+ tanh(β ))e−β e

σ
Fmax

x(t)
cos(kωt)dt+

−
∫ 0

− T
2

(1+ tanh(β ))e−β e
− σ

Fmax
x(t)

cos(kωt)dt

]

(16)

To further simplify the notation we define the constant

γ
△
=

2Fmax

π
(1+ tanh(β ))e−β (17)

Eqn. 16 becomes

ak =
ωγ

2

[

∫ T
2

0
e

σ
Fmax

x
cos(kωt)dt +

−
∫ 0

− T
2

e
− σ

Fmax
x
cos(kωt)dt

]

(18)

The limits of integration are further subdivided at T
4

and

−T
4

to properly account for the zero crossings of cos(ωt).
Substituting in x(t) = Acos(ωt) and using the definition of

β gives.

ak =
ωγ

2

[

∫ T
4

0
eβ cos(ωt) cos(kωt)dt +

+
∫ T

2

T
4

eβ cos(ωt) cos(kωt)dt +

−
∫ − T

4

− T
2

e−β cos(ωt) cos(kωt)dt +

−
∫ 0

− T
4

e−β cos(ωt) cos(kωt)dt

]

(19)

Substitution of u = t + T
2

in the third and fourth integrals

above and noting that T ω
2

= π and cos(ζ −π) = −cos(ζ ),
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gives

ak =
ωγ

2

[

∫ T
4

0
eβ cos(ωt) cos(kωt)dt +

+
∫ T

2

T
4

eβ cos(ωt) cos(kωt)dt +

−
∫ T

4

0
eβ cos(ωu) cos(ωku− kπ)du+

−
∫ T

2

T
4

eβ cos(ωu) cos(ωku− kπ)du

]

(20)

Eqn. 20 simplifies to

ak =

{

0 k = 0,2,4, . . .

ωγ
∫

T
2

0 eβ cos(ωt) cos(kωt)dt k = 1,3,5, . . .
(21)

The derivation of ak for even k is complete.

The derivation for odd values of k requires further work

prior to integration. The derivation proceeds with a change

of variables using u = ωt and du = ωdt to arrive at

ak = γ

∫ π

0
eβ cos(u) cos(ku)du (22)

There is no closed form solution for the integrals above. To

arrive at an expression for ak we apply the Taylor Series

expansion for the exponential to Eqn. 22 to obtain

ak = γ

∫ π

0

∞

∑
n=0

(β cos(u))n

n!
cos(ku)du (23)

We expand cos(ku) using the following identity from [7]

cos(ku) = cos(u)

[

1+

k+1
2 −1

∑
j=1

(

(−1) j

(2 j)!
sin2 j(u)∗

∗
j

∏
i=1

(k2 − (2i−1)2)

)]

(24)

Substituting this into Eqn. 23 and expanding gives

ak =γ

∫ π

0

∞

∑
n=0

β n

n!
cosn+1(u)du+

− γ

∫ π

0

∞

∑
n=0

β n

n!
cosn+1(u)

k2 −12

2!
sin2(u)du+

+ γ

∫ π

0

∞

∑
n=0

β n

n!
cosn+1(u)∗

∗
(k2 −12)(k2 −32)

4!
sin4(u)du+

− γ

∫ π

0

∞

∑
n=0

β n

n!
cosn+1(u)∗

∗
(k2 −12)(k2 −32)(k2 −52)

6!
sin6(u)du+ . . . (25)

We now employ the following relations from [7]

∫

cos2l u du =
sinu

2l

[

cos2l−1 u+

+
t−1

∑
k=1

(2l −1)(2l −3) . . .(2l −2k +1)

2k(l −1)(l −2) . . .(l − k)
∗

∗cos2l−2k−1 u

]

+
(2l −1)!!

2l l!
u (26)

and

∫

cos2l+1 u du =
sinu

2l +1

[

cos2l u+

+
t−1

∑
k=0

2k+1(l −1) . . .(l − k)

(2l −1) . . .(2l −2k−1)
∗

∗cos2l−2k−2 u

]

(27)

where

x!!
△
=

{

1 if x = −1, 0, or 1

x(x−2)!! if x ≥ 2
(28)

Since sin(π) = sin(0) = 0, Eqn. 26 becomes

∫ π

0
cos2l(u)du =

π(2l −1)!!

2l l!
(29)

Similarly, Eqn. 27 becomes

∫ π

0
cos2l+1(u)du = 0 (30)

The terms involving cosp u sin2n u can be evaluated using

the following relation from [7]

∫

cosp u sin2n u du = −
cosp+1 u

2n+ p

[

sin2n−1 u+

+
n−1

∑
k=1

(2n−1)(2n−3) . . .(2n−2k +1)sin2n−2k−1 u

(2n+ p−2)(2n+ p−4) . . .(2n+ p−2k)

]

+

+
(2n−1)!!

(2n+ p)(2n+ p−2) . . .(p+2)

∫

cosp u du (31)

and using sin(π) = sin(0) = 0 to obtain

∫ π

0
cosp(u)sin2n(u)du =

=
(2n−1)!!

(2n+ p)(2n+ p−2) . . .(p+2)

∫

cosp(u)du (32)
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Substituting these relations into Eqn. 25 gives

ak = γ
∞

∑
n=1,3,5,...

πβ nn!!

n!2
n+1

2 ( n+1
2

)!
+

−γ
∞

∑
n=1,3,5,...

(

β n

n!

k2 −12

2!
(2(1)−1)!!∗

∗
1−1

∏
l=0

1

n+1+2(1)−2l

n!!

2
n+1

2 ( n+1
2

)!

)

+

+γ
∞

∑
n=1,3,5,...

(

β n

n!

(k2 −12)(k2 −32)

4!
(2(2)−1)!!∗

∗
2−1

∏
l=0

1

n+1+2(2)−2l

n!!

2
n+1

2 ( n+1
2

)!

)

+

−γ
∞

∑
n=1,3,5,...

(

β n

n!

(k2 −12)(k2 −32)(k2 −52)

6!
∗

∗(2(3)−1)!!∗

∗
3−1

∏
l=0

1

n+1+2(2)−2l

n!!

2
n+1

2 ( n+1
2

)!

)

+ . . . (33)

To simplify the notation again we define the term

Ξ
△
= γ

∞

∑
n=1,3,5,...

πβ nn!!

n!2
n+1

2 ( n+1
2

)!
(34)

and rewrite Eqn. 33 as

ak = Ξ−Ξ
k2 −12

2!
(2(1)−1)!!∗

∗
1−1

∏
l=0

1

n+1+2(1)−2l
+

+Ξ
(k2 −12)(k2 −32)

4!
(2(2)−1)!!∗

∗
2−1

∏
l=0

1

n+1+2(2)−2l
+

−Ξ
(k2 −12)(k2 −32)(k2 −52)

6!
(2(3)−1)!!∗

∗
3−1

∏
l=0

1

n+1+2(2)−2l
+ . . . (35)

ak = Ξ

(

1+

k+1
2

∑
j=1

(−1) j(2 j−1)!!

(2 j)!
∗

∗
j−1

∏
l=0

1

n+1+2 j−2l

j

∏
l=1

(k2 − (2l −1)2)

)

(36)

for k = 1,3,5, . . ..

C. Sine Terms

The derivation of the sine coefficients, bk, is similar to

the derivation of the cosine coefficients with the substitution

of Fhys into the equation for the Fourier sine components.

The limits of integration are again split according to the the

sign of the velocity (ẋ). Equations 10 and 11 are substituted

directly into Eqn. 14.

bk =
2

T

∫ 0

− T
2

(

Fmax −Fmax(1+ tanh(β ))e−
σ

Fmax
(x+A)

)

∗

∗sin(kωt)dt +

+
2

T

∫ T
2

0

(

−Fmax +Fmax(1+ tanh(β ))e
σ

Fmax
(x−A)

)

∗

∗sin(kωt)dt (37)

Rearranging, separating the limits of integration at −T
4

and
T
4

to account for the zero crossings of cos(ωt), applying the

definition of β and integrating the constant terms gives.

bk =
Fmax

kπ
(2cos(kπ)−2)+

+
Ψ

2

∫ T
4

0
eβ cos(ωt) sin(kωt)dt +

+
Ψ

2

∫ T
2

T
4

eβ cos(ωt) sin(kωt)dt +

−
Ψ

2

∫ − T
4

− T
2

e−β cos(ωt) sin(kωt)dt +

−
Ψ

2

∫ 0

− T
4

e−β cos(ωt) sin(kωt)dt (38)

where

Ψ
△
=

4Fmax(1+ tanh(β )e−β )

T
(39)

Defining

ϒk =

{

−4Fmax
kπ k = 1,3,5, . . .

0 k = 0,2,4, . . .
(40)

at this point allows Eqn. 38 to simplify to

bk = ϒk +
Ψ

2

∫ T
4

0
eβ cos(ωt) sin(kωt)dt +

+
Ψ

2

∫ T
2

T
4

eβ cos(ωt) sin(kωt)dt +

−
Ψ

2

∫ − T
4

− T
2

e−β cos(ωt) sin(kωt)dt +

−
Ψ

2

∫ 0

− T
4

e−β cos(ωt) sin(kωt)dt (41)

Again, substitution of u = t + T
2

in the third and fourth

integrals above and noting that T ω
2

= π and cos(ζ − π) =
−cos(ζ ), gives

bk = ϒk +
Ψ

2

∫ T
4

0
eβ cos(ωt) sin(kωt)dt +

+
Ψ

2

∫ T
2

T
4

eβ cos(ωt) sin(kωt)dt +

−
Ψ

2

∫ T
4

0
eβ cos(ωu) sin(ωku− kπ)du+

−
Ψ

2

∫ T
2

T
4

eβ cos(ωu) sin(ωku− kπ)du (42)

Since sin(ωku− kπ) = sin(ωku) for k = 0,2,4, . . ., bk = 0

for even k.
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The Fourier coefficients with k = 1,3,5, . . . simplify to

bk = ϒk +Ψ

∫ T
2

0
eβ cos(ωt) sin(kωt)dt (43)

Similar to the prior section, applying the change of variables

u = ωt and du = ωdt and expanding the exponential in a

Taylor series gives

bk = ϒ +
Ψ

ω

∫ π

0

∞

∑
n=0

(β cos(u))n

n!
sin(ku)du (44)

Substituting the following relation from [7] for odd k
∫

cosn(u)sin(ku)du =

= (−1)
k+1

2

[

cosn+1(u)

n+1
+

+

k−1
2

∑
j=1

(

(−1) j cos2 j+n+1(u)∗

∗
(k2 −12)(k2 −32) . . .(k2 − (2 j−1)2)

(2 j)!(2 j +n+1)

)]

(45)

into Eqn. 44 gives

bk = ϒk +
Ψ

ω

∞

∑
n=0

β n

n!
(−1)

k+1
2

[

cosn+1(u)

n+1
+

+

k−1
2

∑
j=1

(

(−1) j cos2 j+n+1(u)∗

∗
(k2 −12)(k2 −32) . . .(k2 − (2 j−1)2)

(2 j)!(2 j +n+1)

)]

(46)

Applying the following relations for integer j and n

cos2 j+n+1(π)−cos2 j+n+1(0) = cosn+1(π)−cosn+1(0) (47)

and

cosn+1(π)− cosn+1(0) =

{

−2 if n = 0,2,4, . . .

0 if n = 1,3,5, . . .
(48)

to simplify Eqn. 46 gives

bk = ϒk +
2Ψ

ω

∞

∑
n=0,2,4,...

β n

n!
(−1)

k−1
2

[

1

n+1
+

+

k−1
2

∑
j=1

(−1) j(k2 −12) . . .(k2 − (2 j−1)2)

(2 j)!(2 j +n+1)

]

(49)

= ϒk +
2Ψ

ω

∞

∑
n=0,2,4,...

β n

n!
(−1)

k−1
2

[

1

n+1
+

+

k−1
2

∑
j=1

(−1) j ∏
j
m=1(k

2 − (2m−1)2)

(2 j)!(2 j +n+1)

]

(50)

for k = 1,3,5, . . ..
Note that ω and T drop out of the expressions for ak

and bk. That is, there is no frequency or time dependence;

there is only amplitude dependence. This make sense because
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Fig. 3. Dahl model and Fourier series approximations for Fmax = 1, σ = 10,
and A = 1.
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Fig. 4. Dahl model and Fourier series approximations for Fmax = 1, σ = 3,
and A = 1.

Fhys(t) in Eqn. 10 and 11 depend algebraically on x(t). In the

following section, we are able to plot the friction hysteresis

response independent of the frequency.

III. EXAMPLES

This section shows examples using the Fourier series of the

Dahl model. Figures 3 - 5 show the accuracy of the Fourier

series approximation where Fmax = 1, A = 1 and σ = 0.1, 1,

and 3 and 10.

Figure 6 shows examples of the DF of the Dahl model for

several cases where the maximum force output is Fmax = 1.

We consider the cases where σ = 0.1, 0.32, 1, 3, and 10.

The magnitude is given by

M =

(

a2
1 +b2

1

)
1
2

A
(51)

and the phase is given by

φ = arg(a1 − jb1) (52)

where j is the imaginary unit.

Figure 6 shows that for low values of the input amplitude

such that σA << Fmax the gain of the DF is equal to σ .

When σA = Fmax, the gain of the DF is approximately 0.8σ
and the phase distortion is about 20o. The gain drops to

0.5σ when σA ≈ 2.2Fmax. The phase distortion is 45o when

σA ≈ 2.7Fmax. For σA >> Fmax the gain of the DF is Fmax/A

and the phase approaches 90o.
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Fig. 5. Dahl model and Fourier series approximations for Fmax = 1, σ = 1,
and A = 1.
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Fig. 6. DF magnitude and phase for Fmax = 1 σ = 0.1, 0.32, 1.0, 3.2, and
10, and A varying from 0.1 to 100.

We also simulate the frequency response of a mass-spring-

damper system with hysteretic friction of the form

mẍ+bẋ+ kx+Fh(A) = u (53)

where A is the amplitude of the output x = Ae j(ωt+φ),

the input u = u0e jωt , and the friction hysteresis Fhys(A) =
[a1(A)− jb1(A)]e j(ωt+φ). Numerically solving for A and φ
gives the frequency response.

Figure 7 shows the plot of 51 frequency responses for

u0 varying from 10−4 to 101 with logarithmic spacing. The

parameters are m = 0.3, b = 0.24, k = 0.3, Fmax = 0.1, and

σ = 30. The frequency response exhibits behavior similar

to that reported in literature for actual systems [1], [2],

[11]. In particular the DC gain rapidly changes from a low

value to a high value when u0 changes between 0.1 and 0.2.

The resonance changes from a high frequency/low damping

resonance to a low frequency/high damping resonance. The

transition occurs over a small range of u0. The damping of

the high frequency resonance increases as u0 approaches a

value near 0.1 in this case, before the resonance frequency

suddenly shifts.

Fig. 7. Frequency response of a mass-spring-damper system with hysteretic
friction model where m = 0.3, b = 0.24, k = 0.3, Fmax = 0.1, and σ = 30.
The red line with + marks denotes u0 = 0.1, and the black line with x marks
denotes u0 = 0.2.

IV. CONCLUSIONS

This paper derived the coefficients for the Dahl model of

friction for a sinusoid input. The coefficients for k = 1 can be

used to determine the DF of the Dahl model. Examples of the

Fourier coefficient fits for several parameter combinations of

the Dahl model and input excitations were given. Plots of

the DF of a mass-spring-damper system using this DF to

represent the nonlinear hysteresis exhibits characteristics of

experimental systems reported in the literature. We believe

that this derivation will prove useful to practitioners em-

ploying frequency response data for analyzing and modeling

systems subject to friction hysteresis.
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