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A Unified Extension of The Robust Two-Stage Kalman Filter and Its
Application to Functional Filtering

Chien-Shu Hsieh

Abstract— This paper extends previous work on robust two-
stage Kalman filter (RTSKF) for systems with unknown inputs
affecting both the system state and the output. By making use
of an augmented known input model, an augmented unknown
input model, an unknown input error dynamics model, and
the previously proposed RTSKF, a unified extension of the
RTSKEF is further proposed to enhance the unknown input
filtering performance. Through the global optimality analysis
technique, the conditions under which the unknown input filter
and the system state estimator of the RTSKF can both achieve
the globally optimal filtering performances are provided. An
application of this new RTSKF to functional filtering problem
is addressed.

I. INTRODUCTION

Unknown inputs filtering (UIF) has played a significant
role in many applications, e.g., bias compensation [1], [2],
geophysical and environmental applications [3], fault de-
tection and isolation problems [4], and functional filtering
[5]. Except for the first above-mentioned application, the
UIF problem is often solved by assuming that no prior
information about the unknown input is available, which is
the main concern of this paper.

A general approach to solve the state estimation for
unknown inputs that have arbitrary statistics is to apply
unknown inputs decoupled state estimation, in which four
major approaches have been used in the literature: the first is
unbiased minimum-variance estimation (UMVE) [3], [4], [6],
[71, [81, [9], the second is the equivalent system description
(ESD) method [10], [11], the third is designed based on state
estimation techniques for descriptor systems [12], and the
last is joint input and state estimation (JISE) [13], [14], [15],
[16]. For the description of the above approaches and papers,
see [17] for further information.

In this paper, we continue the previous research [13],
[16], [17] and further consider a unified extension of the
previously proposed RTSKF [13] to solve general unknown
input filtering problems that the unknown input may also
affect the output. It is shown that using an augmented
known input model, an augmented unknown input model,
an unknown input error dynamics model, and the RTSKF, a

estimators of this RTSKF is also explored. Through this new
RTSKE, a refined version of the previously proposed unified
two-stage functional filter (UTSFF) [5] is further proposed
to enhance the functional filtering performance.
II. STATEMENT OF THE PROBLEM

Consider the discrete-time stochastic linear time-varying
system with unknown inputs in the form
Az + Bruy, + Frpdy + wy @9)
Hyxy, + Grdi + vy )

Tk+1
Y =
where xj, € R" is the system state, u;y € R" is the known
input, d, € RY is the unknown input, and y; € RP is the
output. wy, and vy are uncorrelated white noises sequences
of zero-mean and covariance matrices (0 > 0 and Ry > 0,
respectively. The initial state xg is with unbiased mean &,
and covariance matrix P and is independent of w;, and vy,.
The problem of interest in this paper is to design an
optimal state estimator of xy, denoted by wy;, such that
tr(Py,) = tr(Elexe;]) is minimized under the unbiasedness
condition Efex] = 0, where ex = xp — 2, and " denotes
transpose. The filter considered in this paper is given as the
following RTSKEF filter:

Ty + Vidpk
Py, + Vi PV

Tk|k
T —
Py =

where Ty, dk|k, P,f‘k, Pglk, and V}, are to be determined;
this extends the original filter [13] to more general systems
with direct feedthrough of the unknown input to the output.

The main aims of this paper are 1) to derive a unified
extension of the RTSKF in [13] to solve the more general
unknown input filtering problem, 2) to explore the optimality
issue of the obtained new RTSKEF, and 3) to enhance the
filtering performance of the two-stage functional filtering
problem [5] by using the proposed RTSKF.

ITII. A UNIFIED EXTENSION OF THE RTSKF

First, we give an optimal estimate of the unknown input
as follows (see [16] for details):

unified extension of the RTSKF is proposed to enhance the d = Mi(ye — HeZpppe—1) 3)
unknown input filtering performance. The issue of global Pl = M,CyMj 4)
optimality concerning the unknown input and system state
where
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in which M7 is the Moore-Penrose pseudo-inverse of M
and Ty ,_; and P,f‘k_l will be defined later. With the above
optimal unknown 1input estimator, we augment the known
input uy as follows:

uk—>ﬂk=[u§€ J;f ]/. ®)
Thus, the system model (1) can be represented as follows:
Tpr1 = Apxg + By, + chik + wg )

where Bk = [ Bk Fk ] and CZ}C = dk — Czk
Second, we augment the unknown input dj, as follows:
dy —di=[d, d, ] (10)

Thus, the system model (9) and (2) can be represented,
respectively, as follows:

Tht1 = Akxk+Bkﬂk+Flg &+ wg
Y = Hk$k+ékdz+vk

(1)
(12)

whereF,?:[O Fk ] and@k:[Gk 0 ]
Third, recall from [16] that the expectation of the error
dynamics of the unknown input filter dy, is given as follows:
Eldy] = (I — ®y)dy. (13)
Hence, using (6), (10), (13), and the following notation:
dp=[d d ] (14)
(11) and (12) can be represented alternatively as follows:

Agzy + Bty + Frdy, 4wy,
Hyxp + Gka + vk

15)
(16)

Tpr1 =
Y =

where I}, = [ Onxq F, }
Finally, considering that the unknown input also enters into

the measurement equation, and then applying the RTSKF
[13] to the system (15)-(16), we obtain

Ty + Vidgk
Py, + Vi PV

a7
(18)

Tk =
€T —
P, =

where Ty is given by

Teo1 = Ap_1@p_1p—1 + Brorup—1 + Fr_1dj_1(19)
Tre = Trk—1 + K (Ye — HiZrjp—1) (20)
Pieor = Ak—lplffl\kflA;cfl"i'Qk—l (21)
Ki = P H.C.' (22)
Py = (I - KiHy)P{, (23)
Qr = Qp+ FPFA), + A PIUF] + FLPIF] (24)
Pt = (P = Vi [ @ 0] (25)
dp|x is given by
dye = Ky — HiZgjp—1) (26)
K{ = Plsicpt 27)
P = (SiC¢tse)* (28)

and
Vi=| -K{Gy (I—-KJH)F_1 | (29)
with the following initial conditions:
To—1 = %o, Pgl_l = Py. (30)

The optimal unknown input filter a?k (3)-(4) can be expressed
alternatively in the form of the filter dy;, as follows:

[ 1 0 ]| dip (31)
[ @ 0]Pd [ @ 0] (32)

Remark 1: Using (17)-(18), (25), and (31)-(32), Egs. (19)
and (21) can be further simplified, respectively, as follows:

dy, =
Py

Tre—1 = Ar1Tr_1k—1 + Br_1ux—1
+ﬁk—1dk71\k71 (33)
Plf\k—l Akflplf—1|k—1A;c—1 + ﬁkflplg—l\k—llj’lgfl
+Qk—1 (34)
where

[ijAka+F‘k, F‘kZFk[q)k 0].

Remark 2: For the case that 0 < rank[Gj] < ¢, one can
verify that the above RTSKF will be equivalent to the filter
presented in [16] as well as the ARTSKF given in [17].

Remark 3: For the special case that matrix G = 0, one
obtains

P =0, Fr=0, F,=F, Sp=[0 HyF.1 |,
Up= AV, Vi=[0 (I—KiHy)Fi1 ]
which renders (33) and (34) to be simplified as follows:

Ap—1Tg—1jp—1 + Br—1up—1
Ap-1P{_q -1 Ak—1 + Qi1
then one can easily verify that this specific RTSKF is
equivalent to the original one presented in [13]. Note that

in this special case, the optimal unknown input filter dj_;
can be obtained in the form of the filter dy,;, as follows [14]:

[0 Iy ]
[0 L, )P[0 1]

Tplk—1 =
z —
Pir1 =

Ay =
P, 1571 =
assuming that rank[HyFy_1] = rank[Fx_1] = q.
Remark 4: For the special case that matrix G, is of full
column rank, i.e., rank|G}j] = ¢, one obtains
bp=1I, Fe=[F 0], F.=0,
Sk:[Gk 0], Vk:[_KZJGk 0].
Then, one can easily verify that this specific RTSKF is
equivalent to the filter presented in [15].
Remark 5: The above RTSKF can be tailored in order to
be applicable for the following system:
Apxy, + Bruy, + Frdy, + FRdi 4+ wy (35)
Hyxp + Grdy + vg (36)

Tk4+1 =
Y =
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where the matrix G,lC is of full column rank. This is achieved
by using the similar approach in deriving (15)-(16) to obtain
an alternative to the system (35)-(36) as follows:

Thp1 = Apxy + Brag + Fedy, + wy 37
yr = Hpxg + Grdy + vk (38)
where B, = [Bk Fk1 }, F, = [O F,? ], Gp =

[GL o0 Joan=[w (d) ). de=[ (@) (@) ]
And then, applying the RTSKF (17)-(32) to the system (37)-
(38), we obtain the dedicate result. Note that in this specific
RTSKE, the system parameters @, S, and Vj are given as

b=l S=[Gl HFL, ]
V= [ ~KiGL (I— KEHOFZ, ].

IV. ON THE GLOBAL OPTIMALITY OF THE
UNKNOWN INPUT ESTIMATOR

In this section, we show the global optimality of the
unknown input estimator of the new proposed RTSKF by
verifying that it satisfies the following requirements:

Eldy, —d) =0, min E[||d — di||?]

within the general framework for obtaining the linear
minimum-variance unbiased (LMVU) estimate of dj as
addressed in [18]. The derivation basically follows those of
[18] and [14].

First, we note that the most general estimate of dj can be
written in the form (see [14] for details):

k—1
d, = My + Y _ Difii + Eodo, (39)

i=0
where g = yr — HpTpp—1. A necessary and sufficient

condition for (39) to be an unbiased estimator of dy, is given
in the following lemma.

Lemma 1: The estimator (39) is unbiased if and only if
Ey =0and My and D; (0 <i < k—1) satisfy the following
conditions:

My [ Gy HpEFy1 | =[1 —Dp-1Gr-1 ],

Diy1Hi 1 Fi=—DiG; (0<i<k—2). (40)
Proof: Using (1), (2), and (19), we obtain
U = Hp(Ap_1ex—1 +wp_1+ Fr_1dg_1) + vk
+Grdy. 41

Using (6), (13), and the facts: Ele;] = 0, E[w;] = 0, and
Elv;+1] = 0 for i < k, and substituting (41) into (39), we
obtain

Eldy] = MGydy + (MyHpFy—1 + Dy—1Gr—1)di—1
k—2 }
+ Z(Di-'rlHi-i-lFi + D;G;)d; + Eoo
i=0
from which we obtain that the estimator (39) is unbiased if
and only if Ey = 0 and M} and D; satisfy (40).

Next, to proceed to show the conditions under which
the unbiased estimator (39) can achieve the minimum mean
square error (MMSE), we have the following lemma.

Lemma 2: For every ¢ < k and every D, satisfying D, S; =

Proof: Defining notations §; and e; as follows:

gi = Hie; +v;, & = Aire-1 +wi_1 + Fi_1di—1 (42)
we have
Ele;e;] = P,_y, Eleiv] =0. (43)

Using (1), (17), (20), (26), (29), and (42), we obtain the error
dynamics e; as follows:

e; = (I — LiH;)e; — Liv; (44)
where L, = KF + ViK;i. Using (44) in (42) yields
€1 = Ai(I — L;H;)é; — A;Lyv; + w; + Fid, (45)
from which and using (43), we obtain
Eleie}] = Ai1(I—Li1Hi_1)E[e;1€]] (46)
Elev}] = Aii(I —Li-1H; 1)E[é;1v]]
—A171L171E[U¢71Uﬂ (47
where ¢ > j. Then, we note that
Eldy(Dig:)'] = didi(D;Gi) =0
Elgi(D;y:)'"| = HiElexy;| D;. (48)

Using (7), (22), (27), (42), (43), and (45)-(47), we obtain
Eleyij] A(k — 1,i)(Ele;41e})H, + E[éi41v]])
= A(k -1 i)(f_li {Ti—1Hz{ — AiLiR;)

= A(k—1,i)A(P],_H] — K C;i — ViK{'C;)

= —A(k—1,i)AViP{,5; (49)
where A; = A;(I — L;H;) and
A(m,n) = Ay X -+ X Apyr, m>n, Alm,m)=1.

Using (49) in (48) yields that E[g,(D;3;)'] = 0 if all D;(i <
k) satisfying D,S; = 0.

Finally, we have the following theorem.

Theorem 1: Let rank|G)] = q and dy, given by (39) be
unbiased, then the mean square error o7 = El||dj, — dy|3]
achieves a minimum when Dy =D =--- = Dy_1 =0.

Proof: Using Fk = 0, Lemmas 1 and 2, and the proof of
[14,Theorem 10], the theorem is proved.

V. ON THE GLOBAL OPTIMALITY OF THE STATE
ESTIMATOR

In this section, we show the global optimality of the state
estimator of the new proposed RTSKF by verifying that it
satisfies the following requirements:

Elzy — zk) =0, min El|x, — zy[?]

within the general framework for obtaining the LMVU
estimate of x; as addressed in [18]. The derivation basically
follows that of [18].
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As illustrated in [18], the most general estimate of x; can
be written in the form
k—1
Tk = Thjk—1 + LrYr + Z Ciyi.-
i=0

(50)

A necessary and sufficient condition for (50) to be an
unbiased estimator of x is given in the following lemma.
Lemma 3: The estimator (50) is unbiased if and only if
Lj and C;(0 < i < k — 1) satisfy the following conditions:
LyGr =0, (I —LyHy)Fi_1 = Cr_1Gp_1,
Civ1Hip Fy = —-CiG; (0<i<k-—2). (51

Proof: Using the fact that Efe;] = 0 for ¢ < k and Egs.
(6), (13), and (41), we obtain

E[ji] = HyF—1dj—1 + Grdy.
Using (1), (6), (19), (50), and (52), we obtain

Eley]) = Ap_1Eler—1] — LyGrdy + [(I — LiHy) Fy—y
k=2
~Cr1Grmildior = Y (CiviHinr Fi + CiGi)d;
i=0

(52)

from which it can be checked that the estimator (50) is
unbiased if and only if Ly and C;(0 < ¢ < k — 1) satisfy
the conditions in (51).

Next, to proceed to show the conditions under which the
unbiased estimator (50) can achieve the MMSE, we have the
following lemma.

Lemma 4: For every i < k and every C; satisfying C;S; =
0, Elex(Cigi)'] = 0.

Proof: Using (41), (42), and (49), we obtain

Elex(Ciyi)'] = Eler(Cigi + CiGidy)']
= —A(k—1,9)A;V;PLS!C! + Elerd))G,C!

|4
which equals to zero if all C;(i < k) satisfying C;.S; = 0.
Now, we are in place to show some sufficient conditions
under which the unbiased estimator (50) can achieve the
MMSE.
Theorem 2: If the gain matrices C; of the unbiased
estimator (50) are further constrained as follows:

CiG; =0, 0<i¢<k—-1 (53)

then the mean square error 67 = E[||z) — j;/|3] achieves
a minimum when Cy =Cy =---=Ci_1 = 0.
Proof: Using (6) and (53) in (51) yields

LiGr=0, (I —LyHp)EFe1 =0, C;S;=0. (54)

Then, we note that the error dynamics ey, is given as follows:

k—1
e = (I — Lka)ék — Lyv, — chg:h
1=0

(55)

Thus, using (54), (55), and Lemma 4 and following the same
approach given in the proof of [18,Theorem 3], the theorem
is proved.

Theorem 3: For rank[G;] = q (0 <i < k — 1) and zyy,
given by (50) with conditions in (51), the mean square error

0; = El||lzr — xpk|3] achieves a minimum when Cp =
Ci=---=Ck_1=0.

Proof: For rank[G;] = g, one has F, = 0. Then, using
(51), one obtains C;G; = 0. Thus, the theorem follows
immediately from Theorem 2.

VI. APPLICATION TO FUNCTIONAL FILTERING

The functional filtering problem considered in [5] was
revisited. Consider the following discrete-time linear system:

Trr1 = Apxg + Brug + wg (56)
ye = Cpor+ 1k (57)
ZE = Lk.’L‘k (58)

where x;, € R" is the system state vector, ui € RP is the
input vector, y; € R™ is the measurement vector, z € R”
is the vector to be estimated, and r < n. The functional
filtering problem is to estimate z; from the measurements
{y:}, where 0 <t < k. A unified filter structure, named as
the UTSFF, was proposed in [5] to solve the aforementioned
functional filtering problem. The UTSFF serves as a unified
filter structure to represent the OROF, SOROF, RTSKF, and
TSFF (see [5] for details).

The basic idea of obtaining the UTSFF for the system
(56)-(58) is first to transfer (56) and (57) into the following

dii1 = Frdy + Apzi + Brug + Lipwy (59)
Zht1 = Frpdg 4+ Agzg + Brug + Lgpiw,  (60)
Y = CrpHpdy + CrGrzr + (61)

where

Fy = L1 ApHy, Ax = Lyy1ArGr, By = Liy1 By,
Fyp =Ly 1 AgHy, Ap = Lypt1AyGr, Bi = L1 DBy

via the following generalized state transformation:

| | L |,

dp |~ | Ly | 7"
where dj, is an auxiliary state and Ly is a design parameter
such that

mnk‘[ L) E;ﬁ ]/zn

and through the following system state reconstruction:

i = Gz + Hidg, [ G, Hg } = [ =
Then, the derivation of the aforementioned filters depends
mainly on the existence of the following rank condition:

rcmk{ Ly } =n. (62)

Cr
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A. Rank Condition (62) Holds

Assuming that the rank condition (62) holds, and
one can find sgitable matrices I'y, and Dj, where
rank [ T} D} | = dim(ys), such that

gl o I 0 dk T

where 5} = T'yyr, 97 = Dyyx, and
Dk = DkaHk, Ck = DkaGk7 Fknk =0

then, applying the GTSKF [20] to the system [(59), (60), and
(63)], one obtains the following OROF:

Zk|k—1 Ap_12p—1jk—1 + Br—rwi—1 + Fu_175_1(64)
Zee = Zrjk—1 + KE(YE — Skzkk-1) (65)
Pinor = APy Aoy + LiQu—1 Ly, (66)
+
Ki = P (S0 (SiPiea (S0 + Rp) (6D)
Phe = (= KpSp)Pii-a (68)
where
1 [ 2
. yk_d’jk—l] Sz[ k} 69
I {y,%—Dky,i ok i ©
P, — KiP;, (KP) 0
Rz k|k71 k klk*l( k) R ., (70)
0 Dy Ry D),
in which
dyph—1 = Ap—12p1jp—1 + Fr19i_y + Br—ug—1 (71
Py = Aemr Py Ay + LeQua L (72)

Kf = (A1 Py Afy + LeQia L) (P ) F- (73)

Note that the above OROF (64)-(73) is an alternative to
that given in [5,(50)-(59)]. Moreover, using dk\k—l = 0,

Pkdlk—l =0, D = 0, and T'yn; # 0 in the above OROF
and replacing (66) with the following

Piwor = APy Aoy + LiQp—a L,
+Fy 1 Tp 1R 1Ty Ff

one obtains the SOROF in [5,(62)-(65)].

In the following, we show that (65) and (68) can be fur-
ther simplified by using the two-stage measurement update
equations, i.e., [20,(73)-(80)], respectively, as follows:

ze = Zre + Ki Wk — Digp — CoZygr)  (74)
Piy = (- KiCy)P, (75)
where
Zoe = zepp—1 + K{ (U — dyjp—1) (76)
Ki = Pi.Cu(CuPiCr + DyRe D)™t (7T)
Pip = Pl — KiP (K7 (78)

B. Rank Condition (62) Does Not Hold

Assuming that the rank condition (62) does not hold, then
the first equation of (63) is discarded by using I'y, = 0 and

Dy, = I,,. Thus, (63) reduces to
7 = Crz + Dydi + Dy (79)

Applying the new proposed RTSKF (17)-(32) to the system
[(60) and (79)], one obtains

Zk|k Ziik + Viedpk (80)
ok = Dokt VkP/?\ka/ 8D

where Zzj;, is given by
Zplk—1 = Ar—125—1 k-1 + Br_1ugp—1 + g1 (32)
Ziik = Zkie—1 + K7 (0 — CrZpp—1) (83)

Pino1 = A1 By Ay + LeQu—1 L + Py (84)
Ki = P Ch Y, Q. = CuPf Ch + DiRi Dy (85)
Piw = = K;Cy) Py (86)
ay, = Fydy, By =F, [ ® 0], &, = D Dy (87)

Pf = Fy P8I AL + AV P FY + FuPEEY, (88)

dy| 1s given by
doe = K (Ui — CoZipp-1) (89)
Ki = Pi.s.9." (90)
Pl = (S.'S0)" 91)

and

Vi = [ -KiDy (I-KiCy)Fx_: | (92)
Sk = [ Dy CyFy—1 |, Fo=Fu(I— o). (93)

Finally, combining the OROF [(64), (66), (71)-(73), and
(74)-(78)] and the RTSKF [(80)-(93)] into a unified result, a
refined version of the previous proposed UTSFF [5] is given
as follows:

Ziopk + Vidy
Py + VkPIj\lec/

Zklk =
z _
Pk|lc =

where zj; is the main functional estimate given by
s _ = KZ(72 — Dotk — Ch 3
Zilk = Zrjk—1 + K7 (U5 kYK % Zh|k—1)

Zk|k—1» P,f‘k_l, K¢, and P,f‘k are given by (82), (84), (85),
and (86), respectively, Jk‘ & is the complementary functional
estimate given by

Ay = (I = KiLSk)dye—1 + K (G — Dij, — CrZijr—1)
- - - - +
K = PluSint, Py = ((Plg\k—l)+ + 51291215/@)
Vi and S}, are given as follows:

Vi =
Sk =

[ —KiNk (I - KZCy)Uy |
[ N CrUy |
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TABLE I
PERFORMANCES OF THE OROF, OUFF, TSFF!, DUFF, AND RTSKF

[ Case | rmse [ OROF | OUFF | TSFF' | DUFF [ RTSKF ]

1 x3 1.3359 | 1.4753 | 7.1880 | 5.7086 | 1.4792
z* 0.8349 | 0.9607 | 1.0233 | 0.9611 | 0.9607
2 x3 NA 1.6858 | 4.5831 | 4.8125 | 1.6853
z* NA 0.9276 | 1.0347 | 0.9436 | 0.9269
3 a3 NA 5.0166 | 4.5831 | 4.6075 | 5.0170
z% NA 1.0320 | 1.0347 | 1.0316 | 1.0320
4 a3 NA NA 7.2644 | 7.2644 | 7.2644
z? NA NA 1.1505 | 1.1505 | 1.1505

and with the following computing structure:
O = (Ehbkarkaﬂk—lapg_l)

(Nk,UkaJklk—laPlﬁk—1>'

Remark 6: The OROF [(64), (66), (71)-(73), and (74)-(78)]
can be reformulated as the above refined UTSFF by using
the following computing structure:

(szk,Fk,quﬂi,l,O)
(¢7 Klzvgli - dk\k’—la —P;ﬁk,l) .

VII. AN ILLUSTRATIVE EXAMPLE

To illustrate the usefulness of the new proposed RTSKEF, in
this section, we shall evaluate the filtering performance of the
refined UTSFF presented in Section VI with the following
RTSKF computing structure:

Ek

Oy

Zk

O = (Jik,f,o,ak,l,Pg,l) By = (Dk,ﬁk,ho,o) . (94)

We considered all the four simulation examples in [5], and
list the root-mean-square-errors (rmse) in the state estimates
of the OROF, the OUFF, and the TSFF! in [5], the DUFF
in [19], and the UTSFF (RTSKF), i.e., (94), in Table 1.

From Table I, we obtain the following results: 1) the
RTSKF and the OUFF have similar filtering performances in
the first three simulation cases, 2) the filtering performances
of the RTSKF and the OUFF are much better than those of
the TSFF' and the DUFF in the first two simulation cases,
and 3) the OUFF is not available for the last case since
(62) does not hold, while the RTSKF has the same filtering
performance as those of the TSFF! and the DUFF. Based on
the above results, we may conclude that the UTSFF with the
RTSKF computing structure is the most preferable functional
filter in the view point of filtering performance.

VIII. CONCLUSION

In this paper, the new RTSKF, which can be seen as a
unified extension of the previously proposed one, is presented
as a general filter structure to derive optimal unbiased
minimum-variance filters for systems with unknown inputs.
The equivalence of the RTSKF and the existing literature
results is also addressed. The global optimality analysis
of the unknown input and system state estimators of the
RTSKEF reveals that the global optimal LMVU joint input

and state estimator can be obtained assuming that the direct
feedthrough matrix G, is of full column rank. Through the
new proposed RTSKF, a refined version of the previously
proposed UTSFF is also proposed. The filtering superiority
of this refined UTSFF than the original one is further
verified by a simulation example. This research shows that
the RTSKF serves as a unified and refined filter structure
for solving general unknown input filtering problems and
unbiased minimum-variance functional filtering problems.
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