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Abstract— This paper extends previous work on robust two-
stage Kalman filter (RTSKF) for systems with unknown inputs
affecting both the system state and the output. By making use
of an augmented known input model, an augmented unknown
input model, an unknown input error dynamics model, and
the previously proposed RTSKF, a unified extension of the
RTSKF is further proposed to enhance the unknown input
filtering performance. Through the global optimality analysis
technique, the conditions under which the unknown input filter
and the system state estimator of the RTSKF can both achieve
the globally optimal filtering performances are provided. An
application of this new RTSKF to functional filtering problem
is addressed.

I. INTRODUCTION

Unknown inputs filtering (UIF) has played a significant

role in many applications, e.g., bias compensation [1], [2],

geophysical and environmental applications [3], fault de-

tection and isolation problems [4], and functional filtering

[5]. Except for the first above-mentioned application, the

UIF problem is often solved by assuming that no prior

information about the unknown input is available, which is

the main concern of this paper.

A general approach to solve the state estimation for

unknown inputs that have arbitrary statistics is to apply

unknown inputs decoupled state estimation, in which four

major approaches have been used in the literature: the first is

unbiased minimum-variance estimation (UMVE) [3], [4], [6],

[7], [8], [9], the second is the equivalent system description

(ESD) method [10], [11], the third is designed based on state

estimation techniques for descriptor systems [12], and the

last is joint input and state estimation (JISE) [13], [14], [15],

[16]. For the description of the above approaches and papers,

see [17] for further information.

In this paper, we continue the previous research [13],

[16], [17] and further consider a unified extension of the

previously proposed RTSKF [13] to solve general unknown

input filtering problems that the unknown input may also

affect the output. It is shown that using an augmented

known input model, an augmented unknown input model,

an unknown input error dynamics model, and the RTSKF, a

unified extension of the RTSKF is proposed to enhance the

unknown input filtering performance. The issue of global

optimality concerning the unknown input and system state
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estimators of this RTSKF is also explored. Through this new

RTSKF, a refined version of the previously proposed unified

two-stage functional filter (UTSFF) [5] is further proposed

to enhance the functional filtering performance.

II. STATEMENT OF THE PROBLEM

Consider the discrete-time stochastic linear time-varying

system with unknown inputs in the form

xk+1 = Akxk + Bkuk + Fkdk + wk (1)

yk = Hkxk + Gkdk + vk (2)

where xk ∈ Rn is the system state, uk ∈ Rm is the known

input, dk ∈ Rq is the unknown input, and yk ∈ Rp is the

output. wk and vk are uncorrelated white noises sequences

of zero-mean and covariance matrices Qk ≥ 0 and Rk > 0,

respectively. The initial state x0 is with unbiased mean x̂0

and covariance matrix P x
0 and is independent of wk and vk.

The problem of interest in this paper is to design an

optimal state estimator of xk, denoted by xk|k, such that

tr(P x
k|k) = tr(E[eke′k]) is minimized under the unbiasedness

condition E[ek] = 0, where ek = xk − xk|k and ′ denotes

transpose. The filter considered in this paper is given as the

following RTSKF filter:

xk|k = x̄k|k + Vkdk|k
P x

k|k = P x̄
k|k + VkP d

k|kV ′
k

where x̄k|k, dk|k, P x̄
k|k, P d

k|k, and Vk are to be determined;

this extends the original filter [13] to more general systems

with direct feedthrough of the unknown input to the output.
The main aims of this paper are 1) to derive a unified

extension of the RTSKF in [13] to solve the more general

unknown input filtering problem, 2) to explore the optimality

issue of the obtained new RTSKF, and 3) to enhance the

filtering performance of the two-stage functional filtering

problem [5] by using the proposed RTSKF.

III. A UNIFIED EXTENSION OF THE RTSKF

First, we give an optimal estimate of the unknown input

as follows (see [16] for details):

d̂k = Mk(yk − Hkx̄k|k−1) (3)

P d
k = MkCkM ′

k (4)

where

Mk =
[

Φk 0q

]
(S′

kC−1
k Sk)+S′

kC−1
k (5)

Sk =
[

Gk HkF̃k−1

]
, F̃k = Fk(I − Φk) (6)

Ck = HkP x̄
k|k−1H

′
k + Rk, Φk = G+

k Gk (7)
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in which M+ is the Moore-Penrose pseudo-inverse of M
and x̄k|k−1 and P x̄

k|k−1 will be defined later. With the above

optimal unknown input estimator, we augment the known

input uk as follows:

uk → ūk =
[

u′
k d̂′k

]′
. (8)

Thus, the system model (1) can be represented as follows:

xk+1 = Akxk + B̄kūk + Fkd̃k + wk (9)

where B̄k =
[

Bk Fk

]
and d̃k = dk − d̂k.

Second, we augment the unknown input dk as follows:

dk → da
k =

[
d′k d̃′

k

]′
. (10)

Thus, the system model (9) and (2) can be represented,

respectively, as follows:

xk+1 = Akxk + B̄kūk + F a
k da

k + wk (11)

yk = Hkxk + Ḡkda
k + vk (12)

where F a
k =

[
0 Fk

]
and Ḡk =

[
Gk 0

]
.

Third, recall from [16] that the expectation of the error

dynamics of the unknown input filter d̂k is given as follows:

E[d̃k] = (I − Φk)dk. (13)

Hence, using (6), (10), (13), and the following notation:

d̄k =
[

d′
k d′k

]′
(14)

(11) and (12) can be represented alternatively as follows:

xk+1 = Akxk + B̄kūk + F̄kd̄k + wk (15)

yk = Hkxk + Ḡkd̄k + vk (16)

where F̄k =
[

0n×q F̃k

]
.

Finally, considering that the unknown input also enters into

the measurement equation, and then applying the RTSKF

[13] to the system (15)-(16), we obtain

xk|k = x̄k|k + Vkdk|k (17)

P x
k|k = P x̄

k|k + VkP d
k|kV ′

k (18)

where x̄k|k is given by

x̄k|k−1 = Ak−1xk−1|k−1 + Bk−1uk−1 + Fk−1d̂k−1(19)

x̄k|k = x̄k|k−1 + K x̄
k (yk − Hkx̄k|k−1) (20)

P x̄
k|k−1 = Ak−1P

x
k−1|k−1A

′
k−1 + Q̄k−1 (21)

K x̄
k = P x̄

k|k−1H
′
kC−1

k (22)

P x̄
k|k = (I − K x̄

k Hk)P x̄
k|k−1 (23)

Q̄k = Qk + FkP dx
k A′

k + AkP xd
k F ′

k + FkP d
k F ′

k (24)

P xd
k = (P dx

k )′ = VkP d
k|k

[
Φk 0

]′
(25)

dk|k is given by

dk|k = Kd
k(yk − Hkx̄k|k−1) (26)

Kd
k = P d

k|kS′
kC−1

k (27)

P d
k|k = (S′

kC−1
k Sk)+ (28)

and

Vk =
[ −K x̄

k Gk (I − K x̄
k Hk)F̃k−1

]
(29)

with the following initial conditions:

x̄0|−1 = x̂0, P x̄
0|−1 = P x

0 . (30)

The optimal unknown input filter d̂k (3)-(4) can be expressed

alternatively in the form of the filter dk|k as follows:

d̂k =
[

Φk 0
]
dk|k (31)

P d
k =

[
Φk 0

]
P d

k|k
[

Φk 0
]′

. (32)

Remark 1: Using (17)-(18), (25), and (31)-(32), Eqs. (19)

and (21) can be further simplified, respectively, as follows:

x̄k|k−1 = Ak−1x̄k−1|k−1 + Bk−1uk−1

+Ŭk−1dk−1|k−1 (33)

P x̄
k|k−1 = Ak−1P

x̄
k−1|k−1A

′
k−1 + Ŭk−1P

d
k−1|k−1Ŭ

′
k−1

+Qk−1 (34)

where

Ŭk = AkVk + F̆k, F̆k = Fk

[
Φk 0

]
.

Remark 2: For the case that 0 < rank[Gk] ≤ q, one can

verify that the above RTSKF will be equivalent to the filter

presented in [16] as well as the ARTSKF given in [17].

Remark 3: For the special case that matrix Gk = 0, one

obtains

Φk = 0, F̆k = 0, F̃k = Fk, Sk =
[

0 HkFk−1

]
,

Ŭk = AkVk, Vk =
[

0 (I − K x̄
k Hk)Fk−1

]
which renders (33) and (34) to be simplified as follows:

x̄k|k−1 = Ak−1xk−1|k−1 + Bk−1uk−1

P x̄
k|k−1 = Ak−1P

x
k−1|k−1A

′
k−1 + Qk−1

then one can easily verify that this specific RTSKF is

equivalent to the original one presented in [13]. Note that

in this special case, the optimal unknown input filter d̂k−1

can be obtained in the form of the filter dk|k as follows [14]:

d̂k−1 =
[

0 Iq

]
dk|k

P d
k−1 =

[
0 Iq

]
P d

k|k
[

0 Iq

]′
assuming that rank[HkFk−1] = rank[Fk−1] = q.

Remark 4: For the special case that matrix Gk is of full

column rank, i.e., rank[Gk] = q, one obtains

Φk = I, F̆k =
[

Fk 0
]
, F̃k = 0,

Sk =
[

Gk 0
]
, Vk =

[ −K x̄
k Gk 0

]
.

Then, one can easily verify that this specific RTSKF is

equivalent to the filter presented in [15].

Remark 5: The above RTSKF can be tailored in order to

be applicable for the following system:

xk+1 = Akxk + Bkuk + F 1
k d1

k + F 2
k d2

k + wk (35)

yk = Hkxk + G1
kd1

k + vk (36)
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where the matrix G1
k is of full column rank. This is achieved

by using the similar approach in deriving (15)-(16) to obtain

an alternative to the system (35)-(36) as follows:

xk+1 = Akxk + B̄kūk + F̄kd̄k + wk (37)

yk = Hkxk + Ḡkd̄k + vk (38)

where B̄k =
[

Bk F 1
k

]
, F̄k =

[
0 F 2

k

]
, Ḡk =[

G1
k 0

]
, ūk =

[
u′

k (d̂1
k)′

]′
, d̄k =

[
(d1

k)′ (d2
k)′

]′
.

And then, applying the RTSKF (17)-(32) to the system (37)-

(38), we obtain the dedicate result. Note that in this specific

RTSKF, the system parameters Φk, Sk, and Vk are given as

Φk = I, Sk =
[

G1
k HkF 2

k−1

]
Vk =

[ −K x̄
k G1

k (I − K x̄
k Hk)F 2

k−1

]
.

IV. ON THE GLOBAL OPTIMALITY OF THE

UNKNOWN INPUT ESTIMATOR

In this section, we show the global optimality of the

unknown input estimator of the new proposed RTSKF by

verifying that it satisfies the following requirements:

E[dk − d̂k] = 0, min E[||dk − d̂k||2]
within the general framework for obtaining the linear

minimum-variance unbiased (LMVU) estimate of dk as

addressed in [18]. The derivation basically follows those of

[18] and [14].

First, we note that the most general estimate of dk can be

written in the form (see [14] for details):

d̂k = Mkỹk +
k−1∑
i=0

Diỹi + E0x̂0, (39)

where ỹk = yk − Hkx̄k|k−1. A necessary and sufficient

condition for (39) to be an unbiased estimator of dk is given

in the following lemma.

Lemma 1: The estimator (39) is unbiased if and only if

E0 = 0 and Mk and Di (0 ≤ i ≤ k−1) satisfy the following

conditions:

Mk

[
Gk HkF̃k−1

]
=

[
I −Dk−1Gk−1

]
,

Di+1Hi+1F̃i = −DiGi (0 ≤ i ≤ k − 2). (40)

Proof: Using (1), (2), and (19), we obtain

ỹk = Hk(Ak−1ek−1 + wk−1 + Fk−1d̃k−1) + vk

+Gkdk. (41)

Using (6), (13), and the facts: E[ei] = 0, E[wi] = 0, and

E[vi+1] = 0 for i < k, and substituting (41) into (39), we

obtain

E[d̂k] = MkGkdk + (MkHkF̃k−1 + Dk−1Gk−1)dk−1

+
k−2∑
i=0

(Di+1Hi+1F̃i + DiGi)di + E0x̂0

from which we obtain that the estimator (39) is unbiased if

and only if E0 = 0 and Mk and Di satisfy (40).

Next, to proceed to show the conditions under which

the unbiased estimator (39) can achieve the minimum mean

square error (MMSE), we have the following lemma.

Lemma 2: For every i < k and every Di satisfying DiSi =
0, E[ỹk(Diỹi)′] = 0 and E[dk(Diỹi)′] = 0.

Proof: Defining notations ȳi and ēi as follows:

ȳi = Hiēi + vi, ēi = Ai−1ei−1 + wi−1 + Fi−1d̃i−1 (42)

we have

E[ēiē
′
i] = P x̄

i|i−1, E[ēiv
′
i] = 0. (43)

Using (1), (17), (20), (26), (29), and (42), we obtain the error

dynamics ei as follows:

ei = (I − LiHi)ēi − Livi (44)

where Li = K x̄
i + ViK

d
i . Using (44) in (42) yields

ēi+1 = Ai(I − LiHi)ēi − AiLivi + wi + Fid̃i (45)

from which and using (43), we obtain

E[ēiē
′
j ] = Ai−1(I − Li−1Hi−1)E[ēi−1ē

′
j ] (46)

E[ēiv
′
j ] = Ai−1(I − Li−1Hi−1)E[ēi−1v

′
j ]

−Ai−1Li−1E[vi−1v
′
j ] (47)

where i > j. Then, we note that

E[dk(Diỹi)′] = dkd′i(DiGi)′ = 0
E[ỹk(Diỹi)′] = HkE[ēkȳ′

i]D
′
i. (48)

Using (7), (22), (27), (42), (43), and (45)-(47), we obtain

E[ēkȳ′
i] = Ā(k − 1, i)(E[ēi+1ē

′
i]H

′
i + E[ēi+1v

′
i])

= Ā(k − 1, i)(ĀiP
x̄
i|i−1H

′
i − AiLiRi)

= Ā(k − 1, i)Ai(P x̄
i|i−1H

′
i − K x̄

i Ci − ViK
d
i Ci)

= −Ā(k − 1, i)AiViP
d
i|iS

′
i (49)

where Āi = Ai(I − LiHi) and

Ā(m,n) = Ām × · · · × Ān+1, m > n, Ā(m,m) = I.

Using (49) in (48) yields that E[ỹk(Diỹi)′] = 0 if all Di(i <
k) satisfying DiSi = 0.

Finally, we have the following theorem.

Theorem 1: Let rank[Gk] = q and d̂k given by (39) be

unbiased, then the mean square error σ2
k = E[‖dk − d̂k‖2

2]
achieves a minimum when D0 = D1 = · · · = Dk−1 = 0.

Proof: Using F̃k = 0, Lemmas 1 and 2, and the proof of

[14,Theorem 10], the theorem is proved.

V. ON THE GLOBAL OPTIMALITY OF THE STATE

ESTIMATOR

In this section, we show the global optimality of the state

estimator of the new proposed RTSKF by verifying that it

satisfies the following requirements:

E[xk − xk|k] = 0, min E[||xk − xk|k||2]
within the general framework for obtaining the LMVU

estimate of xk as addressed in [18]. The derivation basically

follows that of [18].
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As illustrated in [18], the most general estimate of xk can

be written in the form

xk|k = x̄k|k−1 + Lkỹk +
k−1∑
i=0

Ciỹi. (50)

A necessary and sufficient condition for (50) to be an

unbiased estimator of xk is given in the following lemma.

Lemma 3: The estimator (50) is unbiased if and only if

Lk and Ci(0 ≤ i ≤ k − 1) satisfy the following conditions:

LkGk = 0, (I − LkHk)F̃k−1 = Ck−1Gk−1,

Ci+1Hi+1F̃i = −CiGi (0 ≤ i ≤ k − 2). (51)

Proof: Using the fact that E[ei] = 0 for i < k and Eqs.

(6), (13), and (41), we obtain

E[ỹk] = HkF̃k−1dk−1 + Gkdk. (52)

Using (1), (6), (19), (50), and (52), we obtain

E[ek] = Ak−1E[ek−1] − LkGkdk + [(I − LkHk)F̃k−1

−Ck−1Gk−1]dk−1 −
k−2∑
i=0

(Ci+1Hi+1F̃i + CiGi)di

from which it can be checked that the estimator (50) is

unbiased if and only if Lk and Ci(0 ≤ i ≤ k − 1) satisfy

the conditions in (51).

Next, to proceed to show the conditions under which the

unbiased estimator (50) can achieve the MMSE, we have the

following lemma.

Lemma 4: For every i < k and every Ci satisfying CiSi =
0, E[ēk(Ciỹi)′] = 0.

Proof: Using (41), (42), and (49), we obtain

E[ēk(Ciỹi)′] = E[ēk(Ciȳi + CiGidi)′]
= −Ā(k − 1, i)AiViP

d
i|iS

′
iC

′
i + E[ēkd′i]G

′
iC

′
i

which equals to zero if all Ci(i < k) satisfying CiSi = 0.

Now, we are in place to show some sufficient conditions

under which the unbiased estimator (50) can achieve the

MMSE.

Theorem 2: If the gain matrices Ci of the unbiased

estimator (50) are further constrained as follows:

CiGi = 0, 0 ≤ i ≤ k − 1 (53)

then the mean square error σ̄2
k = E[‖xk − xk|k‖2

2] achieves

a minimum when C0 = C1 = · · · = Ck−1 = 0.

Proof: Using (6) and (53) in (51) yields

LkGk = 0, (I − LkHk)F̃k−1 = 0, CiSi = 0. (54)

Then, we note that the error dynamics ek is given as follows:

ek = (I − LkHk)ēk − Lkvk −
k−1∑
i=0

Ciỹi. (55)

Thus, using (54), (55), and Lemma 4 and following the same

approach given in the proof of [18,Theorem 3], the theorem

is proved.

Theorem 3: For rank[Gi] = q (0 ≤ i ≤ k − 1) and xk|k
given by (50) with conditions in (51), the mean square error

σ̄2
k = E[‖xk − xk|k‖2

2] achieves a minimum when C0 =
C1 = · · · = Ck−1 = 0.

Proof: For rank[Gi] = q, one has F̃i = 0. Then, using

(51), one obtains CiGi = 0. Thus, the theorem follows

immediately from Theorem 2.

VI. APPLICATION TO FUNCTIONAL FILTERING

The functional filtering problem considered in [5] was

revisited. Consider the following discrete-time linear system:

xk+1 = Akxk + Bkuk + wk (56)

yk = Ckxk + ηk (57)

zk = Lkxk (58)

where xk ∈ Rn is the system state vector, uk ∈ Rp is the

input vector, yk ∈ Rm is the measurement vector, zk ∈ Rr

is the vector to be estimated, and r ≤ n. The functional

filtering problem is to estimate zk from the measurements

{yt}, where 0 ≤ t ≤ k. A unified filter structure, named as

the UTSFF, was proposed in [5] to solve the aforementioned

functional filtering problem. The UTSFF serves as a unified

filter structure to represent the OROF, SOROF, RTSKF, and

TSFF (see [5] for details).

The basic idea of obtaining the UTSFF for the system

(56)-(58) is first to transfer (56) and (57) into the following

dk+1 = F̃kdk + Ãkzk + B̃kuk + L̃k+1wk (59)

zk+1 = F̄kdk + Ākzk + B̄kuk + Lk+1wk (60)

yk = CkHkdk + CkGkzk + ηk (61)

where

F̃k = L̃k+1AkHk, Ãk = L̃k+1AkGk, B̃k = L̃k+1Bk

F̄k = Lk+1AkHk, Āk = Lk+1AkGk, B̄k = Lk+1Bk

via the following generalized state transformation:[
zk

dk

]
=

[
Lk

L̃k

]
xk

where dk is an auxiliary state and L̃k is a design parameter

such that

rank
[

L′
k L̃′

k

]′
= n

and through the following system state reconstruction:

xk = Gkzk + Hkdk,
[

Gk Hk

]
=

[
Lk

L̃k

]+

.

Then, the derivation of the aforementioned filters depends

mainly on the existence of the following rank condition:

rank

[
Lk

Ck

]
= n. (62)
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A. Rank Condition (62) Holds

Assuming that the rank condition (62) holds, and

one can find suitable matrices Γk and D̂k, where

rank
[

Γ′
k D̂′

k

]′
= dim(yk), such that[

ȳ1
k

ȳ2
k

]
=

[
I 0

D̄k C̄k

] [
dk

zk

]
+

[
Γk

D̂k

]
ηk (63)

where ȳ1
k = Γkyk, ȳ2

k = D̂kyk, and

D̄k = D̂kCkHk, C̄k = D̂kCkGk, Γkηk = 0

then, applying the GTSKF [20] to the system [(59), (60), and

(63)], one obtains the following OROF:

zk|k−1 = Āk−1zk−1|k−1 + B̄k−1uk−1 + F̄k−1ȳ
1
k−1(64)

zk|k = zk|k−1 + Kz
k(yz

k − Sz
kzk|k−1) (65)

P z
k|k−1 = Āk−1P

z
k−1|k−1Ā

′
k−1 + LkQk−1L

′
k (66)

Kz
k = P z

k|k−1(S
z
k)′

(
Sz

kP z
k|k−1(S

z
k)′ + Rz

k

)+

(67)

P z
k|k = (I − Kz

kSz
k)P z

k|k−1 (68)

where

yz
k =

[
ȳ1

k − dk|k−1

ȳ2
k − D̄kȳ1

k

]
, Sz

k =
[

K̃z
k

C̄k

]
(69)

Rz
k =

[
P d

k|k−1 − K̃z
kP z

k|k−1(K̃
z
k)′ 0

0 D̂kRkD̂′
k

]
(70)

in which

dk|k−1 = Ãk−1zk−1|k−1 + F̃k−1ȳ
1
k−1 + B̃k−1uk−1 (71)

P d
k|k−1 = Ãk−1P

z
k−1|k−1Ã

′
k−1 + L̃kQk−1L̃

′
k (72)

K̃z
k = (Āk−1P

z
k−1|k−1Ã

′
k−1 + LkQk−1L̃

′
k)(P d

k|k−1)
+. (73)

Note that the above OROF (64)-(73) is an alternative to

that given in [5,(50)-(59)]. Moreover, using dk|k−1 = 0,

P d
k|k−1 = 0, D̄k = 0, and Γkηk �= 0 in the above OROF

and replacing (66) with the following

P z
k|k−1 = Āk−1P

z
k−1|k−1Ā

′
k−1 + LkQk−1L

′
k

+F̄k−1Γk−1Rk−1Γ′
k−1F̄

′
k−1

one obtains the SOROF in [5,(62)-(65)].

In the following, we show that (65) and (68) can be fur-

ther simplified by using the two-stage measurement update

equations, i.e., [20,(73)-(80)], respectively, as follows:

zk|k = z̃k|k + K̄z
k(ȳ2

k − D̄kȳ1
k − C̄kz̃k|k) (74)

P z
k|k = (I − K̄z

k C̄k)P̃ z
k|k (75)

where

z̃k|k = zk|k−1 + K̃z
k(ȳ1

k − dk|k−1) (76)

K̄z
k = P̃ z

k|kC̄ ′
k(C̄kP̃ z

k|kC̄ ′
k + D̂kRkD̂′

k)−1 (77)

P̃ z
k|k = P z

k|k−1 − K̃z
kP d

k|k−1(K̃
z
k)′. (78)

B. Rank Condition (62) Does Not Hold

Assuming that the rank condition (62) does not hold, then

the first equation of (63) is discarded by using Γk = 0 and

D̂k = Im. Thus, (63) reduces to

ȳ2
k = C̄kzk + D̄kdk + D̂kηk. (79)

Applying the new proposed RTSKF (17)-(32) to the system

[(60) and (79)], one obtains

zk|k = z̄k|k + Vkdk|k (80)

P z
k|k = P z̄

k|k + VkP d
k|kV ′

k (81)

where z̄k|k is given by

z̄k|k−1 = Āk−1zk−1|k−1 + B̄k−1uk−1 + ūk−1 (82)

z̄k|k = z̄k|k−1 + K z̄
k(ȳ2

k − C̄kz̄k|k−1) (83)

P z̄
k|k−1 = Āk−1P

z
k−1|k−1Ā

′
k−1 + LkQk−1L

′
k + P ū

k−1 (84)

K z̄
k = P z̄

k|k−1C̄
′
kΩ−1

k , Ωk = C̄kP z̄
k|k−1C̄

′
k + D̂kRkD̂′

k (85)

P z̄
k|k = (I − K z̄

k C̄k)P z̄
k|k−1 (86)

ūk = F̆kdk|k, F̆k = F̄k

[
Φk 0

]
, Φk = D̄+

k D̄k (87)

P ū
k = F̆kP d

k|kV ′
kĀ′

k + ĀkVkP d
k|kF̆ ′

k + F̆kP d
k|kF̆ ′

k (88)

dk|k is given by

dk|k = Kd
k(ȳ2

k − C̄kz̄k|k−1) (89)

Kd
k = P d

k|kS′
kΩ−1

k (90)

P d
k|k = (S′

kΩ−1
k Sk)+ (91)

and

Vk =
[ −K z̄

kD̄k (I − K z̄
k C̄k)F̃k−1

]
(92)

Sk =
[

D̄k C̄kF̃k−1

]
, F̃k = F̄k(I − Φk). (93)

Finally, combining the OROF [(64), (66), (71)-(73), and

(74)-(78)] and the RTSKF [(80)-(93)] into a unified result, a

refined version of the previous proposed UTSFF [5] is given

as follows:

zk|k = z̄k|k + Vkd̄k|k
P z

k|k = P z̄
k|k + VkP d̄

k|kV ′
k

where z̄k|k is the main functional estimate given by

z̄k|k = z̄k|k−1 + K z̄
k(ȳ2

k − D̄kȳ1
k − C̄kz̄k|k−1)

z̄k|k−1, P z̄
k|k−1, K z̄

k , and P z̄
k|k are given by (82), (84), (85),

and (86), respectively, d̄k|k is the complementary functional

estimate given by

d̄k|k = (I − K d̄
kSk)d̄k|k−1 + K d̄

k(ȳ2
k − D̄kȳ1

k − C̄kz̄k|k−1)

K d̄
k = P d̄

k|kS′
kΩ−1

k , P d̄
k|k =

(
(P d̄

k|k−1)
+ + S′

kΩ−1
k Sk

)+

Vk and Sk are given as follows:

Vk =
[ −K z̄

kNk (I − K z̄
k C̄k)Uk

]
Sk =

[
Nk C̄kUk

]
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TABLE I

PERFORMANCES OF THE OROF, OUFF, TSFF1 , DUFF, AND RTSKF

Case rmse OROF OUFF TSFF1 DUFF RTSKF

1 x3 1.3359 1.4753 7.1880 5.7086 1.4792
x4 0.8349 0.9607 1.0233 0.9611 0.9607

2 x3 NA 1.6858 4.5831 4.8125 1.6853
x4 NA 0.9276 1.0347 0.9436 0.9269

3 x3 NA 5.0166 4.5831 4.6075 5.0170
x4 NA 1.0320 1.0347 1.0316 1.0320

4 x3 NA NA 7.2644 7.2644 7.2644
x4 NA NA 1.1505 1.1505 1.1505

and with the following computing structure:

Θk =
(
L̃k, D̂k, Γk, ūk−1, P

ū
k−1

)
Ξk =

(
Nk, Uk, d̄k|k−1, P

d̄
k|k−1

)
.

Remark 6: The OROF [(64), (66), (71)-(73), and (74)-(78)]

can be reformulated as the above refined UTSFF by using

the following computing structure:

Θk =
(
L̃k, D̂k, Γk, F̄k−1ȳ

1
k−1, 0

)
Ξk =

(
φ, K̃z

k , ȳ1
k − dk|k−1,−P d

k|k−1

)
.

VII. AN ILLUSTRATIVE EXAMPLE

To illustrate the usefulness of the new proposed RTSKF, in

this section, we shall evaluate the filtering performance of the

refined UTSFF presented in Section VI with the following

RTSKF computing structure:

Θk =
(
L̃k, I, 0, ūk−1, P

ū
k−1

)
, Ξk =

(
D̄k, F̃k−1, 0, 0

)
. (94)

We considered all the four simulation examples in [5], and

list the root-mean-square-errors (rmse) in the state estimates

of the OROF, the OUFF, and the TSFF1 in [5], the DUFF

in [19], and the UTSFF (RTSKF), i.e., (94), in Table I.

From Table I, we obtain the following results: 1) the

RTSKF and the OUFF have similar filtering performances in

the first three simulation cases, 2) the filtering performances

of the RTSKF and the OUFF are much better than those of

the TSFF1 and the DUFF in the first two simulation cases,

and 3) the OUFF is not available for the last case since

(62) does not hold, while the RTSKF has the same filtering

performance as those of the TSFF1 and the DUFF. Based on

the above results, we may conclude that the UTSFF with the

RTSKF computing structure is the most preferable functional

filter in the view point of filtering performance.

VIII. CONCLUSION

In this paper, the new RTSKF, which can be seen as a

unified extension of the previously proposed one, is presented

as a general filter structure to derive optimal unbiased

minimum-variance filters for systems with unknown inputs.

The equivalence of the RTSKF and the existing literature

results is also addressed. The global optimality analysis

of the unknown input and system state estimators of the

RTSKF reveals that the global optimal LMVU joint input

and state estimator can be obtained assuming that the direct

feedthrough matrix Gk is of full column rank. Through the

new proposed RTSKF, a refined version of the previously

proposed UTSFF is also proposed. The filtering superiority

of this refined UTSFF than the original one is further

verified by a simulation example. This research shows that

the RTSKF serves as a unified and refined filter structure

for solving general unknown input filtering problems and

unbiased minimum-variance functional filtering problems.
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