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Transverse Linearization for Mechanical Systems with Several Passive
Degrees of Freedom with Applications to Orbital Stabilization

Anton S. Shiriaev

Abstract— A class of mechanical systems with many unactu-
ated degrees of freedom is studied. An analytical method for
computing coefficients of a linear controlled system, solutions of
which approximate dynamics of transverse part of coordinates
of an underactuated mechanical system along a feasible motion,
is proposed. The procedure is constructive and is based on a
particular choice of coordinates in a vicinity of the motion. It
allows explicit introduction of the so-called moving Poincaré
section associated with a finite-time or periodic motion. It is
shown that the coordinates admit analytical linearization of
transverse part of the system dynamics prior to any controller
design. If the motion is periodic, then these coordinates are used
for developing feedback controllers. Necessary and sufficient
conditions for exponential orbital stabilization of a cycle for
underactuated mechanical systems are derived. Two illustrative
examples are elaborated in details.

Index Terms— Moving Poincaré section; Periodic solutions;
Orbital stability; Transverse linearization; Underactuated me-
chanical systems; Virtual holonomic constraints; Spherical
pendulum; Synchronization of mechanical systems

I. INTRODUCTION

Underactuated mechanical systems are common for
robotics applications such as locomotion, grasping, juggling
etc. Motion planning and stabilization tasks for these appli-
cations are often solved ad hoc. If a desired motion is found,
it is the common case that nonlinearities in system dynamics
cannot be removed by a feedback action, even in a vicinity
of the target motion. To illustrate the challenges it is worth
noting the series of investigations [15], [12], [4], devoted
only to the particular case—controlled mechanical systems
with one passive link, i.e. of underactuation degree one.

This work is focused on orbital stability and stabilization
of motions for mechanical systems that have two (three,
four, ...) less independent control input than the number of
degrees of freedom. It turns out that the existing approaches
and analytical arguments developed for system with one
passive link are difficult to use when the degree of under-
actuation is two or higher. The main contribution here is a
constructive solution. It is based on simple but important
observation that for any motion of controlled mechanical
system there is a generic choice of transverse coordinates.
They are introduced through a constructive procedure and
can be analytically linearized for the case when level of
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underactuation is arbitrary. This result is used further for
verifying orbital exponential stability of a periodic motion of
the closed-loop system and for synthesizing stabilizing con-
trollers. Two illustrative examples are studied: stabilization
of oscillations of a spherical pendulum on a puck around
its upright (unstable) equilibrium and synchronization of
oscillations of 3-cart-pendulum systems. The first example
has 2 passive degrees of freedom and the second one has 3.

A. Preliminaries: Transverse Coordinates

As known, the classical tool—the linearization of full-
state dynamics of an autonomous system along its non-
trivial solution—might not be appropriate for analyzing
various local properties'. Instead, only the part of dynamics
responsible for capturing local behavior in a vicinity of the
solution should be considered. The geometrical interpretation
of this observation is that one needs to find new variables
such that the system’s states are decomposed into:

1) A scalar variable representing position along a trajec-
tory of the target solution. Local properties of system
dynamics in a vicinity of the solution are independent
on this variable; so that it can be safely disregarded.

2) The remaining coordinates representing the dynamics
transverse to a trajectory of the solution. These coor-
dinates define a moving Poincaré section [7].

A diffeomorphism to a new set of coordinates with this
form always exists in a vicinity of any solution defined on
a finite-time interval®, but finding such coordinates in an
explicit form is typically difficult. However, it is important to
notice that for analysis and designing of a feedback controller
modifying the system dynamics near the solution, linearizing
the transverse dynamics (i.e. computing a transverse lin-
earization) about the solution is often sufficient, and explicit
formulae for the full change of variables are not required.
Consider the class of controlled Euler-Lagrange systems

d (0C(¢,)\  OL(g.d)
dt( aff)— a(f]q=B(q)u (1)

Here ¢ € R™, ¢ € R™ are generalized coordinates and ve-
locities, u € R™ are control inputs, £(g,q) = %(jTM(q)Q—
V(q) is the Lagrangian, M (q) is a matrix of inertia, V(q)
is a potential energy, B(q) is a matrix function of full-rank.

IFor instance, a linearization around a periodic solution cannot be
asymptotically stable [1], [16], [7].

2When the solution is a cycle, the appropriate statements can be found
in [14], [5], [9], [6]. Similar arguments can be applied for any non-trivial
and non-periodic solution defined on a finite-time interval.
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Definition 1: Let ¢, (¢) for ¢t € [0,7] be a solution of the
n-degrees-of-freedom Euler-Lagrange system (1) driven by a
control signal u(t) € C* ([0, T]) with the initial conditions
at ¢,(0) = qo, ¢«(0) = qo, such that (|Q*(t)‘2 + |Q*(t)|2) >
0 for all ¢ € [0,7]. The orbit of the trajectory is

] 4= Q*(T)a q= q.*(T)v T E [OvT]} (2

and its tabular neighborhood, the set of all points on a
distance not bigger than some £ > 0, is

Oc(gqx) = {lg; 4] : [0+ (7); 4«

O, = {[Q§q

min i q
(i {l[g:d] —

Dl <ek 3

1) A family of (2n — 1)-dimensional C!-smooth surfaces
{S(t), t € [0,T]} is called a moving Poincaré section asso-
ciated with the solution ¢, (t), ¢t € [0,T], if

(a) Surfaces S(t) are locally disjoint, i.e. e > 0 :
S(Tl) N S(Tg) n Og(q*) =0, V7 #£1 € [O,T]

(b) Each of S(t) locally intersects the orbit only in one
point, i.e. Je > 0: S(7) N {[gx(t);4: ()], [t —7| <e} N
O:(¢x) = {lax(7); 4« (7)]} for each 7 € [0,T7.

(¢c) The surfaces S(t) are smoothly parametrized by
time, ie. 3f € CY(R",R™",R) St) N O(qe) =
{la:d) e R" x R™ : fo(q,q,t) = 0} N O(qs).

(d) The surfaces S(t) are transversal to ¢, (t).

2) Given a moving Poincaré section {S(t), t € [0,7]}
associated with the motion ¢, (¢), the state coordinates [g; ¢]
of (1) can be (locally) changed into [¢;x,] where the
scalar variable ¢ (t) parameterizes a position along the curve
(trajectory) in R™ x R™ defined by ¢, (t) and the (2n —1)-
dimensional vector z, (¢) defines location on the surface
S(t). x1 is known as a vector of transverse coordinates.

3) The dynamics of (1) rewritten in [t); ) ]-coordinates
and linearized along the solution ¢, (t), t € [0,T] give rise
to the linear time-varying control system of dimension 2n
defined on ¢ € [0,7]. The (2n — 1)-dimensional subsystem
that corresponds to linearization of the dynamics of the trans-
verse coordinates x| is called a transverse linearization®. m

B. Preliminaries: Re-parametrization of a Motion

If one wants to describe a solution of the system (1), there
is a number of possible formats. The most immediate is a
time-evolution of the generalized coordinates*:

q1 = Q1*(t)7 ceey Gn = Qn*(t)a t e [0, T] €]

However, there are descriptions without an explicit reference
to time, such as the orbit (2). One can introduce relations

q1 = ¢1(9*)7 R dn = ¢n(9*)7 9* € [957@8]7 (5)

valid on the same orbit, where 6, could be some parameter
such as the arc length’ along the orbit or, in many cases,
one of the coordinates, e.g. 6,(t) = g,(t) so that ¢,,(0,) =
0, . Identities, as in (5), are known as virtual holonomic

3The concept of transverse linearization was used for feedback control
of various systems, see e.g. [13], [2], [3], [8].

4Note that the other half of the states are derivatives of these functions.

SFor this case, we must assume that there are no sub-intervals of time
where [ (£)[2 + |4 (£)]2 = 0.

constraints [15] since they express relations among the
generalized coordinates ¢, ..., q,. For a feasible motion
the relations (5) can always be found. If the system is fully
actuated, the dynamics along the orbit of the motion is
controlled. However, for underactuated systems, it is not the
case, the dynamics are fixed.

Lemma 1: Consider the controlled mechanical system (1)
of n-degrees of freedom with m independent control inputs,
i.e. of underactuation (n —m). Let q = q.(t) be a motion
(4) of (1) in response to a control signal u = wu,(t), both
defined on the time interval t € [0,T]. Let 6 = 0,(t) be a
scalar parameter used in (5) to describe the motion qy(t).
Then 6,(t) is not any, but it is simultaneously a solution of
(n —m) second order differential equations®

a;i(0)8 + B;(0)6 +7i(0) =0, i=1,...,n—m. (6)

Lemma 2: Let 0 = 0(t) be a C?-smooth scalar function
defined on the time interval t € [0,T] and be at the same
time the solution of (6) with some i. The following statements
are true for any nontrivial subinterval [ty,t.] C [0,T]:

1) If a;(0(t)) =0 and B;(6(t)) =0, then 0(t) satisfies
a;(0(t)) =0, Bi(0(t) =0, %) =0 ()
2) If «;(0(t)) =0 bur 5;(0(t)) # 0 for any t € [tp,t.],

then 0(t) satisfies two identities:

a;(0(1) =0, 6*(t) +%(0(1)/B:(0(1) =0 (8)

)
3) If a(0(t)) # 0 for any t € [ty t } then 0(t) satisfies
the identity I( )(0( t),0(t),0(ty), 0(ty)) = 0 with

{_fzﬁ;(ﬁ))dT} 0 {jz ) }2
I(Z) :9'2_6 0(ty) ¢ éz(tb)—i—/e s (™ %
(8)
0(ty)
©))
The relations (5) together with (7)—(9) and/or their deriva-
tives can be used for describing the orbit of the target motion
q = ¢, (t). Namely, introduce the quantities

yi=q —¢1(0), ..., Yn — ¢n(0)

where ¢1(-), ..., ¢,(-) are taken from (5) while 6 is one
of the new generalized coordinates for (1) to be found in a
vicinity of the motion. By definition, the variables (10) and
their time derivatives are zeros on (2). In the same way, for
each of the (n—m) equations (6) one can introduce at least
one function of ¢ and ¢ that becomes zero on the orbit (2).
Indeed, depending on conditions, one of 3 possible cases of
Lemma 2 takes place. If for the i-th equation of (6), the case
1) hold, then there are three functions

106) = as(6), 13 (6) = Bi(6), I19(6) =~(6) (11)

that are zeros on the orbit (2). If the conditions of the case
2) are valid, then the functions

I(0) = a;(8), I3)(0,0) = 62 + ~(8)/5(9)

6Some of these differential equations can be of lower order or even trivial.

=qn (10)

12)
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are zeros on the orbit. For the case 3), there is at least one
such function 1" (6) defined in (9).

So, for any non-trivial motion ¢ = ¢ (t), ¢ € [0,7]
of the controlled mechanical system (1) with the degree of
underactuation (n —m), there is a large family of functions

of the generalized coordinates and velocities including

7

) yna X1 " I(n ™)

X (n—m)

Yty -5 Yn, 1'117 (13)

that are candidates for transverse coordinates in a vicinity of
the part of the motion restricted to ¢ € [ty te] C [0,T7.

II. MAIN RESULTS

Here we proceed with one of possible choices for (2n —
1)-transverse coordinates from quantities (13) and show the
steps for computing transverse linearization of the dynamics
(1) based on these coordinates in a vicinity of the motion.

A. Changing Generalized Coordinates

Given a motion ¢ = ¢, (t) of (1) in the response to a C'* -
smooth control input u,(t) on [0,7] and given the scalar
functions ¢1(+), ..., ¢, () defined by the alternative repre-
sentation (5) of the motion, following [10], the quantities

can be seen as excessive generalized coordinates for the n-
DOF Euler-Lagrange system (1). Therefore, one of them can
be expressed as a function of the others. Suppose that in (3)

15)

0, y1=q — =qn—

y= 1, - s Yn—1)" and 6,

can be taken as new generalized coordinates for (1).
The dynamics (1) in the new generalized coordinates (15)
can be partially written in the following form

= R(0,0,y,9) + N(0,y)u

where N (6,y) and R(6, 0,y,y) are certain matrix functions.
Given any smooth function U(6,6,y,7) that coincides
with the nominal input w,(¢) on the orbit (2)

(16)

u () = U(0.(t),60.(1),0,0),  Vte[0,T], (17
the feedback transform
u=v+U(0,0,y,7), (18)
brings the y-dynamics (16) into the form
= F(0,0,y,9) + N(0,y)v (19)

By construction the vector-function F'(-) is zero on the orbit

P’(a*(w,é*(w,o,o) =0, 1)x1, VtE[0,T]. (20)

Eqn. (19) is only a part of the dynamics of (1) in the new
coordinates (15). It should be complemented by a 2"¢-order
equation w.r.t. the f-variable. One way to write it is to use
one of the equations (6), for which the coefficient a; (6, (¢))
is separated from zero on the orbit V¢. Assuming this is the
case for some 7, the dynamics of 6 can be rewritten as

;i ()8 + Bi6? + 7i(0) = 9:(0,6,0,y,9,5,0v) (1)

The right-hand side of this equation—the smooth function
gi(+)—is not any, but equals zero on the orbit. Therefore,
following the Hadamard’s lemma, it can be represented as

gi = 92(0,0.0,y,9)y+95"(0,0.0,5,9)i+ 9 (0.0, y.9)v
_ _ _ (22)
where g;,(f)(-), gz(';)(')’ 9,5”(-) are smooth vector functions.
Theorem 1: Let ¢, (t) be a solution of (1) with u = u,(t)
being C'-smooth and suppose ¢1(-), ..., ¢n(-) are C?-
smooth functions representing an alternative parametrization
(5) of this motion. Then, under some mild technical assump-
tions, in some vicinity of the orbit (3) the dynamics (1) can
be equivalently rewritten as (19) and (22).

B. Transverse Coordinates and Transverse Linearization

It turns out that the dynamical system (19), (22) possesses
a natural choice of (2n — 1)-transverse coordinates

o) = [15(0.6.0.0).0.00): v: 4]

for which computing a transverse linearization can be done
analytically. Here the scalar function 1. ?EZ)( is defined by (9).
Theorem 2: Consider the nonlinear dynamical system

(19), (22) and its solution defined for t € [0, T
Yn-1)x = 0, 0= 9*(t), v, =0,

the linerization of dynamics of the transverse coordinates
(23) along (24) is given by the following equatwns

(23)

Y. =0, ..., 24)

o the linearized dynamics of the scalar quantity I )() are
dISZ) % 4
==} (L7 + 0 (OYia+ afJ () Yaut b (Ve 25)
with a(lil) (t) = 29 (f) - Bi(0,(t)) and
0. .
a3 (t) Q?@fzz)) 0,(t), 0,(t), 6,(¢),0,0)
0, i . R
0 = =% ~g;><e*<t>, 0,(),6.(1),0,0)  (26)
[ 0, [
8 = 2o gl (0.(1),0.(1),0,0)
e the linearized dynamics of [y*,y*]|-variables are
70
d Yl. 0(n—l)><1 0,1 1,1 ° 0(n—1)><1
dt Y = 1/10 + VO
2e Ao (t) Aaa(t) Aas(t) Yy Bs(t)
27

where 0 and 1 are zero and identity matrices of appropriate
dimensions; As;(t), Ba(t) are matrix functions defined as

) OF noF
25 4

oF
21 0=0,(t) 22 0 Q*(t)
2(62 + 62) i—d. 0 6=0,(1)
=0, (t) y=y=0
y=y=0
oF
Agz = — By = N(6,(1),0 29
2= B o ety B VED0 09

y=y=0

The choice of transverse coordinates (23) generates a moving
Poincaré section {S(t)};¢(o 7 associated with the motion.
Theoretically, it can be computed as follows.
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1) Change the variables [6,6,y”,y"] into
W@, 1 y7 §7], where ISV(-) is defined by (9).
On this step the scalar variable ¥® = ¥®(9,0)
is introduced such that the target trajectory is
{00 = 600,19 =0,y =0,y =0}, and 40(1) =
@D (0,(t),0,(t)) monotonically’ changes with time.

2) After that, the moving Poincaré section is defined by

S ¢={[9; 6;y;9) - 0@ (0,0)—p) (t)ZO} NO:(g:) (30)

for t € [0,7] and can be expressed in [g; ]-coordinates
using the inverse transformation. Note that for computing
such moving Poincaré section one requires the transforma-
tion (") (0, @), which is not computed above. However, it is
easy to compute the tangential plane for each of S (i)(t)

78W .= {[q; ql: (q—q*)TcJ*Jr(d—q'*)Téj*:O} N O.(q.)
(31

C. Orbital Stabilization of Cycles of Mechanical System

The stability concept requires the motion to be defined on
infinite time interval. Meanwhile, if the motion is defined
on an infinite time interval, then the important step of the
smooth re-parametrization (5) of the motion via introducing
a new degree of freedom might not be feasible. This step is,
however, always possible if the motion is periodic

() =qt+T), Vi

Moreover, a valid choice is taking 6 to be one of the
generalized coordinates. Below it is assumed that the target
motion ¢, (¢) is T -periodic and is non-trivial, i.e. T > 0.

Theorem 3: Given a T -periodic motion ¢, (t) (32) of the
controlled mechanical system (1) in response to a C' -smooth
control signal u,(t) and given C?-smooth functions ¢1(-),
«or, On(+) representing an alternative parametrization (5) of
the motion, suppose the conditions of Theorem 1 hold. The
following two statements are equivalent.

1) There is a C*-smooth T -periodic matrix gain K(t)
such that the feedback control law

(32)

Vo= K@) [0 v, Va] . K@) =K@+T) 33

stabilizes the origin of the linear system (25)—(29).
2) There exists a C* -smooth time-invariant feedback con-
trol law of the form (18) with

v:f(e7évyay)

making the motion (32) of (1) exponentially orbitally stable.
Furthermore, the matrix functions K(-) and f(-) can be
constructed as follows:
a) Given (33), a possible choice for (34) is

o(t) = K () 2 (1), 7= {s : la(t):d()] € SV (s)}
where mﬂf) (t) is the vector of transverse coordinates defined
by (23), O:(qx) with a small € > 0 is defined in (3), and T

is an index parameterizing the particular leaf of the moving

(34)

(35)

"This can be done under the assumption: ¢2(t) 4 ¢2(¢) > 0 for Vt.

Poincaré section {S(t)}ic0,1), see (30), to which the vector

x(j)() belongs at the time moments t.
b) Given (34), a possible choice for (33) is

§0f _ 59f
20 90 iy  Of of
o — 71. +7Y.+7.Y. 36
2(02 + 62) ay "oy o (0)
0=0.,(t)
6=0, (t)
6=0, (t)

Theorem 3 implies that all possible linear control systems
with periodic coefficients (25)—(29) generated by lineariz-
ing dynamics of different transverse coordinates (23) are
equivalent: stabilization of one implies stabilization of any
other. However, it might be difficult to implement the control
law (36) due to necessity to solve a nonlinear optimization
problem {s: [q(t);4(t)] € S@(s)}. It can be shown that
exponential orbital stabilization is also achieved with

o(t) = K (1) 2P (), 7= {s: [a(: ()] € TSV ()} (37)
using the easier to compute bundle of hyperplanes (31).

ITII. EXAMPLES
A. Oscillations of an Inverted Spherical Pendulum on a Puck

Consider a point mass spherical pendulum, whose sus-
pension point is moving in the horizontal plane. This
mechanical system has 4-dof: x;, xo define a position
of the suspension point (a puck) in the horizontal plane;
two angles e; and e, define orientation of the spherical
pendulum with respect to the vertical, see Fig. 1. The

Fig. 1. A spherical pendulum on a puck. The coordinates x1 and x2
represent the position of the puck in the horizontal plane; the angles e1
and €2 give the orientation with respect to the inertia frame.

Lagrangian is L£(-) = Kpuck(:) + Kpend(-) — Mpenal),
where II,c,q = mgLcos(ez) and the kinetic energies of
the puck and the pendulum are K,y = % (x% —|—x%)

%m([% {z1 + Lcos(€1)SiH(52)}]2 +

FREE +LSiH(€1)SiH(62)H2). Here M is the mass of
the puck; m is the mass of the pendulum; L is the distance
to the center of mass of the pendulum from the suspension
point; g is the acceleration due to gravity. The dynamics of
the spherical pendulum are given by

and Kpepg =

dfoc]_oc o dfoc) oL

dt 861 861 o dt 362 862_ ’ (38)
dfoc] _ dfoc

dt 9@ Y dt || 2
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Here 7 and 75 are the controlled forces that can be applied
to the puck along x; and x5 axises on horizontal plane.
Planning a periodic motion of the spherical pendulum
around its unstable equilibrium is as follows: First, we fix
the shape of a curve on horizontal plane (x1,x2), and then
analyze motions of the pendulum compliant with it. To this
end, suppose that variables x; and zo satisfy the relations

z1(t) = R - cos(e1(t)), xo(t) = R-sin(e1(t)) (39)

where IR is a positive constant. With these identities the first
two equation of (38) are then
(M-R*+m-(R+ L-siney)) &1+
2m - L-cos(eg) - (R+ L -siney) - €162 =0
L&y — cos(g2) {R+ L - cos(g2)} €7 — g - sin(e2) =0

(40)

admitting the family of solutions e5(t) = €2, € (—75,0),

g - sin(=es(1))

{R+ Lcoses(t)} cosea(t) t @n

El(t) = Wix -t =

Each of them together with relations (39) represents the
perpetual rotation (relative equilibrium) of the system above
the horizontal when the puck travels with constant angular
velocity along the circle of radius R and the pendulum
returns to its original position over the period keeping the
constant angle €9, with the vertical.

Orbital stabilization of one of the periodic motions (39),
(41) can be achieved based on stabilization of transverse
linearizion of dynamics as discussed in Theorems 1-3. To
start with the procedure, rewrite the motion (39), (41) in the
form of virtual holonomic constraints (5)

x1 = R-cos(f), o = R-sin(f), e1 =0, 9 = e9,. (42)

Invariance of these relations along solutions of the dynamics
of the spherical pendulum (38) under appropriate control
inputs results into two “«(-) — 8(-) — v(:)” equations with
respect to ), see Lemma 1 and the system (6),

6 = 0, cos(g24) (R + Lsin(sg*)) 6% + gsineg, =0 (43)

A possible choice of the new generalized coordinates (10)
instead of [x1,x2,£1,€2] is 6 and

y1 =x1 — Rcosl, ys = 19 — Rsinb, y3 = €2 —e9y. (44)
Let us define the feedback transformation (18) as

[TlaTQ]T = U(9>9»y79) + [v17v2]T (45)

meeting the condition of trivial dynamics for y; and y»

1 =0, P2=0 when v =0, vy =0,

so that U(-) satisfies the interpolation relation (17). Then,
the equations of motion (38) in coordinates [#,y] and with
control inputs [v1,vs] take the form of (19)—(22). Trans-
verse coordinates x; along the solution

0. (t> =wixtt, Y1k (t) = Y2« (t) = y3*(t) =0 (46)

with vy (t) = va(t) = 0, are uniquely defined by (23) with
1(0(t), 0(1),0.(0),6,(0)) = 6%(t) —wi,  47)

where the constant wy, is from (41). It is straightforward to
compute the transverse linearization (25)-(29).

It follows from Theorem 3 that the motion (46) of the
system (38) can be exponentially orbitally stabilized if and
only if this linear system with periodic coefficients is stabi-
lizable over the period. If the parameters of the system and
the target motion are M = 10 [kg], m =5 [kg], L =
2 [m], R=5][m|, e2,=—0.1[rad] then the period of
the target motion (46) is 7' = 27 /w1, ~ 13.88 [sec] and the
linear system is controllable over the period. To stabilize the
linear system we found numerically a stabilizing solution of
the periodic Riccati differential equation (PRDE). The linear
controller was modified into the nonlinear one (35) according
to Theorem 3 using the fact that the coordinate needed for
computation of the moving Poincaré section in the form of
(30) can be taken as (6, 9) =¢e1 =0 with () = wis -
defined by (41). Fig. 2 illustrates the behavior of the solution
of the dynamics of the spherical pendulum with the nonlinear
feedback controller, where the evolution of the transverse
coordinates (44), (47), see also (23), is depicted versus time.

0.2

~01 L L L L L
5 10 15 20 25 30 35 40 45

02

¥,
°

-0.2
0

L L L L L L L L
5 10 15 20 25 30 35 40 45

-0.2
0

¥,(t)
o

L L L L L L L L
5 10 15 20 25 30 35 40 45
0.1

Ylt)
°

01y s 0 W5 2 2 0 % 0 45
time (sec)

Fig. 2. An evolution of the transverse coordinates—the [-and 1, y2,
y3 -variables defined by (44), (47)—of the spherical pendulum along the
solution of the closed-loop system with a choice of randomly generated
displacements of the initial conditions from the ones for the target motion.
The components of the transverse coordinates are reduced to about 107>
after 42 seconds, which is about the time of three periods of the cycle.

B. Synchronization of Oscillations of Pendulums on Carts

Consider the problem of synchronization of oscillations
of 3-identical pendulum-cart systems around their unstable
equilibriums®, see Fig. 3. Assuming that for each system
masses of the cart and the pendulum are 1 [kg], and the
distance from the suspension to the center of mass of the
pendulum is 1 [m], the dynamics of the system are

2i+cos(0;)0;—sin(0;)02 =u;, cos(6;)d;+0;—gsin(6;) =0,
(48)

8The way to plan a cycle for one cart-pendulum system and to make
it then orbitally stable is described in [11]. Note that if such a strategy is
applied to each system, there will be no synchronization and the differences
in the phases of oscillations would depend on initial conditions.
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Fig. 3. Three identical cart-pendulum systems. The coordinates x1, x2
and x3 represent positions of the carts along the horizontal, and 61, 02
and 03 give the angles of the pendulums with respect to the vertical.

with ¢ = 1,2, 3. So, the underactuation degree is 3.
Motion planning: Suppose the C?-smooth function ¢(-)
is chosen such that the invariance of the relations

xr1 = ¢(91), T2 = ¢(‘92), T3 = ¢(9n) (49)
results in 3 identical equations with 0 =6, i =1,...,3,
()6 + B(9)6% +~4(0) =0

having a T -periodic solution 6, (t) = 6,(t + T'). Here
a=¢(0)cosO—1, B=¢"(0)cos, v=—gsinf (50)
The solution written as 3 pairs

{0: =0.(t), i =0(0.(2)},

is the target synchronous oscillations of all 3 systems.
Orbital stabilization of (51) can be achieved based on

stabilization of transverse linearizion of dynamics using

Theorems 1-3. Introducing the new coordinates [0, y] by

y1=a1— @(01), y2=x2—P(01), y3=u1x3—¢(01)
ys =01 — 0o, ys = 61 — 03, 0 =06,

one can readily check that the dynamics of (48) can be
rewritten in the form (19), (22). The feedback transform
(18) from [uy,uz,us] to [vi,ve,vs] can be defined by the
following 3 targeted equations

Transverse coordinates = along the solution, see (51),

0=0.(t), y1x(t)=y2+(t) =y3x(t) =yas(t) =y5.(t) =0

are defined by (23) and (9) with (50). The coefficients of
the transverse linearization (25)—(29) are straightforward
to compute. As argued in [11], the function ¢(-) in (49)
can be chosen to meet various specifications on a periodic
motion. For instance, with the choice

#(0) = — [1+ g/w?] -log[(1 + sin6)/ cos 6]

there are oscillations of each of the cart-pendulum systems
around their unstable equilibria of period T' = 27/w. In
Figs. 4 the motion of three cart-pendulum system (48) with
the transverse linearization based nonlinear controller (37)
based on Theorem 3 are shown for the case of the constraint
function (52). Here the target trajectory is of the period 7' ~
5 [sec] and with the amplitude 0.2 [rad].

i=1,2,3  (51)

(52)
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Fig. 4. Synchronization of oscillations for 3 cart-pendulum systems: An
evolution of the angles—the 61, 02, 03 -variables—along the solution of
the closed-loop system. They are synchronized in about one period and have
reached after transition the target amplitude of oscillations of 0.2 [rad].

IV. CONCLUSIONS

We have described a constructive procedure for computing
transverse coordinates for a motion of controlled Euler-
Lagrange system of n-degrees of freedom and with m
external control variables, m < mn. As shown, the case
when m < n — 2 can be treated extending the arguments
from [12] recently elaborated for the case of underactuation
one, i.e. when m = n — 1. The presented technique allows
in particular to synthesize orbitally exponentially stabilizing
controllers for periodic motions of mechanical system based
on static feedback control designs for linear periodic systems.

Conceptually, computing transverse linearization is sim-
ilar to computing a linearization of a nonlinear controlled
system around an equilibrium. However, the result is a
linear time-varying control system of reduced order, whose
stability/instability/stabilization is an decisive indicator for
exponential orbital stability/instability/stabilization of the
motion of the nonlinear mechanical system.
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