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Abstract— A class of mechanical systems with many unactu-
ated degrees of freedom is studied. An analytical method for
computing coefficients of a linear controlled system, solutions of
which approximate dynamics of transverse part of coordinates
of an underactuated mechanical system along a feasible motion,
is proposed. The procedure is constructive and is based on a
particular choice of coordinates in a vicinity of the motion. It
allows explicit introduction of the so-called moving Poincaré
section associated with a finite-time or periodic motion. It is
shown that the coordinates admit analytical linearization of
transverse part of the system dynamics prior to any controller
design. If the motion is periodic, then these coordinates are used
for developing feedback controllers. Necessary and sufficient
conditions for exponential orbital stabilization of a cycle for
underactuated mechanical systems are derived. Two illustrative
examples are elaborated in details.

Index Terms— Moving Poincaré section; Periodic solutions;
Orbital stability; Transverse linearization; Underactuated me-
chanical systems; Virtual holonomic constraints; Spherical
pendulum; Synchronization of mechanical systems

I. INTRODUCTION

Underactuated mechanical systems are common for

robotics applications such as locomotion, grasping, juggling

etc. Motion planning and stabilization tasks for these appli-

cations are often solved ad hoc. If a desired motion is found,

it is the common case that nonlinearities in system dynamics

cannot be removed by a feedback action, even in a vicinity

of the target motion. To illustrate the challenges it is worth

noting the series of investigations [15], [12], [4], devoted

only to the particular case—controlled mechanical systems

with one passive link, i.e. of underactuation degree one.

This work is focused on orbital stability and stabilization

of motions for mechanical systems that have two (three,

four, . . . ) less independent control input than the number of

degrees of freedom. It turns out that the existing approaches

and analytical arguments developed for system with one

passive link are difficult to use when the degree of under-

actuation is two or higher. The main contribution here is a

constructive solution. It is based on simple but important

observation that for any motion of controlled mechanical

system there is a generic choice of transverse coordinates.

They are introduced through a constructive procedure and

can be analytically linearized for the case when level of
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underactuation is arbitrary. This result is used further for

verifying orbital exponential stability of a periodic motion of

the closed-loop system and for synthesizing stabilizing con-

trollers. Two illustrative examples are studied: stabilization

of oscillations of a spherical pendulum on a puck around

its upright (unstable) equilibrium and synchronization of

oscillations of 3-cart-pendulum systems. The first example

has 2 passive degrees of freedom and the second one has 3.

A. Preliminaries: Transverse Coordinates

As known, the classical tool—the linearization of full-

state dynamics of an autonomous system along its non-

trivial solution—might not be appropriate for analyzing

various local properties1. Instead, only the part of dynamics

responsible for capturing local behavior in a vicinity of the

solution should be considered. The geometrical interpretation

of this observation is that one needs to find new variables

such that the system’s states are decomposed into:

1) A scalar variable representing position along a trajec-

tory of the target solution. Local properties of system

dynamics in a vicinity of the solution are independent

on this variable; so that it can be safely disregarded.

2) The remaining coordinates representing the dynamics

transverse to a trajectory of the solution. These coor-

dinates define a moving Poincaré section [7].

A diffeomorphism to a new set of coordinates with this

form always exists in a vicinity of any solution defined on

a finite-time interval2, but finding such coordinates in an

explicit form is typically difficult. However, it is important to

notice that for analysis and designing of a feedback controller

modifying the system dynamics near the solution, linearizing

the transverse dynamics (i.e. computing a transverse lin-

earization) about the solution is often sufficient, and explicit

formulae for the full change of variables are not required.

Consider the class of controlled Euler-Lagrange systems

d

dt

(

∂L(q, q̇)

∂q̇

)

−
∂L(q, q̇)

∂q
= B(q)u (1)

Here q ∈ R
n , q̇ ∈ R

n are generalized coordinates and ve-

locities, u ∈ R
m are control inputs, L(q, q̇) = 1

2 q̇
TM(q)q̇−

V (q) is the Lagrangian, M(q) is a matrix of inertia, V (q)
is a potential energy, B(q) is a matrix function of full-rank.

1For instance, a linearization around a periodic solution cannot be
asymptotically stable [1], [16], [7].

2When the solution is a cycle, the appropriate statements can be found
in [14], [5], [9], [6]. Similar arguments can be applied for any non-trivial
and non-periodic solution defined on a finite-time interval.
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Definition 1: Let q⋆(t) for t ∈ [0, T ] be a solution of the

n -degrees-of-freedom Euler-Lagrange system (1) driven by a

control signal u⋆(t) ∈ C1 ([0, T ]) with the initial conditions

at q⋆(0) = q0 , q̇⋆(0) = q̇0 , such that
(

|q̇⋆(t)|
2 + |q̈⋆(t)|

2
)

>
0 for all t ∈ [0, T ] . The orbit of the trajectory is

O⋆ =
{

[q; q̇] : q = q⋆(τ), q̇ = q̇⋆(τ), τ ∈ [0, T ]
}

(2)

and its tabular neighborhood, the set of all points on a

distance not bigger than some ε > 0 , is

Oε(q⋆) = {[q; q̇] : min
τ∈[0,T ]

‖[q; q̇] − [q⋆(τ); q̇⋆(τ)]‖ ≤ ε} (3)

1) A family of (2n−1)-dimensional C1 -smooth surfaces
{

S(t), t ∈ [0, T ]
}

is called a moving Poincaré section asso-

ciated with the solution q⋆(t) , t ∈ [0, T ] , if

(a) Surfaces S(t) are locally disjoint, i.e. ∃ ε > 0 :
S(τ1) ∩ S(τ2) ∩ Oε(q⋆) = ∅ , ∀ τ1 6= τ2 ∈ [0, T ] .

(b) Each of S(t) locally intersects the orbit only in one

point, i.e. ∃ε > 0 : S(τ) ∩ {[q⋆(t); q̇⋆(t)], |t− τ | < ε} ∩
Oε(q⋆) = {[q⋆(τ); q̇⋆(τ)]} for each τ ∈ [0, T ] .

(c) The surfaces S(t) are smoothly parametrized by

time, i.e. ∃ f ∈ C1(Rn,Rn,R) : S(t) ∩ Oε(q⋆) =
{[q; q̇] ∈ R

n × R
n : fs(q, q̇, t) = 0} ∩ Oε(q⋆) .

(d) The surfaces S(t) are transversal to q⋆(t) .

2) Given a moving Poincaré section
{

S(t), t ∈ [0, T ]
}

associated with the motion q⋆(t) , the state coordinates [q; q̇]
of (1) can be (locally) changed into [ψ;x⊥] where the

scalar variable ψ(t) parameterizes a position along the curve

(trajectory) in R
n ×R

n defined by q⋆(t) and the (2n− 1)-

dimensional vector x⊥(t) defines location on the surface

S(t) . x⊥ is known as a vector of transverse coordinates.

3) The dynamics of (1) rewritten in [ψ;x⊥]-coordinates

and linearized along the solution q⋆(t) , t ∈ [0, T ] give rise

to the linear time-varying control system of dimension 2n
defined on t ∈ [0, T ] . The (2n− 1)-dimensional subsystem

that corresponds to linearization of the dynamics of the trans-

verse coordinates x⊥ is called a transverse linearization3.

B. Preliminaries: Re-parametrization of a Motion

If one wants to describe a solution of the system (1), there

is a number of possible formats. The most immediate is a

time-evolution of the generalized coordinates4:

q1 = q1⋆(t), . . . , qn = qn⋆(t), t ∈ [0, T ] (4)

However, there are descriptions without an explicit reference

to time, such as the orbit (2). One can introduce relations

q1 = φ1(θ⋆), . . . , qn = φn(θ⋆), θ⋆ ∈ [Θb,Θe], (5)

valid on the same orbit, where θ⋆ could be some parameter

such as the arc length5 along the orbit or, in many cases,

one of the coordinates, e.g. θ⋆(t) = qn(t) so that φn(θ⋆) =
θ⋆ . Identities, as in (5), are known as virtual holonomic

3The concept of transverse linearization was used for feedback control
of various systems, see e.g. [13], [2], [3], [8].

4Note that the other half of the states are derivatives of these functions.
5For this case, we must assume that there are no sub-intervals of time

where |q̇⋆(t)|2 + |q̈⋆(t)|2 ≡ 0 .

constraints [15] since they express relations among the

generalized coordinates q1 , . . . , qn . For a feasible motion

the relations (5) can always be found. If the system is fully

actuated, the dynamics along the orbit of the motion is

controlled. However, for underactuated systems, it is not the

case, the dynamics are fixed.

Lemma 1: Consider the controlled mechanical system (1)

of n -degrees of freedom with m independent control inputs,

i.e. of underactuation (n −m) . Let q = q⋆(t) be a motion

(4) of (1) in response to a control signal u = u⋆(t) , both

defined on the time interval t ∈ [0, T ] . Let θ = θ⋆(t) be a

scalar parameter used in (5) to describe the motion q⋆(t) .

Then θ⋆(t) is not any, but it is simultaneously a solution of

(n−m) second order differential equations6

αi(θ)θ̈ + βi(θ)θ̇
2 + γi(θ) = 0, i = 1, . . . , n−m. (6)

Lemma 2: Let θ = θ(t) be a C2 -smooth scalar function

defined on the time interval t ∈ [0, T ] and be at the same

time the solution of (6) with some i . The following statements

are true for any nontrivial subinterval [tb, te] ⊂ [0, T ]:

1) If αi(θ(t)) ≡ 0 and βi(θ(t)) ≡ 0 , then θ(t) satisfies

αi(θ(t)) ≡ 0, βi(θ(t)) ≡ 0, γi(θ(t)) ≡ 0 (7)

2) If αi(θ(t)) ≡ 0 but βi(θ(t)) 6= 0 for any t ∈ [tb, te] ,
then θ(t) satisfies two identities:

αi(θ(t)) ≡ 0, θ̇2(t) + γi(θ(t))/βi(θ(t)) ≡ 0 (8)

3) If α(θ(t)) 6= 0 for any t ∈ [tb, te] , then θ(t) satisfies

the identity I
(i)
3 (θ(t), θ̇(t), θ(tb), θ̇(tb)) ≡ 0 with

I
(i)
3 = θ̇2−e

{

−

θ
∫

θ(tb)

2βi(τ)

αi(τ)
dτ

}

θ̇2(tb)+

θ
∫

θ(tb)

e

{

s
∫

θ

2βi(τ)

αi(τ)
dτ

}

2γi(s)

αi(s)
ds

(9)

The relations (5) together with (7)–(9) and/or their deriva-

tives can be used for describing the orbit of the target motion

q = q⋆(t) . Namely, introduce the quantities

y1 = q1 − φ1(θ), . . . , yn = qn − φn(θ) (10)

where φ1(·) , . . . , φn(·) are taken from (5) while θ is one

of the new generalized coordinates for (1) to be found in a

vicinity of the motion. By definition, the variables (10) and

their time derivatives are zeros on (2). In the same way, for

each of the (n−m) equations (6) one can introduce at least

one function of q and q̇ that becomes zero on the orbit (2).

Indeed, depending on conditions, one of 3 possible cases of

Lemma 2 takes place. If for the i-th equation of (6), the case

1) hold, then there are three functions

I
(i)
11 (θ) = αi(θ), I

(i)
12 (θ) = βi(θ), I

(i)
13 (θ) = γi(θ) (11)

that are zeros on the orbit (2). If the conditions of the case

2) are valid, then the functions

I
(i)
21 (θ) = αi(θ), I

(i)
22 (θ, θ̇) = θ̇2 + γ(θ)/β(θ) (12)

6Some of these differential equations can be of lower order or even trivial.
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are zeros on the orbit. For the case 3), there is at least one

such function I
(i)
3 (θ) defined in (9).

So, for any non-trivial motion q = q⋆(t) , t ∈ [0, T ]
of the controlled mechanical system (1) with the degree of

underactuation (n−m) , there is a large family of functions

of the generalized coordinates and velocities including

y1, . . . , yn, ẏ1, . . . , ẏn, I(1)
χ1
, . . . , I(n−m)

χ(n−m)
(13)

that are candidates for transverse coordinates in a vicinity of

the part of the motion restricted to t ∈ [tb, te] ⊂ [0, T ] .

II. MAIN RESULTS

Here we proceed with one of possible choices for (2n−
1)-transverse coordinates from quantities (13) and show the

steps for computing transverse linearization of the dynamics

(1) based on these coordinates in a vicinity of the motion.

A. Changing Generalized Coordinates

Given a motion q = q⋆(t) of (1) in the response to a C1 -

smooth control input u⋆(t) on [0, T ] and given the scalar

functions φ1(·) , . . . , φn(·) defined by the alternative repre-

sentation (5) of the motion, following [10], the quantities

θ, y1 = q1 − φ1(θ), . . . , yn = qn − φn(θ) (14)

can be seen as excessive generalized coordinates for the n -

DOF Euler-Lagrange system (1). Therefore, one of them can

be expressed as a function of the others. Suppose that in (3)

y = (y1, . . . , yn−1)
T and θ, (15)

can be taken as new generalized coordinates for (1).

The dynamics (1) in the new generalized coordinates (15)

can be partially written in the following form

ÿ = R(θ, θ̇, y, ẏ) +N(θ, y)u, (16)

where N(θ, y) and R(θ, θ̇, y, ẏ) are certain matrix functions.

Given any smooth function U(θ, θ̇, y, ẏ) that coincides

with the nominal input u⋆(t) on the orbit (2)

u⋆(t) = U(θ⋆(t), θ̇⋆(t), 0, 0), ∀ t ∈ [0, T ], (17)

the feedback transform

u = v + U(θ, θ̇, y, ẏ), (18)

brings the y -dynamics (16) into the form

ÿ = F (θ, θ̇, y, ẏ) +N(θ, y) v. (19)

By construction the vector-function F (·) is zero on the orbit

F
(

θ⋆(t), θ̇⋆(t), 0, 0
)

≡ 0(n−1)×1, ∀ t ∈ [0, T ]. (20)

Eqn. (19) is only a part of the dynamics of (1) in the new

coordinates (15). It should be complemented by a 2nd -order

equation w.r.t. the θ -variable. One way to write it is to use

one of the equations (6), for which the coefficient αi(θ⋆(t))
is separated from zero on the orbit ∀ t . Assuming this is the

case for some i , the dynamics of θ can be rewritten as

αi(θ)θ̈ + βiθ̇
2 + γi(θ) = gi(θ, θ̇, θ̈, y, ẏ, ÿ, v) (21)

The right-hand side of this equation—the smooth function

gi(·)—is not any, but equals zero on the orbit. Therefore,

following the Hadamard’s lemma, it can be represented as

gi = g(i)
y (θ, θ̇, θ̈, y, ẏ)y+g

(i)
ẏ (θ, θ̇, θ̈, y, ẏ)ẏ+g(i)

v (θ, θ̇, y, ẏ)v
(22)

where g
(i)
y (·) , g

(i)
ẏ (·) , g

(i)
v (·) are smooth vector functions.

Theorem 1: Let q⋆(t) be a solution of (1) with u = u⋆(t)
being C1 -smooth and suppose φ1(·) , . . . , φn(·) are C2 -

smooth functions representing an alternative parametrization

(5) of this motion. Then, under some mild technical assump-

tions, in some vicinity of the orbit (3) the dynamics (1) can

be equivalently rewritten as (19) and (22).

B. Transverse Coordinates and Transverse Linearization

It turns out that the dynamical system (19), (22) possesses

a natural choice of (2n− 1)-transverse coordinates

x
(i)
⊥

=
[

I
(i)
3 (θ, θ̇, θ⋆(0), θ̇⋆(0)); y; ẏ

]T

(23)

for which computing a transverse linearization can be done

analytically. Here the scalar function I
(i)
3 ( is defined by (9).

Theorem 2: Consider the nonlinear dynamical system

(19), (22) and its solution defined for t ∈ [0, T ]

y1⋆ ≡ 0, . . . , y(n−1)⋆ ≡ 0, θ = θ⋆(t), v⋆ ≡ 0, (24)

the linerization of dynamics of the transverse coordinates

(23) along (24) is given by the following equations.

• the linearized dynamics of the scalar quantity I
(i)
3 (·) are

dI
(i)
•

dt
=a

(i)
11 (t)I

(i)
• + a

(i)
12 (t)Y1•+ a

(i)
13 (t)Y2•+ b

(i)
1 (t)V• (25)

with a
(i)
11 (t) = 2θ̇⋆(t)

αi(θ⋆(t)) · βi(θ⋆(t)) and

a
(i)
12 (t) = 2θ̇⋆(t)

αi(θ⋆(t)) · g
(i)
y (θ⋆(t), θ̇⋆(t), θ̈⋆(t), 0, 0)

a
(i)
13 (t) = 2θ̇⋆(t)

αi(θ⋆(t)) · g
(i)
ẏ (θ⋆(t), θ̇⋆(t), θ̈⋆(t), 0, 0)

b
(i)
1 (t) = 2θ̇⋆(t)

αi(θ⋆(t)) · g
(i)
v (θ⋆(t), θ̇⋆(t), 0, 0)

(26)

• the linearized dynamics of [yT , ẏT ]-variables are

d
dt

[

Y1•

Y2•

]

=

[

0(n−1)×1 0n−1 1n−1

A21(t) A22(t) A23(t)

]





I
(i)
•

Y1•

Y2•



+

[

0(n−1)×1

B2(t)

]

V•

(27)

where 0 and 1 are zero and identity matrices of appropriate

dimensions; A2j(t) , B2(t) are matrix functions defined as

A21 =

[

θ̇ ∂F

∂θ̇
− θ̈ ∂F

∂θ

]

2(θ̇2 + θ̈2)

∣

∣

∣

∣

∣

∣

θ=θ⋆(t)

θ̇=θ̇⋆(t)

θ̈=θ̈⋆(t)
y=ẏ=0

, A22 =
∂F

∂y

∣

∣

∣

∣

θ=θ⋆(t)

θ̇=θ̇⋆(t)
y=ẏ=0

(28)

A23 =
∂F

∂ẏ

∣

∣

∣

∣

θ=θ⋆(t), θ̇=θ̇⋆(t)
y=ẏ=0

, B2 = N(θ⋆(t), 0) (29)

The choice of transverse coordinates (23) generates a moving

Poincaré section {S(t)}t∈[0,T ] associated with the motion.

Theoretically, it can be computed as follows.
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1) Change the variables [θ, θ̇, yT , ẏT ] into

[ψ(i), I
(i)
3 , yT , ẏT ] , where I

(i)
3 (·) is defined by (9).

On this step the scalar variable ψ(i) = ψ(i)(θ, θ̇)
is introduced such that the target trajectory is
{

ψ(i) = ψ
(i)
⋆ (t), I

(i)
3 = 0, y = 0, ẏ = 0

}

, and ψ
(i)
⋆ (t) :=

ψ(i)(θ⋆(t), θ̇⋆(t)) monotonically7 changes with time.

2) After that, the moving Poincaré section is defined by

S(i) :=
{

[θ; θ̇; y; ẏ] : ψ(i)(θ, θ̇)−ψ
(i)
⋆ (t)=0

}

∩ Oε(q⋆) (30)

for t ∈ [0, T ] and can be expressed in [q; q̇]-coordinates

using the inverse transformation. Note that for computing

such moving Poincaré section one requires the transforma-

tion ψ(i)(θ, θ̇) , which is not computed above. However, it is

easy to compute the tangential plane for each of S(i)(t)

TS(i) :=
{

[q; q̇] :
(

q−q⋆
)T

q̇⋆+
(

q̇−q̇⋆
)T

q̈⋆ =0
}

∩ Oε(q⋆)

(31)

C. Orbital Stabilization of Cycles of Mechanical System

The stability concept requires the motion to be defined on

infinite time interval. Meanwhile, if the motion is defined

on an infinite time interval, then the important step of the

smooth re-parametrization (5) of the motion via introducing

a new degree of freedom might not be feasible. This step is,

however, always possible if the motion is periodic

q⋆(t) = q⋆(t+ T ), ∀ t (32)

Moreover, a valid choice is taking θ to be one of the

generalized coordinates. Below it is assumed that the target

motion q⋆(t) is T -periodic and is non-trivial, i.e. T > 0 .

Theorem 3: Given a T -periodic motion q⋆(t) (32) of the

controlled mechanical system (1) in response to a C1 -smooth

control signal u⋆(t) and given C2 -smooth functions φ1(·) ,

. . . , φn(·) representing an alternative parametrization (5) of

the motion, suppose the conditions of Theorem 1 hold. The

following two statements are equivalent.

1) There is a C1 -smooth T -periodic matrix gain K(t)
such that the feedback control law

V• = K(t)
[

I
(i)
• , Y T

1•, Y
T

2•

]T

, K(t) = K(t+ T ) (33)

stabilizes the origin of the linear system (25)–(29).

2) There exists a C1 -smooth time-invariant feedback con-

trol law of the form (18) with

v = f(θ, θ̇, y, ẏ) (34)

making the motion (32) of (1) exponentially orbitally stable.

Furthermore, the matrix functions K(·) and f(·) can be

constructed as follows:

a) Given (33), a possible choice for (34) is

v(t) = K (τ) x
(i)
⊥

(t), τ = {s : [q(t); q̇(t)] ∈ S(i)(s)} (35)

where x
(i)
⊥

(t) is the vector of transverse coordinates defined

by (23), Oε(q⋆) with a small ε > 0 is defined in (3), and τ
is an index parameterizing the particular leaf of the moving

7This can be done under the assumption: q̇2
⋆
(t) + q̈2

⋆
(t) > 0 for ∀t .

Poincaré section {S(t)}t∈[0,T ] , see (30), to which the vector

x
(i)
⊥

(·) belongs at the time moments t .
b) Given (34), a possible choice for (33) is

V• =









θ̇
∂f

∂θ̇
− θ̈

∂f

∂θ

2(θ̇2 + θ̈2)
I
(i)
• +

∂f

∂y
Y1• +

∂f

∂ẏ
Y2•









y=ẏ=0
θ=θ⋆(t)

θ̇=θ̇⋆(t)

θ̈=θ̈⋆(t)

(36)

Theorem 3 implies that all possible linear control systems

with periodic coefficients (25)–(29) generated by lineariz-

ing dynamics of different transverse coordinates (23) are

equivalent: stabilization of one implies stabilization of any

other. However, it might be difficult to implement the control

law (36) due to necessity to solve a nonlinear optimization

problem
{

s : [q(t); q̇(t)] ∈ S(i)(s)
}

. It can be shown that

exponential orbital stabilization is also achieved with

v(t) = K (τ)x
(i)
⊥

(t), τ = {s : [q(t); q̇(t)] ∈ TS(i)(s)} (37)

using the easier to compute bundle of hyperplanes (31).

III. EXAMPLES

A. Oscillations of an Inverted Spherical Pendulum on a Puck

Consider a point mass spherical pendulum, whose sus-

pension point is moving in the horizontal plane. This

mechanical system has 4-dof: x1 , x2 define a position

of the suspension point (a puck) in the horizontal plane;

two angles ε1 and ε2 define orientation of the spherical

pendulum with respect to the vertical, see Fig. 1. The

Fig. 1. A spherical pendulum on a puck. The coordinates x1 and x2

represent the position of the puck in the horizontal plane; the angles ε1

and ε2 give the orientation with respect to the inertia frame.

Lagrangian is L(·) = Kpuck(·) + Kpend(·) − Πpend(·) ,

where Πpend = mgL cos(ε2) and the kinetic energies of

the puck and the pendulum are Kpuck = M
2

(

ẋ2
1 + ẋ2

2

)

and Kpend = 1
2m

(

[

d
dt

{x1 + L cos(ε1) sin(ε2)}
]2

+
[

d
dt

{x2 + L sin(ε1) sin(ε2)}
]2

)

. Here M is the mass of

the puck; m is the mass of the pendulum; L is the distance

to the center of mass of the pendulum from the suspension

point; g is the acceleration due to gravity. The dynamics of

the spherical pendulum are given by

d

dt

[

∂L

∂ε̇1

]

−
∂L

∂ε1
= 0,

d

dt

[

∂L

∂ε̇2

]

−
∂L

∂ε2
= 0,

d

dt

[

∂L

∂ẋ1

]

= τ1,
d

dt

[

∂L

∂ẋ2

]

= τ2

(38)
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Here τ1 and τ2 are the controlled forces that can be applied

to the puck along x1 and x2 axises on horizontal plane.

Planning a periodic motion of the spherical pendulum

around its unstable equilibrium is as follows: First, we fix

the shape of a curve on horizontal plane (x1, x2) , and then

analyze motions of the pendulum compliant with it. To this

end, suppose that variables x1 and x2 satisfy the relations

x1(t) = R · cos(ε1(t)), x2(t) = R · sin(ε1(t)) (39)

where R is a positive constant. With these identities the first

two equation of (38) are then
(

M ·R2 +m · (R+ L · sin ε2)
)

ε̈1+
2m · L · cos(ε2) · (R+ L · sin ε2) · ε̇1ε̇2 = 0

(40)

Lε̈2 − cos(ε2) {R+ L · cos(ε2)} ε̇
2
1 − g · sin(ε2) = 0

admitting the family of solutions ε2(t) ≡ ε2⋆ ∈ (−π
2 , 0),

ε1(t) = ω1⋆ · t =

√

g · sin(−ε2(t))

{R+ L cos ε2(t)} cos ε2(t)
· t (41)

Each of them together with relations (39) represents the

perpetual rotation (relative equilibrium) of the system above

the horizontal when the puck travels with constant angular

velocity along the circle of radius R and the pendulum

returns to its original position over the period keeping the

constant angle ε2⋆ with the vertical.

Orbital stabilization of one of the periodic motions (39),

(41) can be achieved based on stabilization of transverse

linearizion of dynamics as discussed in Theorems 1–3. To

start with the procedure, rewrite the motion (39), (41) in the

form of virtual holonomic constraints (5)

x1 = R · cos(θ), x2 = R · sin(θ), ε1 = θ, ε2 = ε2⋆. (42)

Invariance of these relations along solutions of the dynamics

of the spherical pendulum (38) under appropriate control

inputs results into two “α(·) − β(·) − γ(·)” equations with

respect to θ , see Lemma 1 and the system (6),

θ̈ = 0, cos(ε2⋆)
(

R+ L sin(ε2⋆)
)

θ̇2 + g sin ε2⋆ = 0 (43)

A possible choice of the new generalized coordinates (10)

instead of [x1, x2, ε1, ε2] is θ and

y1 = x1 −R cos θ, y2 = x2 −R sin θ, y3 = ε2 − ε2⋆. (44)

Let us define the feedback transformation (18) as

[τ1, τ2]
T = U(θ, θ̇, y, ẏ) + [v1, v2]

T (45)

meeting the condition of trivial dynamics for y1 and y2

ÿ1 = 0, ÿ2 = 0 when v1 ≡ 0, v2 ≡ 0,

so that U(·) satisfies the interpolation relation (17). Then,

the equations of motion (38) in coordinates [θ, y] and with

control inputs [v1, v2] take the form of (19)–(22). Trans-

verse coordinates x⊥ along the solution

θ⋆(t) = ω1⋆ · t, y1⋆(t) = y2⋆(t) = y3⋆(t) = 0 (46)

with v1(t) = v2(t) = 0 , are uniquely defined by (23) with

I(θ(t), θ̇(t), θ⋆(0), θ̇⋆(0)) = θ̇2(t) − ω2
1⋆ (47)

where the constant ω1⋆ is from (41). It is straightforward to

compute the transverse linearization (25)–(29).

It follows from Theorem 3 that the motion (46) of the

system (38) can be exponentially orbitally stabilized if and

only if this linear system with periodic coefficients is stabi-

lizable over the period. If the parameters of the system and

the target motion are M = 10 [kg], m = 5 [kg], L =
2 [m], R = 5 [m], ε2⋆ = −0.1 [rad] then the period of

the target motion (46) is T = 2π/ω1⋆ ≈ 13.88 [sec] and the

linear system is controllable over the period. To stabilize the

linear system we found numerically a stabilizing solution of

the periodic Riccati differential equation (PRDE). The linear

controller was modified into the nonlinear one (35) according

to Theorem 3 using the fact that the coordinate needed for

computation of the moving Poincaré section in the form of

(30) can be taken as ψ(θ, θ̇) = ε1 = θ with ψ⋆(t) = ω1⋆ · t
defined by (41). Fig. 2 illustrates the behavior of the solution

of the dynamics of the spherical pendulum with the nonlinear

feedback controller, where the evolution of the transverse

coordinates (44), (47), see also (23), is depicted versus time.
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Fig. 2. An evolution of the transverse coordinates—the I -and y1 , y2 ,
y3 -variables defined by (44), (47)—of the spherical pendulum along the
solution of the closed-loop system with a choice of randomly generated
displacements of the initial conditions from the ones for the target motion.
The components of the transverse coordinates are reduced to about 10−5

after 42 seconds, which is about the time of three periods of the cycle.

B. Synchronization of Oscillations of Pendulums on Carts

Consider the problem of synchronization of oscillations

of 3-identical pendulum-cart systems around their unstable

equilibriums8, see Fig. 3. Assuming that for each system

masses of the cart and the pendulum are 1 [kg], and the

distance from the suspension to the center of mass of the

pendulum is 1 [m], the dynamics of the system are

2ẍi+cos(θi)θ̈i−sin(θi)θ̇
2
i =ui, cos(θi)ẍi+θ̈i−g sin(θi)=0,

(48)

8The way to plan a cycle for one cart-pendulum system and to make
it then orbitally stable is described in [11]. Note that if such a strategy is
applied to each system, there will be no synchronization and the differences
in the phases of oscillations would depend on initial conditions.
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Fig. 3. Three identical cart-pendulum systems. The coordinates x1 , x2

and x3 represent positions of the carts along the horizontal, and θ1 , θ2

and θ3 give the angles of the pendulums with respect to the vertical.

with i = 1, 2, 3 . So, the underactuation degree is 3.

Motion planning: Suppose the C2 -smooth function φ(·)
is chosen such that the invariance of the relations

x1 = φ(θ1), x2 = φ(θ2), x3 = φ(θn) (49)

results in 3 identical equations with θ = θi , i = 1, . . . , 3 ,

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = 0

having a T -periodic solution θ⋆(t) = θ⋆(t+ T ) . Here

α = φ′(θ) cos θ−1, β = φ′′(θ) cos θ, γ = −g sin θ (50)

The solution written as 3 pairs

{θi = θ⋆(t), xi = φ (θ⋆(t))}, i = 1, 2, 3 (51)

is the target synchronous oscillations of all 3 systems.

Orbital stabilization of (51) can be achieved based on

stabilization of transverse linearizion of dynamics using

Theorems 1–3. Introducing the new coordinates [θ, y] by

y1 = x1 − φ(θ1), y2 = x2 − φ(θ1), y3 = x3 − φ(θ1)
y4 = θ1 − θ2, y5 = θ1 − θ3, θ = θ1

one can readily check that the dynamics of (48) can be

rewritten in the form (19), (22). The feedback transform

(18) from [u1, u2, u3] to [v1, v2, v3] can be defined by the

following 3 targeted equations

ẍi − φ′′(θi)θ̇
2
i − φ′(θi)θ̈i = vi.

Transverse coordinates x⊥ along the solution, see (51),

θ = θ⋆(t), y1⋆(t)=y2⋆(t)=y3⋆(t)=y4⋆(t)=y5⋆(t)=0

are defined by (23) and (9) with (50). The coefficients of

the transverse linearization (25)–(29) are straightforward

to compute. As argued in [11], the function φ(·) in (49)

can be chosen to meet various specifications on a periodic

motion. For instance, with the choice

φ(θ) = −
[

1 + g/ω2
]

· log[(1 + sin θ)/ cos θ] (52)

there are oscillations of each of the cart-pendulum systems

around their unstable equilibria of period T = 2π/ω . In

Figs. 4 the motion of three cart-pendulum system (48) with

the transverse linearization based nonlinear controller (37)

based on Theorem 3 are shown for the case of the constraint

function (52). Here the target trajectory is of the period T ≈
5 [sec] and with the amplitude 0.2 [rad].
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Fig. 4. Synchronization of oscillations for 3 cart-pendulum systems: An
evolution of the angles—the θ1 , θ2 , θ3 -variables—along the solution of
the closed-loop system. They are synchronized in about one period and have
reached after transition the target amplitude of oscillations of 0.2 [rad].

IV. CONCLUSIONS

We have described a constructive procedure for computing

transverse coordinates for a motion of controlled Euler-

Lagrange system of n -degrees of freedom and with m
external control variables, m ≤ n . As shown, the case

when m ≤ n − 2 can be treated extending the arguments

from [12] recently elaborated for the case of underactuation

one, i.e. when m = n − 1 . The presented technique allows

in particular to synthesize orbitally exponentially stabilizing

controllers for periodic motions of mechanical system based

on static feedback control designs for linear periodic systems.

Conceptually, computing transverse linearization is sim-

ilar to computing a linearization of a nonlinear controlled

system around an equilibrium. However, the result is a

linear time-varying control system of reduced order, whose

stability/instability/stabilization is an decisive indicator for

exponential orbital stability/instability/stabilization of the

motion of the nonlinear mechanical system.
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