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Abstract— This paper focuses on the controllability of multi-
agent systems with fixed topology based on agreement pro-
tocols. We analyze three models of agents: single integrator,
double integrator and high-order integrator. For a group
of single-integrator agents, controllability is studied in a
unified framework for both networks with leader-following
structure and networks with undirected graph. Some new
necessary/sufficient conditions for controllability of networks
of single-integrator agents are established. For networks of
double-integrator agents, we prove that controllability of the
networks is equivalent to that of networks of single-integrator
agents under the same topology and same prescribed leaders.
This result is further extended to the case of networks of high-
order-integrator agents. Moreover, two influencing factors of
controllability of networks are investigated, that is, the selection
of leaders and the link weights of graphs.

I. INTRODUCTION
Distributed control and coordination of multi-agent sys-

tems have made a great progress in recent years due to the
excellent developments in computing science and sensing &
communication technologies ([3]-[18]). Research directions
in distributed control and coordination of multi-agent sys-
tems include flocking motion of multiple autonomous agents
([1]-[4]), formation control of multiple mobile robots ([5]-
[8]), rendezvous problems ([9]-[10]), agreement/consensus
problems ([11]-[18]), and so on.

Recently, researchers in the control and dynamical sys-
tem community have poured a huge amount of effort into
studying the agreement of multi-agent systems, which is
a type of coordination behavior and drives the states of
all the agents to a common desired quantity by imple-
menting appropriate agreement protocols. The mathematical
models for agent dynamics include single-integrator model
([11]-[14]), double-integrator model ([15]-[16]), high-order-
integrator model ([17]-[18]) and so on. Most agreement pro-
tocols are designed according to distributed control theory,
where the control laws of each agent depend only on the
local information available to it. Applications of this research
pertain to cooperative control of unmanned air vehicles,
autonomous formation flight, control of communication net-
works, distributed sensor fusion in sensor networks, swarm-
based computing, to name a few. Moreover, controllability
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is a fundamental and important issue for controlled systems.
It plays a basic and fundamental role in numerous research,
such as pole-assignment, structure decomposition, optimal
control and robust control. However, exploring controllability
of multi-agent systems is a challenging task. This is because
the behaviors of networks of dynamic agents are affected
by a great number of factors, such as dynamics of agents,
information flows among agents, and distributed control laws
of networks (for example, agreement/consensus algorithms
and flocking algorithms).

This paper studies the controllability for networks of
dynamic agents with fixed topology based on agreement
protocols. In the literature, the controllability of networks
was mainly investigated for two kinds of topology structures,
namely, leader-following structure ([20]-[23]) and undirected
graph ([24]-[25]). We first recall the two kinds of topology
structures and establish a unified framework for them via
a new concept on graphs. Based on the framework, some
new necessary/sufficient conditions for the controllability
of networks of single-integrator agents are established. For
networks of double-integrator agents, we consider the con-
trollability under two kinds of agreement protocols. It is
proved that network of double-integrator agents is completely
controllable if and only if network of single-integrator agents
is completely controllable under the same topology and same
prescribed leaders. For networks of high-order-integrator
agents, we mainly discuss why the dynamics of agents
can be modeled as a high-order integrator when studying
the controllability for multi-agent systems. There are four
facts to support our idea. Moreover, it is shown that the
controllability of networks of identical agents with dynamics
ẋ = Ax + Bu, where (A, B) is completely controllable,
is equivalent to that of networks of single-integrator agents
under the same topology and same prescribed leaders. At
last, we show that the selection of leaders and the coupling
weights of graphs have important influence on the control-
lability of networks.

The remainder of this paper is organized as follows. In
the next section we recall two kinds of topology struc-
tures of networks. In Section III, IV and V, we study
the controllability of networks of single-integrator agents,
networks of double-integrator agents and networks of high-
order-integrator agents, respectively. Section VI analyzes the
influencing factors of controllability of networks, that is, the
selection of leaders and the coupling weights of graphs. The
last section states some conclusions. Note that all the proofs
of theorems are omitted due to space limitations.
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II. TOPOLOGY STRUCTURES OF NETWORKS

In this section, we recall two typical topology structures
in the study of controllability of networks in the literature
([20]-[25]), that is, leader-following structure and undirected
graph. Through introducing a new concept on graphs, we
establish a unified framework for both topology structures.

Consider a multi-agent system composed of N+nl agents,
which are labeled 1 through N + nl. The dynamics of each
agent is described by

ẋi = ui, i ∈ N + nl, (1)

where xi ∈ Rd is the state of agent i, ui ∈ Rd is the control
input, and N + nl = {1, . . . , N + nl} is an index set. In
the context of agreement for multi-agent systems, the control
input is called an agreement protocol. The interactions or
communication links among agents are realized in their
control inputs. We employ a graph G = (V, E) to model
the interactions among agents. (Note that all the terms and
notations relating to graph theory used in this paper, are
consistent with those in [29]. We do not review the details.)
Each vertex vi in the vertex set V represents an agent i of
the multi-agent system, and each arc/edge eij in the arc/edge
set E means there is an interaction or communication link
from agent i to agent j. If for any eij ∈ E , eji ∈ E as
well, then the communication is said to be bidirectional,
namely, when agent i can receive information from agent
j, agent j can receive information from agent i as well;
otherwise, the communication is said to be unidirectional.
When there exist bidirectional communication between a
pair of distinct agents, we use an edge (undirected) to
depict the communication; while in the case of unidirectional
communication, we use an arc (directed) to depict it.

The agreement protocol is taken in the typical form ([11],
[20]):

ui =
∑

j∈Ni

(xj − xi), i ∈ N + nl. (2)

For a given multi-agent system, we refer to Gx = (G, x)
as a network with value x ∈ Rd(N+nl) and graph/topology
G, where x is the state collection of all the agents and
G captures the communication links among agents. The
controllability problems for networks based on agreement
protocols are called the controlled agreement problems for
networks. For simplicity, we assume that the state dimension
of agents d = 1. All the results in this paper are valid for
any dimension d, just rewriting the expressions based on
Kronecker products.

In the literature, the controlled agreement problems are
mainly discussed for two kinds of networks: network with
leader-following structure ([20]-[23]) and network with undi-
rected graph ([24]-[25]). We start the recall of topology
structures with the partition of agents into leaders and
followers. For a given multi-agent system, an agent is called
a leader if the agent is actuated by some exogenous control
inputs besides the interactions coming from its neighboring
agents; otherwise, the agent is called a follower.

Fig. 1. Schematic diagram for topology structures of networks.

1) Network with leader-following structure: Communica-
tion links between leaders and followers are unidirectional,
specifically, there only exist communication links from lead-
ers to followers; while the communication links among
followers are bidirectional. The dynamics of followers abides
by the agreement protocol (2), while leaders’ dynamics
selects control inputs indifferently and freely. In Fig. 1, if
we delete the links represented by dashed lines, the graph
with vertices 1, 2, 3, 4 and 5 is an example of such a
network.

Suppose there are N followers and nl leaders over the
network. Unless it is explicitly specified, we will assume
that the followers have small labels and the leaders have
large ones, that is, we will label the followers from 1 to N
and the leaders from N + 1 to N + nl. For a network with
leader-following structure, the associated Laplacian matrix
of graph G can be written as

L =
[ Lf lfl

0 Ll

]
, (3)

where Lf corresponds to the indices of followers, and Ll

corresponds to the indices of leaders.
Assume the nl leaders are governed by some exogenous

control input z ∈ Rnl which can steer the states of the leaders
to be arbitrary values. Based on the partition of agents, we
can write the agreement dynamics (1)-(2) as

[
ẋ
ẏ

]
= −

[ Lf lfl

0 Ll

] [
x
y

]
+

[
0
z

]
,

where x is the stacked vector of followers’ states and y is the
stacked vector of leaders’ states. Then the dynamics of the
followers can be viewed as a controlled linear time-invariant
system

ẋ = −Lfx− lfly (4)

with the control input being the leaders’ states y. We call
the above controlled linear time-invariant system to be a
controlled agreement system of the network. The following
definition presents the concept of a network being completely
controllable.

Definition 1: For a given network Gx, we say the network
is completely controllable under some prescribed leaders,
if its associated controlled agreement system is completely
controllable.
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2) Network with undirected graph: Communication links
of the whole network are bidirectional (Actually, in the agree-
ment context there is no partition of leader and follower over
this kind of networks). In order to transform the agreement
dynamics (1)-(2) into a controlled agreement system, some
agents are appointed leaders, the movements of which are
dominated by some exogenous control inputs besides the
states of their neighbors. In Fig. 1, if we view the two pairs
of arcs in opposite directions, connecting 4, 1 and 5, 3, as
two edges, then the corresponding graph is an example of
such a network.

Suppose there are N followers and nl leaders over the
network, then the Laplacian matrix of its graph G has the
form

L =
[ Lf lfl

lTfl Ll

]
, (5)

where Lf and Ll have the same meanings as in (3). Then
from the dynamics

[
ẋ
ẏ

]
= −

[ Lf lfl

lTfl Ll

] [
x
y

]
+

[
0
z

]

we can obtain that the controlled agreement system of the
network is taken in the form (4) as well.

Remark 1: Observing the properties of the two kinds
of networks, we find that a network with leader-following
structure has the same controlled agreement system as a
network with undirected graph, under the same partition
of leaders and followers and same block matrices Lf and
lfl in their respective Laplacian matrices. Thus it is natural
to think that there may be some connections between the
controllability of networks with leader-following structure
and that of networks with undirected graph.

Based on the observation, we next establish a unified
framework for the controllability of the two kinds of net-
works. To this end, we provide the following definition on
the underlying undirected graph of a graph.

Definition 2: For a given graph G = (V, E), we say an
undirected graph to be the underlying undirected graph of
G, denoted by Gu = (Vu, Eu), if Vu = V , and Eu is an
edge set of unordered pairs of distinct vertices of Vu, where
an edge eu

ij ∈ Eu if eij ∈ E or eji ∈ E .
Given a network Gx with some prescribed leaders, de-

note the corresponding Laplacian matrix of G as L =[ Lf lfl

llf Ll

]
. Let S be a collection of graphs, where G ∈ S

means that the Laplacian matrix associated with its underly-
ing undirected graph Gu has the form

Lu =
[ Lf lfl

lTfl L̃l

]
, (6)

where Lf and L̃l are symmetric.
Remark 2: It is evident that networks with leader-

following structure studied in [20]-[23] and networks with
undirected graph studied in [24]-[25] belong to the collection
S. This brings the two kinds of networks into a unified
framework. In addition, for a given network Gx with G ∈
S, the controlled agreement system of the network Gu

x

is the same as that of the network Gx. Consequently, the
controllability of Gx is equivalent to that of Gu

x .
Under the unified framework, we derive some new neces-

sary/sufficient conditions for the controllability of networks
with G ∈ S in the next section, which extend and improve
some results in the literature to a certain extent.

III. NETWORKS OF SINGLE-INTEGRATOR
AGENTS

Assumption 1: ([22]) For a given graph G ∈ S, let Gf

and Gl be the respective induced subgraphs by the follower
vertices and the leader vertices; Gf and Gl are called follower
subgraph and leader subgraph, respectively. We assume that
the leader subgraph Gl is linked to all the connected compo-
nents of the follower subgraph Gf . That is to say, for each
of the connected components of Gf , there exists at least one
leader in Gl and one follower in the connected component
such that there is a path from the leader to the follower.

Assumption 1 indicates that the state of each follower has
direct or indirect connection with the control inputs, i.e., the
states of leaders. In the context of control theory of linear
systems, this assumption is necessary for the controllability
of controlled linear system. We will extend the necessary
condition to the case of networks with general digraph in
Section VI.

Proposition 1: For a given network Gx with dynamics (1)-
(2) and G ∈ S, suppose there are nl ≥ 1 leaders and N
followers over the network, and the underlying undirected
graph is Gu with Laplacian matrix Lu. If Assumption 1 is
satisfied, then the corresponding controlled agreement system
(4) is completely controllable if and only if there are no
common eigenvalues of Lu and Lf .

Proposition 1 presents a necessary and sufficient condition
for the controllability of the network Gx with nl ≥ 1
leaders based on the eigenvalues of Lf . We next establish
a necessary condition for the controllability of the network
characterized by the eigenvalues and the eigenvectors of
Lf . Note that there is no any theoretical result on the
controllability of networks with leader-following structure
and multiple leaders in the literature, although the problem
was first proposed in [20].

Theorem 1: For a given network Gx with dynamics (1)-
(2) and G ∈ S, suppose there are nl ≥ 1 leaders and N
followers over the network, and Assumption 1 is satisfied. If
the associated controlled agreement system (4) is completely
controllable, then À there exists no eigenvalue of Lf with
multiplicity more than nl; Á if there exists an eigenvalue of
Lf with multiplicity k ≤ nl, then the product matrix Mlfl

has full row rank, where M ∈ Rk×N is composed of the k
linearly independent left eigenvectors corresponding to the
eigenvalue.

Remark 3: In the case of networks with one leader, the
result of Theorem 1 is consistent with that of Theorem IV.1
of [20].

Remark 4: Proposition 1 and the proof of Theorem 1 are
derived based on Remark 2, i.e., the equivalence in the
context of modeling the controlled agreement systems for
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the network Gx ∈ S and the network Gu
x . In the viewpoint

of networks with leader-following structure, Proposition 1
provides a simpler criterion for the controllability of (4)
than the conditions of Theorem 1. This improves the results
of [20]-[22]. In the viewpoint of networks with undirected
graph, Proposition 1 expands the applicable ranges for the
results of [25].

IV. NETWORKS OF DOUBLE-INTEGRATOR
AGENTS

In this section, we consider the controlled agreement
problems for a network of N + nl double-integrator agents.
The dynamics of each agent is given by

ẋi = vi, v̇i = ui, i ∈ N + nl, (7)

where xi ∈ R and vi ∈ R are the position information and
the velocity information of agent i respectively, and ui ∈ R
is the control input. We will study the controlled agreement
problems for the network under two agreement protocols:
one is with the feedbacks of relative velocities ([15])

ui =
∑

j∈Ni

(xj − xi) + k
∑

j∈Ni

(vj − vi), i ∈ N + nl, (8)

and the other is with the feedback of absolute velocity ([16])

ui =
∑

j∈Ni

(xj − xi) + kvi, i ∈ N + nl, (9)

where k 6= 0 is a feedback gain.
Next, we investigate the controlled agreement problems

for the network in (7) with topology modeled by a digraph
G. Assume there are nl ≥ 1 leaders and N followers. The
movement of these leaders are dominated by some exogenous
control inputs z ∈ Rnl , which can drive the states of the
leaders to arbitrary values. Label the followers 1 through N ,
and the leaders N + 1 through N + nl. Then the associated
Laplacian matrix of G has the form

L =
[ Lf lfl

llf Ll

]
,

where Lf ∈ RN×N and Ll ∈ Rnl×nl have the same
meanings as those in (3), and llf indicates the communication
links from the follower group to the leader group.

According to the partition of leaders and followers, the
multi-agent system (7) under protocol (8) can be written as



ẋ
ẏ
v̇x

v̇y


 =




0 0 IN 0
0 0 0 Im

−Lf −lfl−kLf −klfl

−llf −Ll −llf −kLl







x
y
vx

vy


 +




0
0
0
z


 ,

where x = [x1 · · · xN ]T is the stacked vector of the
followers’ positions, y = [xN+1 · · · xN+nl

]T is the stacked
vector of the leaders’ positions, vx = [v1 · · · vN ]T and
vy = [vN+1 · · · vN+nl

]T are the velocity vector of the
followers and the velocity vector of the leaders respectively,
and z ∈ Rnl is the collection of exogenous control inputs
of the leaders. Consequently, we can describe the dynamics

of the followers to be the following controlled linear time-
invariant system[

ẋ
v̇x

]
=

[
0 IN

−Lf−kLf

] [
x
vx

]
+

[
0 0
−lfl−klfl

] [
y
vy

]
,

(10)
where the control inputs are the positions and velocities of
the leaders.

For the multi-agent system (7) under protocol (9), the
dynamics of the whole closed-loop system is represented by



ẋ
ẏ
v̇x

v̇y


 =




0 0 IN 0
0 0 0 Im

−Lf −lfl kIN 0
−llf −Ll 0 kIm







x
y
vx

vy


 +




0
0
0
z


 ,

where x, y, vx, vy and z are defined as above. Then the
dynamics of the followers can be written as the following
controlled linear time-invariant system[

ẋ
v̇x

]
=

[
0 IN

−Lf kIN

] [
x
vx

]
+

[
0
−lfl

]
y, (11)

where the control inputs are the positions of the leaders.
The terminologies and notations which appear in this

section have the same meanings as those in Section II.
Theorem 2: For a given network Gx with dynamics (7)-

(8) and a digraph G, suppose there are nl leaders and N
followers. Then the associated controlled agreement system
(10) is completely controllable if and only if the controlled
agreement system (4), i.e., (−Lf , −lfl), is completely
controllable.

Analogously, we derive the following necessary and suffi-
cient condition for the controllability of the system (7) under
protocol (9).

Theorem 3: For a given network Gx with dynamics (7)(9)
and a digraph G, suppose there are nl leaders and N
followers. Then the associated controlled agreement system
(11) is completely controllable if and only if the controlled
agreement system (4) is completely controllable.

The above results are very interesting as the controllability
of networks of double-integrator agents is equivalent to
that of networks of single-integrator agents under the same
topology and same prescribed leaders. In other words, the
controllability of networks (7)-(8) (or (7)(9)) is independent
of the dynamics of agents, and only determined by their
topologies. In this sense, for network (7)-(8) (or (7)(9)) with
graph G ∈ S, the criteria for the controllability of networks
of single-integrator agents established in Proposition 1 and
Theorem 1 are suitable for determining the controllability of
the network.

V. NETWORKS OF HIGH-ORDER-INTEGRATOR
AGENTS

In this section, we consider the controlled agreement
problems for a network of N + nl high-order-integrator
agents. The dynamics of each agent is given by the following
mth-order integrator

ẋ
(1)
i = x

(2)
i , · · · , ẋ

(m−1)
i = x

(m)
i ,

ẋ
(m)
i = ui, i ∈ N + nl,

(12)

5668



where m is a positive integer which denotes the order of the
differential equations (12); x

(k+1)
i , k ∈ m− 1 is the kth-

order derivative of x
(1)
i ; ui ∈ R is the control input. We will

study the controlled agreement problems for such a network
under the following two agreement protocols: one is with the
feedback of all relative information among agents (see [17])

ui =
m−1∑

k=0

∑

j∈Ni

ck(x(k+1)
j − x

(k+1)
i ), i ∈ N + nl; (13)

the other is with the feedback of partial relative information
among agents (see [18])

ui =
∑m−1

k=1 ckx
(k+1)
i +

∑
j∈Ni

(x(1)
j − x

(1)
i ), i ∈ N + nl,

(14)
where c0, c1, · · · , cm−1 are nonzero feedback gains.

We first explain why the high-order integrator is employed
to describe the dynamics of agents. The idea is inspired by
the following four facts. First, any completely controllable
continuous-time linear time-invariant (LTI) system, having
the state-space equation ẋ = Ax + Bu, can be equivalently
brought into a collection of decoupled and independently
controlled chains of integrators, under an appropriate non-
singular linear transformation and a suitable state feedback
(see [28]). Second, denoting the controlled system ẋ =
Ax+Bu as the matrix pair (A, B), the set of all completely
controllable pairs (A,B) is open and dense in the space
composed of all matrix pairs (A,B) (see [26] and the
references therein). Third, for a group of autonomous agents
with dynamics ẋi = Axi + bvi, i ∈ N + nl, which is
completely controllable and can be transformed into the
high-order integrator (12), if the multi-agent system (12)
is completely controllable, then the group of agents with
dynamics ẋi = Axi + bvi is completely controllable. Note
that we take a single-input LTI system for example. This is
because any completely controllable multi-input LTI system
can be transformed into a completely controllable single-
input LTI system (see [19]). Finally, the high-order-integrator
model of agents is a generalization of the single-integrator
and the double-integrator model, which are widely studied in
the literature such as [11], [12], [15] and [16]. Hence it is of
physical interest and of theoretical interest to investigate the
controllability for networks of high-order-integrator agents.
Due to space limitations, we will not review the first and the
third facts.

Following the same manner as in Section IV, we can
transform system (12)-(13) and system (12)(14) into their
respective controlled linear time-invariant systems (We leave
out the details due to space limitations). Moreover, given
a network Gx with dynamics (12)-(13) (or (12)(14)) and
digraph G, suppose there are nl leaders and N followers,
then all the results established in Section IV are suitable for
the network. This further implies that the controllability of
networks of identical agents with dynamics ẋi = Axi + bvi,
where (A, b) is completely controllable, is equivalent to
that of networks of single-integrator agents under the same
topology and same prescribed leaders.

VI. SOME DISCUSSIONS

In this section, we investigate some influencing factors of
the controllability. Unless otherwise stated, a network means
network of single-integrator agents throughout this section.

One influencing factor of the controllability is the selection
of leaders, namely, the positions and the number. In the
literature [22], a necessary condition for the controllability
of networks with leader-following structure has been estab-
lished. We next extend the result to the case of networks
with digraph.

Theorem 4: For a given network Gx with dynamics (1)-(2)
and digraph G, suppose there are nl leaders and N followers.
Denote the induced subgraph of the followers as Gf and
the induced subgraph of the leaders as Gl. If the network is
completely controllable, then for every strongly connected
component of Gf , there exists at least one leader such that
there is a path from the leader to the strongly connected
component.

Theorem 4 indicates that the positions of leaders have
important effect on the controllability.

In addition, Proposition 1 implies that the number of
leaders has great influence on the controllability as well.
Specifically, for a given network of N agents with topology
G ∈ S, let Gu be the underlying undirected graph of G and
Lu be the associated Laplacian to Gu. Take k (< N ) agents
arbitrarily as the leaders of the network. Denote the principle
sub-matrix of Lu as Lf ∈ R(n−k)×(N−k), which is obtained
by deleting the rows and the columns indicated by the indices
of the leaders. If there is a principle sub-matrix Lf has no
common eigenvalue with Lu, then the network with k leaders
is completely controllable, according to Proposition 1. If any
principle sub-matrix with order N−k of Lu shares common
eigenvalue with it, then the network is not controlled by any
k leaders, in other words, any k agents of the network are
not able to control the remainder completely.

It is known that the controllability of a LTI system depends
upon the structures and the parameters of its coefficient
matrices. In the proceeding sections, we have discussed
the controlled agreement problems for networks with un-
weighted graph. However, agreement protocols are given in
the forms of weighted ones in most literature, i.e., there exist
link weights distinct to 1 (see [11]-[12], [15]-[18]). Ignoring
link weights of the network means ignoring the parameters
of the system.

As a matter of fact, for a given unweighted graph and some
prescribed leaders, we can turn an uncontrollable network
with the unweighted graph into a controllable network by
selecting appropriate weights for the communication links.
As a trivial example, consider the unweighted complete
graph with three vertices. (Note that in [20], it is proved that a
network with unweighted complete graph is uncontrollable.)
If we put the following weighted adjacency matrix on the

graph A =




0 1 1
2

1 0 1
3

1
2

1
3 0


 , then by appointing any one

agent as leader, the resulting controlled agreement system
(−Lf , −lfl) is completely controllable. This example shows
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that the link weights have important effect on the control-
lability of networks. Notice that the results established in
the previous sections are valid for networks with weighted
graph as well. Therefore, for a given unweighted graph
and some prescribed leaders, we wonder how to select
appropriate link weights such that the resulting weighted
network is completely controllable, and whether or not there
are some connections between the controllability of multi-
agent systems and the structural controllability of linear
systems (see [26], [27]). In the light of this investigation, we
derive the following result on the structural controllability of
networks.

Theorem 5: For a given network Gx with dynamics (1)-(2)
and digraph G, suppose there are nl leaders and N followers.
Denote the induced subgraph of the followers as Gf and the
induced subgraph of the leaders as Gl. Then the network
is structurally controllable if and only if for every strongly
connected component of Gf , there exists at least one leader
such that there is a path from the leader to the strongly
connected component.

Note that the network is called to be structural control-
lable, if the system (−Lf , −lfl) is structural controllable.

In summary, for a network with unweighted graph, the
link weights, the positions and the number of leaders have
important influence on the controllability. The research on
controllability of multi-agent systems needs more explo-
ration of the properties of graphs. Moreover, there are some
prospectives for further research on this subject, for example,
selecting appropriate link weights such that the network
is completely controllable; choosing proper positions and
suitable number of leaders to make the network completely
controllable.

VII. CONCLUSIONS

This paper has investigated the controllability of multi-
agent systems. Some new necessary/sufficient conditions for
controllability of networks of single-integrator agents have
been established. For a group of double-integrator agents, it
has been proved that the controllability of the entire group
is equivalent to that of networks of single-integrator agents
under the same topology and same prescribed leaders. This
result has been extended to networks of high-order-integrator
agents. At last, it has been shown that the selection of leaders
and the link weights have great effect on the controllability.
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