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Abstract— The concept of decentralized energy-based hybrid
control involves hybrid dynamic subcontrollers with discon-
tinuous states that individually control each subsystem of
a large interconnected dynamical system. Specifically, each
subcontroller accumulates the emulated energy and when the
states of the subcontroller coincide with a high emulated energy
level, then we can reset these states to remove the emulated
energy so that the emulated energy is not returned to the
subsystem. The real physical energy of each subsystem in
this case is constantly dissipated through the motion of the
actuators due to the subcontroller state resettings. In this
paper, we specialize the general decentralized energy-based
hybrid control framework to interconnected Euler-Lagrange
dynamical systems and experimentally verify it on the multi-
RTAC (rotational/translational proof-mass actuator) system. In
addition, we discuss hardware used and experimental testbed
involving three RTAC carts connected by the springs and
present experimental results using decentralized energy-based
hybrid controllers. This testbed presents a unique experimental
platform for studying benchmark problems in decentralized
nonlinear control design.

I. INTRODUCTION

In the control-system design of complex large-scale dy-
namical systems it is often desirable to treat the overall
system as a collection of interconnected subsystems. The
behavior of the composite (i.e., large-scale) system can then
be predicted from the behaviors of the individual subsystems
and their interconnections. The need for decentralized control
design of large-scale systems is a direct consequence of the
physical size and complexity of the dynamical model. Due
to the broad range of applications of large-scale intercon-
nected systems including mechanical systems, fluid systems,
electromechanical systems, electrical systems, combustion
systems, structural vibration systems, biological systems,
physiological systems, power systems, telecommunications
systems, and economic systems, to cite but a few examples,
decentralized control has received considerable attention in
the literature [1], [2], [3], [4], [5], [6], [7]. Some of the
decentralized control techniques based on subsystem decom-
position were studied in [1], [2], [3], [7] with control design
procedures applied to the individual subsystems of the large-
scale system.

Alternatively, a novel energy-based hybrid decentralized
control framework for lossless and dissipative [8] large-scale
dynamical systems based on subsystem decomposition was
developed in [9]. The concept of an energy-based hybrid
decentralized controller can be viewed as a feedback control
technique that exploits the coupling between a physical large-
scale dynamical system and an energy-based decentralized
controller to efficiently remove energy from the physical
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large-scale system. Specifically, if a dissipative or lossless
large-scale system is at high energy level, and a lossless
feedback decentralized controller at a low energy level is
attached to it, then subsystem energy will generally tend to
flow from each subsystem into the corresponding subcon-
troller, decreasing the subsystem energy and increasing the
subcontroller energy [10]. Of course, emulated energy, and
not physical energy, is accumulated by each subcontroller.
Conversely, if each attached subcontroller is at a high energy
level and the corresponding subsystem is at a low energy
level, then energy can flow from each subcontroller to
each corresponding subsystem, since each subcontroller can
generate real, physical energy to effect the required energy
flow. Hence, if and when the subcontroller states coincide
with a high emulated energy level, then we can reset these
states to remove the emulated energy so that the emulated
energy is not returned to the plant. This energy-dissipating
hybrid control effectively enforces a one-way energy transfer
between each subsystem and the corresponding subcontroller
[11]. In this case, the overall closed-loop system consist-
ing of the plant and the controller possesses discontinuous
flows since it combines logical switchings with continuous
dynamics, leading to impulsive differential equations [12],
[13], [14].

In this paper, we specialize the decentralized energy-based
hybrid control framework developed in [9] to interconnected
Euler-Lagrange dynamical systems and experimentally apply
it to stabilize the multi-RTAC system in real time. The RTAC
system represents a translational oscillator and a rotational
proof-mass attached to it. The nonlinear coupling between
the rotational motion of the proof-mass and translational
motion of the cart provides the basis for control. The problem
of a single RTAC system stabilization has been extensively
studied in the literature [15], [16], [17], [18] and presents a
benchmark problem in nonlinear control design [19], [16],
[20]. Furthermore, energy-based hybrid control for a single
RTAC model was presented in [14] with its experimental
validation shown in [21]. In this paper, we present the ex-
perimental testbed including three RTAC systems connected
by springs for decentralized energy-based hybrid control
design and discuss hardware implementation for this multi-
RTAC system. This experimental testbed presents a unique
testing platform which, in addition to traditional stabilization
and tracking problems, allows for studying various physical
phenomena such as Poincaré recurrence [22], [23], synchro-
nization of mechanical systems [24], [25], [26], and chaos
[27], to cite but a few examples.

II. INTERCONNECTED EULER-LAGRANGE DYNAMICAL

SYSTEMS

In this section, we specialize the decentralized energy-
based hybrid control framework developed in [9] to intercon-
nected Euler-Lagrange dynamical systems. For this, consider
the governing equations of motion of an n-degree-of-freedom
dynamical system given by the Euler-Lagrange equation

d

dt

[

∂L

∂q̇
(q(t), q̇(t))

]T

−

[

∂L

∂q
(q(t), q̇(t))

]T

= u(t),
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q(0) = q0, q̇(0) = q̇0, (1)

where t ≥ 0, q ∈ R
n represents the generalized system po-

sitions, q̇ ∈ R
n represents the generalized system velocities,

L : R
n × R

n → R denotes the system Lagrangian given
by L(q, q̇) = T (q, q̇) − U(q), where T : R

n × R
n → R

is the system total kinetic energy and U : R
n → R

is the system total potential energy, and u ∈ R
n is the

vector of generalized control forces acting on the system. We
assume that (1) represents an interconnected Euler-Lagrange
dynamical system composed of s subsystems given by

d

dt

[

∂L

∂q̇i

(q(t), q̇(t))

]T

−

[

∂L

∂qi

(q(t), q̇(t))

]T

= ui(t),

i = 1, . . . , s, (2)

where qi ∈ R
ni , ui ∈ R

ni , i = 1, . . . , s,
∑s

i=1 ni = n,

q = [qT
1 , . . . , qT

s ]T, u = [uT
1 , . . . uT

s ]T, qi and q̇i represent,
respectively, generalized subsystem positions and velocities,
and ui denotes the vector of decentralized control input for
the ith subsystem.

Furthermore, let H : R
n × R

n → R denote the Legen-
dre transformation of the Lagrangian function L(q, q̇) with

respect to the generalized velocity q̇ defined by H(q, p) ,

q̇Tp − L(q, q̇), where p denotes the vector of generalized

momenta given by p(q, q̇) =
[

∂L
∂q̇

(q, q̇)
]T

, and where the

map from the generalized velocities q̇ to the generalized
momenta p is assumed to be bijective (i.e., one-to-one and
onto). Note that p = [pT

1 , . . . , pT
s ]T, where pi(q, q̇) ,

[

∂L
∂q̇i

(q, q̇)
]T

, i = 1, . . . , s, denotes the vector of the ith

subsystem generalized momenta. We assume that the system
total kinetic energy is such that T (q, q̇) = 1

2 q̇T[∂T
∂q̇

(q, q̇)]T,

T (q, 0) = 0, and T (q, q̇) > 0, q̇ 6= 0, q̇ ∈ R
n. We also

assume that the system total potential energy U(·) is such
that U(0) = 0 and U(q) > 0, q 6= 0, q ∈ Dq ⊆ R

n, which
implies that H(q, p) = T (q, q̇) + U(q) > 0, (q, q̇) 6= 0,
(q, q̇) ∈ Dq × R

n.

Next, we present a decentralized hybrid feedback control
framework for Euler-Lagrange dynamical systems. Specifi-
cally, consider the ith subsystem (2) with output

yi =

[

h1i(qi)
h2i(q̇i)

]

=

[

h1i(qi)

h2i

(

∂H
∂pi

(q, p)
)

]

, (3)

where i = 1, . . . , s, yi ∈ R
li , h1i : R

ni → R
l1i and h2i :

R
ni → R

li−l1i are continuously differentiable, h1i(0) = 0,
h2i(0) = 0, and h1i(qi) 6≡ 0. Next, consider the decentralized
energy-based hybrid controller for the ith subsystem

d

dt

[

∂Lci

∂q̇ci
(qci(t), q̇ci(t), yqi

(t))

]T

−

[

∂Lci

∂qci
(qci(t), q̇ci(t), yqi

(t))

]T

= 0,

qci(0) = qci0, q̇ci(0) = q̇ci0,

(qci(t), q̇ci(t), yi(t)) 6∈ Zci, (4)
[

∆qci(t)
∆q̇ci(t)

]

=

[

ηi(yqi
(t)) − qci(t)
−q̇ci(t)

]

,

(qci(t), q̇ci(t), yi(t)) ∈ Zci, (5)

ui(t) =

[

∂Lci

∂qi

(qci(t), q̇ci(t), yqi
(t))

]T

, (6)

where t ≥ 0, i = 1, . . . , s, qci ∈ R
nci represents virtual

subcontroller positions, q̇ci ∈ R
nci represents virtual sub-

controller velocities, nc ,
∑s

i=1 nci, yqi
, h1i(qi), Lci :

R
nci×R

nci×R
l1i → R denotes the subcontroller Lagrangian

given by Lci(qci, q̇ci, yqi
) , Tci(qci, q̇ci) − Uci(qci, yqi

),
where Tci : R

nci × R
nci → R is the subcontroller kinetic

energy and Uci : R
nci × R

l1i → R is the subcontroller
potential energy, ηi(·) is a continuously differentiable func-
tion such that ηi(0) = 0, Zci ⊂ R

nci × R
nci × R

li is the

ith subcontroller resetting set, ∆qci(t) , qci(t
+) − qci(t),

∆q̇ci(t) , q̇ci(t
+)− q̇ci(t), and tk, k ∈ Z+, denotes a reset-

ting instant. We assume that the subcontroller kinetic energy
Tci(qci, q̇ci) is such that Tci(qci, q̇ci) = 1

2 q̇T
ci[

∂Tci

∂q̇ci

(qci, q̇ci)]
T,

with Tci(qci, 0) = 0 and Tci(qci, q̇ci) > 0, q̇ci 6= 0, q̇ci ∈
R

nci . Furthermore, we assume that Uci(ηi(yqi
), yqi

) = 0 and
Uci(qci, yqi

) > 0 for qci 6= ηi(yqi
), qci ∈ R

nci .

We define the total energy of the interconnected sys-

tem (1) as Vp(q, q̇) , T (q, q̇) + U(q) and we define the

sum of subcontroller emulated energies as Vc(qc, q̇c, yq) ,
∑s

i=1 Tci(qci, q̇ci) + Uci(qci, yqi
) =

∑s

i=1 Vci(qci, q̇ci, yqi
),

where qc , [qT
c1, . . . , q

T
cs]

T, q̇c , [q̇T
c1, . . . , q̇

T
cs]

T, and yq ,

[yT
q1

, . . . , yT
qs

]T. Finally, we define the total energy of the
interconnected closed-loop system (2)–(6) as

V (q, q̇, qc, q̇c) , Vp(q, q̇) + Vc(qc, q̇c, yq). (7)

Next, we study the behavior of the total energy function
V (q, q̇, qc, q̇c) along the trajectories of the closed-loop sys-
tem dynamics. For the interconnected closed-loop system
(2)–(6), we define the resetting set as

Z , ∪s
i=1{(q, q̇, qc, q̇c) ∈ Dq × R

n × R
nc × R

nc :

(qci, q̇ci, yi) ∈ Zci}. (8)

Note that d
dt

Vp(q, q̇) = d
dt
H(q, p) = uTq̇, (q, q̇, qc, q̇c) 6∈ Z .

Furthermore, we define the ith subcontroller Hamiltonian by

Hci(qci, q̇ci, pci, yqi
) , q̇T

cipci − Lci(qci, q̇ci, yqi
),

i = 1, . . . , s, (9)

where the subcontroller momentum pci is given by

pci(qci, q̇ci, yqi
) =

[

∂Lci

∂q̇ci

(qci, q̇ci, yqi
)
]T

, and it follows from

the structure of Tci(qci, q̇ci) that Hci(qci, q̇ci, pci, yqi
) =

Vci(qci, q̇ci, yqi
) = Tci(qci, q̇ci) + Uci(qci, yqi

). Now, it fol-
lows from (4), (6), and (9) that, for t ∈ (tk, tk+1],

d

dt
Vci(qci(t), q̇ci(t), yqi

(t)) = −uT
i (t)q̇i(t),

(q(t), q̇(t), qc(t), q̇c(t)) 6∈ Z. (10)

Hence,

d

dt
V (q(t), q̇(t), qc(t), q̇c(t)) = u(t)Tq̇(t) −

s
∑

i=1

uT
i (t)qi(t)

= 0,
(q(t), q̇(t), qc(t), q̇c(t)) 6∈ Z, tk < t ≤ tk+1, (11)

which implies that the total energy of the interconnected
closed-loop system between resetting events is conserved.

The total energy difference across resetting events can be
shown to satisfy

∆V (q(tk), q̇(tk), qc(tk), q̇c(tk)) < 0,

(q(tk), q̇(tk), qc(tk), q̇c(tk)) ∈ Z, k ∈ Z+. (12)
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In fact, the resetting law (5) ensures the total energy decrease
across resetting events by an amount equal to the accumu-
lated emulated subcontroller energy.

Here, we consider decentralized energy-dissipating state-
dependent resetting controllers that affect a one-way energy
transfer between the corresponding subsystem and the sub-
controller. Specifically, consider the closed-loop system (2)–
(6), where Zci, i = 1, . . . , s, are defined by

Zci ,

{

(qi, q̇i, qci, q̇ci) :
d

dt
Vci(qci, q̇ci, yqi

) = 0

and Vci(qci, q̇ci, yqi
) > 0} . (13)

For practical implementation, knowledge of qc, q̇c, and yq is
sufficient to determine whether or not the closed-loop state
vector is in the set Z given by (8), where Zci, i = 1, . . . , s,
are defined by (13).

The following definition is needed for the main result of
this section. First, however, recall that the Lie derivative of
a smooth function X : D → R along the vector field of

the continuous-time dynamics f(x) is given by LfX (x) ,
d
dt
X (ψ(t, x))|t=0 = ∂X (x)

∂x
f(x), where ψ(t, x), t ≥ 0, is the

solution to

ẋ(t) = f(x(t)), x(0) = x0, t ≥ 0, (14)

with the initial condition x0 = x, and the zeroth and higher-

order Lie derivatives are, respectively, defined by L0
fX (x) ,

X (x) and Lk
fX (x) , Lf (Lk−1

f X (x)), where k ≥ 1.

Definition 2.1: Let M , ∪q
i=1{x ∈ D : Xi(x) = 0},

where Xi : D → R, i = 1, . . . , q, are infinitely differentiable
functions. A point x ∈ M such that f(x) 6= 0 is k-
transversal to (14) if there exist ki ∈ {1, 2, . . .}, i = 1, . . . , q,
such that

Lr
fXi(x) = 0, r = 0, . . . , 2ki − 2, L2ki−1

f Xi(x) 6= 0,

i = 1, . . . , q. (15)

The next theorem gives sufficient conditions for stabi-
lization of interconnected Euler-Lagrange dynamical sys-
tems using decentralized energy-based hybrid controllers.

For this result define the closed-loop system states x ,
[qT, q̇T, qT

c , q̇T
c ]T.

Theorem 2.1: Consider the interconnected closed-loop
dynamical system G given by (2)–(6), with the resetting
set Z given by (8), where Zci, i = 1, . . . , s, are defined
by (13). Assume that Dci ⊂ Dq × R

n × R
nc × R

nc is
a compact positively invariant set with respect to G such

that 0 ∈
◦

Dci. Furthermore, assume that the k-transversality
condition (15) holds for the continuous-time dynamics of the
closed-loop system (2)–(6) with Xi(x) = d

dt
Vci(qci, q̇ci, yqi

),
i = 1, . . . , s. Then the zero solution x(t) ≡ 0 to G is
asymptotically stable. Finally, if Dq = R

n and the total
energy function V (x) is radially unbounded, then the zero
solution x(t) ≡ 0 to G is globally asymptotically stable.

Proof. The proof is omitted due to page limitation.

III. MULTI-RTAC SYSTEM

In this section, we describe the multi-RTAC nonlinear
system and design decentralized energy-based hybrid con-
trollers to stabilize the zero equilibrium state. The multi-
RTAC system shown in Figure 1 consists of three identical
translational oscillating carts connected by linear springs
along with three identical eccentric rotational inertias which
act as proof-mass actuators mounted on each cart. Rotational

motion of each proof-mass is nonlinearly coupled with
the translational motion of the corresponding cart that the
proof-mass is mounted on which provides the mechanism
for control. The oscillator carts, each with mass M , are
connected to each other as well as fixed supports via linear
springs of stiffness k. The carts are constrained to one-
dimensional motion and the rotational proof-mass actuators
consist of mass m and mass moment of inertia I located at
a distance e from the axis of rotation.

Letting qi and q̇i, i = 1, 2, 3, denote the translational

position and velocity of each cart, letting θi and θ̇i, i =
1, 2, 3, denote the angular position and angular velocity
of each rotational proof-mass, and letting N1, N2, and N3
denote the control torques applied to each proof-mass, we
use the total physical energy of the multi-RTAC system

Vp(qi, q̇i, θi, θ̇i) = k(q2
1 + q2

2 + q2
3 − q1q2 − q2q3)

+
1

2
(M + m)(q̇2

1 + q̇2
2 + q̇2

3)

+
1

2
(I + me2)(θ̇2

1 + θ̇2
2 + θ̇2

3)

+me(q̇1θ̇1 cos θ1 + q̇2θ̇2 cos θ2

+q̇3θ̇3 cos θ3)

+mge[(1 − cos θ1) + (1 − cos θ2)

+(1 − cos θ3)], (16)

to obtain the dynamic equations of motion given by

(M + m)q̈1 = −me(θ̈1 cos θ1 − θ̇2
1 sin θ1) − 2kq1

+kq2, (17)

(I + me2)θ̈1 = −meq̈1 cos θ1 − mge sin θ1 + N1, (18)

(M + m)q̈2 = −me(θ̈2 cos θ2 − θ̇2
2 sin θ2) + kq1

−2kq2 + kq3, (19)

(I + me2)θ̈2 = −meq̈2 cos θ2 − mge sin θ2 + N2, (20)

(M + m)q̈3 = −me(θ̈3 cos θ3 − θ̇2
3 sin θ3) + kq2

−2kq3, (21)

(I + me2)θ̈3 = −meq̈3 cos θ3 − mge sin θ3 + N3, (22)

with the problem data given in Table I, decentralized control
inputs ui = Ni, i = 1, 2, 3, and outputs yi = θi, i = 1, 2, 3.

To design decentralized state-dependent hybrid controllers
for (17)–(22), let nci = 1, Vci(qci, q̇ci, θi) = 1

2mcq̇
2
ci +

1
2kc(qci − θi)

2, Lci(qci, q̇ci, θi) = 1
2mcq̇

2
ci −

1
2kc(qci − θi)

2,
yqi = θi, and ηi(yqi) = yqi, where mc > 0 and kc > 0,
and i = 1, 2, 3. Then decentralized state-dependent hybrid
subcontroller has the form

mcq̈ci + kc(qci − θi) = 0, (qci, q̇ci, θi, θ̇i) 6∈ Zi, (23)
[

∆qci

∆q̇ci

]

=

[

θi − qci

−q̇ci

]

, (qci, q̇ci, θi, θ̇i) ∈ Zi, (24)

ui = kc(qci − θi), (25)

with the resetting set (13) taking the form

Zi =
{

(qci, q̇ci, θi, θ̇i) ∈ R
4 : kcθ̇i(qci − θi) = 0

and

[

θi − qci

−q̇ci

]

6= 0

}

. (26)

It was shown in [14] that the closed-loop system (17)–
(22) and (23)–(26) satisfies k-transversality condition given
in Definition 2.1, and hence, by Theorem 2.1, is globally
asymptotically stable. In the next section, we implement the
decentralized energy-based hybrid control framework on the
multi-RTAC testbed and present the experimental results.
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Description Parameter Value Units

Cart mass M 1.7428 kg
Eccentric mass m 0.2739 kg

Arm eccentricity e 0.0537 m

Arm inertia I 0.000884 kg·m2

Spring stiffness k 170 N/m
Controller parameter mc 0.0012 —
Controller parameter kc 0.0811 —

TABLE I

PROBLEM DATA FOR THE RTAC SYSTEM.

Description Manufacturer Model

Air Bushing New Way bearings S301201
Laser sensor Micro-Epsilon ILD1300-200
DC motor MicroMo 3863H012C

Shaft Encoder MicroMo HEDM5500J12
Motor Controller Advanced Motion Controls 12A8

DAQ board National Instruments NI6024E
Encoder/Timer National Instruments NI 6601

TABLE II

MODEL AND MANUFACTURER INFORMATION OF HARDWARE USED.

Fig. 1. Multi-RTAC testbed.

IV. HARDWARE DESCRIPTION AND EXPERIMENTAL

RESULTS

The experimental testbed constructed to implement the de-
centralized energy-based hybrid control technique is shown
in Figure 1. It consists of an aluminum base with two rails
that air bushings float on providing translational motion for
the carts with very low friction. Rotary actuators affixed with
eccentric arms and masses are fixed to the carts provid-
ing the control torques. The actuation is provided by DC
motors driven by a set of linear motor controllers, and the
measurements of the eccentric arm angles and cart positions
are performed with a quadrature encoder on each motor and
a laser displacement sensor for each cart, respectively. The
controller is implemented with the MathWorks MATLAB R©,

Simulink R©, and xPC Target
TM

software using National
Instruments PCI cards for I/O. The hardware used for the
testbed is listed in Table II.

Next, we provide a more detailed description of the experi-
mental testbed. Translational motion for each cart is provided
by four air bushings mounted into aluminum blocks. These
blocks are mounted to an aluminum plate to form the
platforms of the carts. These platforms are also constructed
to deliver air to the bushings through internal passageways
to eliminate excessive air fittings. The air bushings float on
two stainless steel precision shafts of 0.5 in in diameter that
are affixed to the aluminum base. Negligible damping effects
result from the motor and rail friction, resistance from hoses
and wires, and air resistance. Supports are attached to the
platforms to facilitate mounting of the rotational actuators
and the proof-masses. The supports are designed in such
a manner that they can be mounted either vertically or

Fig. 2. Diagram of real-time target implementation.

horizontally. This enables the experiment to be carried out
with and without gravitational effect on the proof-masses.
Four pretensioned extension springs attach the carts to each
other and to fixed supports mounted on the base. The springs
are easy to remove so that springs with different stiffnesses
can be used. The spring stiffness constant used for the testbed
was measured to be 170 N/m and the springs are shown to
be linear throughout the usable range. The control torque
for each cart in the system is provided by means of a proof-
mass attached to an actuator by an eccentric arm. The arms
are constructed in such a way that various proof-masses
may be used. The actuators are 12 volt DC motors which
generate a continuous torque of 0.11 N·m each with a stall
torque of 1.2 N·m, and have a thermally limited continuous
current of 7.6 A. Driving the motors are a set of PWM servo
amplifiers which can supply a peak current of 12 A and a
continuous current of 6 A. The units are operated in current
mode producing currents which are proportional to the input
voltages. The motor controllers have built-in current limiters
to protect the motors from high torque commands.

Measurement of the system states was accomplished with
quadrature encoders and laser displacement sensors. The
quadrature encoders measure the angular positions and ve-
locities of the proof-masses. The encoders are attached to
the back of the motors and have 1024 line per revolution
resolution. This gives an angular resolution of 0.09◦ when
used in quadrature mode. Positions of the translational
masses are measured with laser sensors that use optical
triangulation to measure displacement while velocities are
obtained by numerical differentiation of position data. The
sensors measure position with a static resolution of 100 µm
and dynamic resolution of 200 µm at a rate of 500 Hz and
with a measurement range of 200 mm. Laser sensors were
selected over other linear measurement sensors since they do
not influence the motion of the carts.

To implement the decentralized energy-based hybrid con-
trol in real time the MathWorks MATLAB R©, Simulink R©,

and xPC Target
TM

software were used. The diagram in
Figure 2 illustrates the hardware layout. The control law
is created in Simulink R©, then compiled into C code, and
then downloaded onto the target PC. The target PC runs
a real time operating system that executes the Simulink R©

block diagram. The Input/Output for the target PC consists
of National Instruments PCI-6024E and PCI-6601 PCI cards.
The PCI-6024E cards are used to acquire the distances
measured by the laser sensors, and to send voltages to the
motor controllers to generate the required control torques,
while the PCI-6601 card is used to read the encoders to
obtain the angles and directions of rotation of the proof-
masses.

Next, we show experimental results obtained from im-
plementing the decentralized energy-based hybrid control
framework presented in Section II on the multi-RTAC
testbed. The system parameters are shown in Table I with
initial conditions q1(0) = −0.074 m, q2(0) = −0.012 m,

q3(0) = −0.0055 m, q̇i(0) = 0, θi(0) = 0, θ̇i(0) = 0,
qci(0) = 0, and q̇ci(0) = 0, i = 1, 2, 3. Figure 3 shows
positions of the carts versus time while Figure 4 shows
the carts velocities versus time. Figure 5 shows the angular
positions of the pendulums versus time and Figure 6 shows
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Fig. 4. Velocities of the carts in m/s versus time.

their angular velocities versus time. Figures 7 and 8 show
the time history of each subcontroller states. Note that each
subcontroller states are discontinuous according to (24). The
control torques versus time are shown in Figure 9 and are
discontinuous at the resetting times as follows from (24)
and (25). Figure 10 shows the physical energy of the plant,
combined emulated energy of all subcontrollers, and the total
energy of the multi-RTAC system which is the sum of the
previous two. Although the sum of the plant energy and
controller emulated energy is supposed to remain constant
between resettings as shown in (11), in the experimental
setup the slight decreases in total energy are the result
damping effects that are always present in a physical system.

V. CONCLUSION

In this paper, we specialize the decentralized energy-based
hybrid control framework developed in [9] to stabilization
of interconnected Euler-Lagrange dynamical systems. The
control technique uses the coupling between the physical
dynamical system and controller to efficiently remove real
energy from the physical system. Specifically, the states of
the dynamic controller reset in such a way that the real
plant energy is always dissipated through the motion of
the actuators. In other words, the actuators never supply
the physical energy back to the system due to controller
state resettings. We further implemented this framework in
real time on the example of the multi-RTAC system. The
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Fig. 5. Angular positions of the pendulums in radians versus
time.
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experimental data obtained agree with numerical simulations
and show the efficacy of the theoretical framework.

REFERENCES
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