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Abstract— This paper considers the problem of reliable H∞

control against actuator failures for linear continuous-time
systems. The model including actuator partial failures and
actuator lock-in-place failures is presented, and the faults of
being locked in place are accurately described as zero-frequency
disturbances and their attenuation performances are described
by using small gain conditions based on finite frequency ap-
proach. Then a two-step LMI-based algorithm is developed for
designing reliable H∞ dynamic output feedback controllers. The
resulting designs guarantee the stability and disturbance/fault
attenuation performances of the closed-loop systems, not only
when all control components are operational, but also in case
of some actuator failures. Finally, a numerical example is given
to illustrate the advantage of the proposed design method
in comparison with the entire frequency approach by using
bounded real lemma.

I. INTRODUCTION

The research area of reliable control has recently attracted con-
siderable attention. The reliability of control systems in the presence
of system component failures is of great importance. The overall
reliability is enhanced not by using more reliable components, but
by managing them in a way that the reliability of the overall system
is greater than the reliability of its parts. The ultimate goal is to
preserve the stability and high-priority performances of the plant by
a single controller which can tolerate a severe component failure.
That is, the essential stability and performance requirements for
the control systems remain achieved, not only when all control
components are operational, but also in case of sensor or actuator
failures. Models of control component failures can be classified
as outages, partial degradations and lock-in-place failures (stuck-
faults). When a failure modeled as outage occurs, the measured
signal (in the case of sensors) or the control input (in the case of
actuators) simply becomes zero. The partial failure is represented
by a scaling factor with upper and lower bounds to the signal to be
measured or to the control input.

A number of theoretical results as well as application examples
have now been given in the literature (see, e.g., [1]-[6]). [1] pre-
sented a new methodology for the design of reliable centralized and
decentralized control systems by using the algebraic Riccati equa-
tion approach. [2] employed the linear matrix inequality approach to
study the reliable guaranteed cost control problem for discrete-time
systems. Also, the frequency domain approach given in [3] has been
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proved to be another effective design technique for designing the
linear reliable control systems. [5] addressed the problem of fault-
tolerant flight tracking control against actuator lock-in-place failures
based on the H∞ and peak-to-peak gain performance indexes in a
multi-objective optimization setting in terms of an iterative LMI
algorithm. The previous results of reliable control in the presence
of locked-in-place failures are developed in the framework of robust
control theory, and the faulty signals of being locked in place
were modeled as the entire frequency disturbances. However, the
modeling method for the severe faults is not exact because the
faulty signals of being locked in place correspond to zero frequency
disturbances, and might be very conservative for some practical
situations.

This paper is concerned with the reliable H∞ control problem
against actuator failures for linear continuous-time systems. The
cases of actuator partial failures and actuator lock-in-place failures
are simultaneously considered. In particular, the faults of being
locked in place are modeled as zero-frequency disturbances and
their rejection performances are described in terms of small gain
conditions via the finite frequency approach given in [7]-[9]. The
considered reliable H∞ control problem essentially is a control
design problem in mixed frequency domains for systems with
multiple modes, which has not been addressed in the literature.
In this study, a new method is developed to approach the reliable
H∞ control problem, and a two-step procedure is presented for
designing reliable H∞ dynamic output feedback controllers. The
resulting designs guarantee the stability and disturbance/fault at-
tenuation performances of the closed-loop systems, not only when
all control components are operational, but also in case of some
actuator failures. Compared with the entire frequency approach
which is devoted to the H∞ framework (see, e.g., [10]-[12]), the
new proposed method is potentially less conservative due to the
exact modeling of the faults of being locked in place. A comparison
is given via a numerical example.

The paper is organized as follows. Section 2 presents the
considered problem. The new method of designing reliable H∞

dynamic output feedback controllers are given in Section 3. The
entire frequency approach for solving the reliable control problem
is described in Section 4. In Section 5, an example is provided to
illustrate the new proposed design procedure and their effectiveness
compared with the entire frequency approach. Some concluding
remarks are given in Section 6.

Notation: For a matrix A, A∗ denote its complex conjugate
transpose. The Hermitian part of a square matrix A is denoted
by He(A) := A + A∗. The symbol Hn stands for the set of n× n
Hermitian matrices. The symbol ∗ within a matrix represents the the
symmetric entries. I denotes the identity matrix with an appropriate
dimension. For a transfer function matrix G, its H∞ norm is defined
by

∥

∥G( jω)
∥

∥

∞
:= sup

ω
σ{G( jω)}

where σ(G) = {λmax(G
∗G)}

1
2 represents the maximum singular

value of G, λmax represents maximum eigenvalue.
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II. PROBLEM STATEMENT

Consider a linear time-invariant plant described by

ẋ(t) = Ax(t)+Bu(t)+B1ϖ(t)

z(t) = Cx(t)+Du(t)

y(t) = C1x(t)+D1ϖ(t) (1)

with a dynamic output feedback controller of the following form:

ξ̇ (t) = AKξ (t)+BKy(t)

u(t) = CKξ (t) (2)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input,
ϖ(t) ∈ Rr is the disturbance input and z(t) ∈ Rq is the regulated
output, y(t)∈ Rp is the measured output and ξ (t)∈ Rnc is the state
of the controller, respectively. A, B, B1, C, D, C1 and D1 are known
constant matrices of appropriate dimensions. AK , BK and CK are
the dynamic output feedback controller parameter matrices.
For the control input u, let uF denote the signal vector in the case
of some actuator failures. The actuator partial failure model is as
follows:

uF = αu, (3)

where

α := diag
[

α1 α2 . . . αm

]

(4)

with αi satisfies

0 ≤ α i ≤ αi ≤ α i, (i = 1,2, . . . ,m). (5)

Denote

α = diag
[

α1 α2 . . . αm

]

, (6)

α = diag
[

α1 α2 . . . αm

]

. (7)

While the actuator lock-in-place failure model is:

uF = Fju+(I −Fj)β j, ( j = 1,2, . . . ,L) (8)

where

Fj = diag{ f j1, f j2, . . . , f jm},

β j =
[

β j1 β j2 . . . β jm

]T
(9)

with

f ji =

{

1 the ith actuator is operational
0 the ith actuator is locked in place

(10)

where i = 1,2, . . . ,m. Here, the index j denotes the jth failure mode
and L is the total failure modes. And β ji is an unknown constant.
Actually, the actuator failure mode adopted in this paper is:

uF = Fjαu+F jβ j, ( j = 1,2, . . . ,L) (11)

where F j := I −Fj .
Remark 1: It considers the case of actuator partial failure and
actuator locking in place simultaneously. When f ji = 1 and α i =
α i = 0, it covers the case of outage of the ith actuator ui in the
jth failure mode. When f ji = 1 and α i > 0, it corresponds to the
case of partial failure of the ith actuator ui in the jth failure mode.
When f ji = 0, the ith actuator ui is locked in place in the jth failure
mode. Without loss of generality, we assume that F0 = I. Note that,
when F0 = I and α = α = I, it corresponds to the normal control
input vector uF (t) = u(t).
Then the resulting closed-loop system in the event of the actuator
failures described by (11) is

ẋ(t) = Ax(t)+BFjαCKξ (t)+B1ϖ(t)+BF jβ j

ξ̇ (t) = BKC1x(t)+AKξ (t)+BKD1ϖ(t)

z(t) = Cx(t)+DFjαCKξ (t). (12)

Remark 2: Here, z(t) is defined as the regulated output. Since
the inputs of being locked in place are uncontrollable, we do not
consider the lock-in-place inputs in z(t).
In the closed-loop system, if β j in the failed actuator is regarded
as a zero-frequency disturbance, then the transfer function matrices
Gi(s)(i = 1,2) from ϖ(t) and β j to z(t) are respectively denoted
by

Gi(s) = C(sI −A)−1Bi +Di, (13)

where state space realizations (A,Bi,C,Di) of Gi(s) are correspond-
ingly given by

[

A B1 B2

C D1 D2

]

=





A BFjαCK B1 BF j

BKC1 AK BKD1 0

C DFjαCK 0 0



 .

(14)

The control synthesis problem under consideration is to find a dy-
namic output feedback controller (2) such that the resulting closed-
loop system is asymptotically stable and the following constraints

∥

∥G1( jω)
∥

∥

∞
< γ1 for all ω ∈ R∪{∞}, (15)

σ(G2( jω)) < γ2 for ω = 0 (16)

hold not only when all control components are operational, but
also in the case of some actuator failures by (11).

The above reliable control problem essentially is a control design
problem in mixed frequency domains for systems with multiple
modes, which is non-convex one [13] and has not been addressed
in the literature. In next section, a two-step algorithm will be given
for designing reliable H∞ dynamic output feedback controllers.

III. RELIABLE H∞ CONTROL VIA DYNAMIC OUTPUT

FEEDBACK

In this section, a new method of designing reliable H∞ dynamic
output feedback controllers is given by using a two-step algorithm.
The following theorem presents a sufficient condition for the
solvability of the reliable control problem.
Theorem 1: Consider the linear time-invariant system (1). Let CK

be given. If there exist scalars µ > 0, ν > 0, symmetric matrices
[

P11 P12

P∗
12 P22

]

,

[

Q11 Q12

Q∗
12 Q22

]

> 0, Y > N > 0 and matrices G, H such

that, for all j = 1,2, . . . ,L, the following inequalities






He(YA−HC1) Y BFjaCK −G−A∗N +C∗
1H∗

∗ He(−NBFjaCK +G)
∗ ∗
∗ ∗

µC∗ Y B1 −HD1

µC∗
KaFjD

∗ HD1 −NB1

−µγ2
1 I 0

∗ −µI






< 0, (17)















−Q11 −Q12 P11 −Y
∗ −Q22 P∗

12 +N
∗ ∗ He(YA−HC1)
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

P12 +N 0 0
P22 −N 0 0

Y BFjaCK −G−A∗N +C∗
1H∗ νC∗ Y BF j

He(−NBFjaCK +G) νC∗
KaFjD

∗ −NBF j

∗ −νγ2
2 I 0

∗ ∗ −νI















< 0

(18)
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hold with a ∈ {α,α}, then the resulting closed-loop system (12)
with

AK := N−1G, BK := N−1H (19)

is asymptotically stable and meets constraints (15) and (16) not
only when all control components are operational, but also in the
case of some actuator failures by (11).
Proof. (15) and (16) are equivalent to the following inequalities
with positive scalars θ and τ , respectively, for i = 1,2

J∗
[

B∗
1 D∗

1
0 I

]∗

θΠ1

[

B∗
1 D∗

1
0 I

]

J < 0, ω ∈ R∪{∞}, (20)

J∗
[

B∗
2 D∗

2
0 I

]∗

τΠ2

[

B∗
2 D∗

2
0 I

]

J < 0, ω = 0, (21)

where J :=

[

( jωI −A∗)−1C∗

I

]

, Πi :=

[

I 0

0 −γ2
i I

]

. Then we can

get the following from (21) by using Theorem 1 in [7]
[

A I
C 0

][

−Q P
P 0

][

A I
C 0

]∗

+

[

B2 0
D2 I

]

τΠ2

[

B2 0
D2 I

]∗

< 0 (22)

where P = P∗ and Q = Q∗ > 0. In view of Lemma 1 in [7] with
R =

[

0 I 0
]

, it follows that




−Q P 0
P τB2B∗

2 τB2D∗
2

0 τD2B∗
2 τD2D∗

2 − τγ2
2 I



 < He





0 W 0
0 −AW 0
0 −CW 0



 (23)

where W = W ∗ > 0. By using Schur complement lemma, it is
equivalent to







−Q P−W 0 0
P−W AW +WA∗ WC∗ B2

0 CW −τγ2
2 I D2

0 B∗
2 D∗

2 −τ−1I






< 0. (24)

Define ν := τ−1, X := W−1, P := XPX and Q := XQX . Multiply-
ing (24) by diag{X ,X ,νI, I} on the left and right, respectively, we
obtain







−Q P −X 0 0
P −X XA+A∗X νC∗ XB2

0 νC −νγ2
2 I νD2

0 B∗
2X νD∗

2 −νI






< 0. (25)

By virtue of Lemma 1 in Appendix, X can be given to be

X =

[

Y −N
−N N

]

(26)

where Y > N > 0. Defining the new variables

P :=

[

P11 P12

P∗
12 P22

]

, Q :=

[

Q11 Q12

Q∗
12 Q22

]

,

G := NAK , H := NBK , (27)

(25) holds if (18) hold with a given CK in view of the fact that (25)
is convex.
Then in view of dual bounded real lemma, we can get the following
inequality from (20)
[

A I
C 0

][

0 P1

P1 0

][

A I
C 0

]∗

+

[

B1 0
D1 I

]

θΠ1

[

B1 0
D1 I

]∗

< 0 (28)

where P1 = P∗
1 > 0. By using the Schur complement lemma, we

can get




WA∗ +AW WC∗ B1

CW −θγ2
1 I D1

B∗
1 D∗

1 −θ−1I



 < 0. (29)

Define P1 := W and µ := θ−1. Multiplying (29) by diag{X ,µI, I}
on the left and right, respectively, it follows that





A∗X +XA µC∗ XB1

µC −µγ2
1 I µD1

B∗
1X µD∗

1 −µI



 < 0. (30)

If (30) holds, it follows that A∗X + XA < 0. That is to say, the
closed-loop system (12) is asymptotically stable. (30) is convex.
Then (30) holds if (17) hold. Thus, the proof is complete.
Remark 3: In Theorem 1, the entire frequency H∞ conditions (17)
correspond to the requirements of exogenous disturbance rejection
performances, and the zero-frequency small gain conditions (18)
correspond to the performance requirements for lock-in-place signal
rejection. It should be pointed out that if CK is not fixed, then
the conditions (17) and (18) are non-convex. When CK is given,
the problem of designing reliable H∞ dynamic output feedback
controllers based on Theorem 1 can be reduced to a generalized
eigenvalue problem (GEVP). In fact, let γ2 > 0 be given. Define
a scalar ζ > 0, and replace µγ2

1 with ζ in (17). The GEVP is to

minimize γ2
1 subject to the LMI constraints (17) and (18) for all

j = 1,2, . . . ,L and ν > 0,

[

Q11 Q12

Q∗
12 Q22

]

> 0, Y > 0, N > 0, Y −N > 0,

ζ > 0, µ > 0, ζ < µγ2
1 . As a matter of fact, the GEVP is a quasi-

convex optimization problem since the constraint is convex and the
objective is quasi-convex. It can be solved by using Toolbox of
MATLAB.

We now turn our attention to the choice of CK . The state feedback
case for system (1) is equivalent to taking C1 = I, D1 = 0, so
that y = x. Furthermore, we consider the state feedback controller
u =CKx, which results in the closed-loop transfer function matrices

G1(s) = (C +DFjαCK)(sI − (A+BFjαCK))−1B1,

G2(s) = (C +DFjαCK)(sI − (A+BFjαCK))−1(BF j), (31)

in case of actuator failures by (11) with no lock-in-place inputs in
the regulated output z. The following theorem provides a solution
to the corresponding reliable H∞ state feedback control design
problem for continuous-time systems.
Theorem 2: Consider system (1) and assume that C1 = I, D1 = 0.
Consider the controller u =CKx resulting in the closed-loop transfer
function matrices Gi(i = 1,2) defined by (31). Assume that the
conditions of Theorem 1 hold, then there exist scalars θ > 0, τ > 0,
symmetric matrices P, Q > 0, V > 0 and a matrix M such that, for
all j = 1,2, . . . ,L, the following inequalities





He(AV +BFjaM) VC∗ +M∗aFjD
∗ θB1

∗ −θγ2
1 I 0

∗ ∗ −θ I



 < 0, (32)







−Q P−V 0 0

∗ He(AV +BFjaM) VC∗ +M∗aFjD
∗ τBF j

∗ ∗ −τγ2
2 I 0

∗ ∗ ∗ −τI






< 0 (33)

hold with a ∈ {α,α}. Furthermore, the constraints
∥

∥G1( jω)
∥

∥

∞
< γ1 for all ω ∈ R∪{∞}, (34)

σ(G2( jω)) < γ2 for ω = 0 (35)

are satisfied for the closed-loop system with the stabilizing state
feedback gain matrix

CK := MV−1 (36)

even in the presence of some actuator failures by (11).
Proof. Suppose that the conditions of Theorem 1 hold, then

5548



inequalities (17) and (18) hold. Defining ρ :=







I I 0 0
0 I 0 0
0 0 θ I 0
0 0 0 θ I






,

then pre- and post-multiplying (17) by ρ and ρ∗, respectively, and
deleting the second row and column, we can get





He[(Y −N)A+(Y −N)BFjaCK ] C∗ +C∗
KaFjD

∗

∗ −θγ2
1 I

∗ ∗

θ(Y −N)B1

0
−θ I



 < 0. (37)

Subsequently, defining V := (Y −N)−1 and M := CKV , then pre-
and post-multiplying (37) by diag{V, I, I}, respectively, they are
equivalent to (32).

Similarly, defining η :=















I I 0 0 0 0
0 I 0 0 0 0
0 0 I I 0 0
0 0 0 I 0 0
0 0 0 0 τI 0
0 0 0 0 0 τI















, then pre- and

post-multiplying (18) by η and η∗, respectively, and deleting the
second and the fourth rows and columns, it follows that







−Q11 −He(Q12)−Q22 P11 +He(P12)+P22 − (Y −N)
∗ He[(Y −N)A+(Y −N)BFjaCK ]
∗ ∗
∗ ∗

0 0

C∗ +C∗
KaFjD

∗ τ(Y −N)BF j

−τγ2
2 I 0

∗ −τI






< 0. (38)

Then pre- and post-multiplying (38) by diag{V,V, I, I}, respectively,
and defining P := V [P11 + He(P12) + P22]V and Q := V [Q11 +
He(Q12) + Q22]V , we can obtain (33). We can conclude that
conditions (32) and (33) hold because (17) and (18) hold.
In view of the proof of Theorem 1, the specifications (34) and
(35) for the closed-loop system with the state feedback controller
u = CKx are equivalent to the followings, respectively





He(AV +BFjαM) VC∗ +M∗αFjD
∗ θB1

∗ −θγ2
1 I 0

∗ ∗ −θ I



 < 0, (39)







−Q P−V 0 0

∗ He(AV +BFjαM) VC∗ +M∗αFjD
∗ τBF j

∗ ∗ −τγ2
2 I 0

∗ ∗ ∗ −τI






< 0.

(40)

It is known that (32) and (33) hold. So (39) and (40) hold
accordingly due to the convexity of them. As a result, CK can
be obtained by CK = MV−1. That is to say, the closed-loop system
with the state feedback controller u = CKx is asymptotically stable
and captures the specifications (34) and (35). Thus, the proof is
complete.
Remark 4: Theorem 2 gives a sufficient condition for the solvability
of the reliable H∞ state feedback control problem which captures
the specifications (34) and (35). As a matter of fact, Theorem 2 is
a necessary condition of Theorem 1, which provides a method of
determining state feedback gain CK .

Based on Theorems 1 and 2, a two-step algorithm is presented
for designing reliable H∞ dynamic output feedback controllers as

follows:
Algorithm 1: Let γ2 > 0 be given.
Step 1. Define a scalar ς > 0. Use ς instead of θγ2

1 in (32). Minimize

γ2
1 subject to the LMI constraints (32) and (33) for all j = 1,2, . . . ,L

and τ > 0, ς > 0, Q > 0, V > 0, θ > 0, ς < θγ2
1 . Denoting the

optimal solutions as M̂, V̂ and γ̂s, let ĈK = M̂V̂−1.
Step 2. Plug ĈK into (17) and (18). Define a scalar ζ > 0,
and replace µγ2

1 with ζ in (17). Minimize γ2
1 subject to the

LMI constraints (17) and (18) for all j = 1,2, . . . ,L and ν > 0,
[

Q11 Q12

Q∗
12 Q22

]

> 0, Y > 0, N > 0, Y −N > 0, ζ > 0, µ > 0, ζ < µγ2
1 .

The optimal solutions are denoted by N̂, Ĝ, Ĥ and γ̂d , then let

ÂK = N̂−1Ĝ, B̂K = N̂−1Ĥ and γ̂1 =
√

γ̂d .
Remark 5: In Algorithm 1, Step 1 corresponds to an GEVP for
obtaining a reliable H∞ state feedback gain matrix CK , which
provides an initial state feedback gain for the optimization in Step
2. Step 2 is for searching a solution to the multi-objective control
problem via dynamic output feedback defined in (15) and (16)
by solving the corresponding GEVP in terms of the remaining
unknown controller matrices AK and BK .

IV. ENTIRE FREQUENCY APPROACH

In this section, we can derive a similar result in the case where
(16) is replaced by an H∞-norm constraint. By virtue of [13],
an algorithm corresponding to the entire frequency approach for
solving the reliable H∞ dynamic output feedback control problem
can be summarized as follows:
Algorithm 2: Let γ2 > 0 be given.
Step 1. Minimize γ1 subject to the LMI constraints





He(AV +BFjaM) VC∗ +M∗aFjD
∗ B1

∗ −γ1I 0
∗ ∗ −γ1I



 < 0, (41)





He(AV +BFjaM) VC∗ +M∗aFjD
∗ BF j

∗ −γ2I 0
∗ ∗ −γ2I



 < 0 (42)

for all j = 1,2, . . . ,L and V > 0. Obtain the optimal solutions M̂, V̂
and γ̂s, then let ĈK = M̂V̂−1.
Step 2. Minimize γ1 subject to the LMI constraints







He(YA−HC1) Y BFjaCK −G−A∗N +C∗
1H∗

∗ He(−NBFjaCK +G)
∗ ∗
∗ ∗

C∗ Y B1 −HD1

C∗
KaFjD

∗ HD1 −NB1

−γ1I 0
∗ −γ1I






< 0, a ∈ {α,α}, (43)







He(YA−HC1) Y BFjaCK −G−A∗N +C∗
1H∗

∗ He(−NBFjaCK +G)
∗ ∗
∗ ∗

C∗ Y BF j

C∗
KaFjD

∗ −NBF j

−γ2I 0
∗ −γ2I






< 0, a ∈ {α,α} (44)

with obtained ĈK for all j = 1,2, . . . ,L and Y > 0, N > 0, Y −N > 0.
The optimal solutions are denoted by N̂, Ĝ, Ĥ and γ̂d , then the
controller gains are given by ĈK , ÂK = N̂−1Ĝ, and B̂K = N̂−1Ĥ,
and γ̂1 = γ̂d .
Remark 6: Algorithm 2 is based on that the inputs being locked
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in place are modeled as the entire frequency disturbances and their
rejection performances are devoted to the robust H∞ framework
[13]. Compared with Algorithm 1, the entire frequency approach
given by Algorithm 2 is not exact enough.

V. EXAMPLE

Consider a linear time-invariant system of the form (1) with

A =

[

−6.8319 −2.8352
1.8152 −5.2208

]

, B1 =

[

−8.1410
−5.8689

]

,

B =

[

3.4857 −0.9688 −4.4319
2.4201 −1.8905 −9.2010

]

,

C =
[

−2.0771 0.8754
]

, C1 =
[

2.1344 7.2740
]

,

D =
[

1.1472 −6.2044 3.5000
]

, D1 = −2.5509.

Our objective is to design a stabilizing dynamic output feedback
controller (2) such that the resulting closed-loop system is asymp-
totically stable and the H∞-norm bound constraints (15) and (16)
hold not only when all control components are operational, but also
in the case of some actuators being locked in place. The value of
γ2 is fixed as γ2 = 2 and optimize γ1. In this example we consider
the following six sorts of actuator failure modes:
(1) u2(t) and u3(t) are in normal case, while u1(t) is locked in place,
which is modeled as u1(t) = β11 for t ≥ 20 sec. Correspondingly,
we have that α = α = I and F1 = diag{0,1,1};
(2) u1(t) and u3(t) are in normal case, while u2(t) = β22 for t ≥ 20
sec. As a result, α = α = I and F2 = diag{1,0,1};
(3) u1(t) and u2(t) are in normal case, while u3(t) = β33 for t ≥ 20
sec. For this reason, α = α = I and F3 = diag{1,1,0};
(4) u1(t) is in normal case, while u2(t) = β42 and u3(t) = β43 for
t ≥ 20 sec. Because of this, α = α = I and F4 = diag{1,0,0};
(5) u2(t) is in normal case, while u1(t) = β51 and u3(t) = β53 for
t ≥ 20 sec. Consequently, α = α = I and F5 = diag{0,1,0};

(6) u3(t) is in normal case, while u1(t) = β61 and u2(t) = β62 for
t ≥ 20 sec. That is, α = α = I and F6 = diag{0,0,1}.
i) By using Algorithm 1, the optimal value of γ1 and the corre-
sponding controller gains are obtained as follows:

γ1min = 0.6778, AK =

[

−16.7354 −27.6802
−5.4896 −21.9653

]

,

BK =

[

3.5522
2.4872

]

, CK =





0.9800 −0.3781
−0.1411 0.0525
0.2725 −0.1270



 .

ii) In contrast, by using Algorithm 2, the optimal value of γ1 and
the corresponding controller gains are obtained as follows:

γ1min = 1.5826, AK =

[

−15.2789 −33.8413
−9.0370 −39.4504

]

,

BK =

[

4.2849
4.8707

]

, CK =





0.9840 −0.3829
−0.1440 0.0535
0.2733 −0.1309



 .

The actual achieved values of γ1 and γ2 in some cases are in Table 1.
The corresponding closed-loop frequency responses are respectively
shown in Fig.1-Fig.4 (on the last page).
Based on the output responses and the actual achieved values of
γ1 and γ2, it is easy to see that the new proposed method obtains
better performance (comparison between the values of γ1 and 10s-
20s in Fig.1-Fig.4) and is less conservative (comparison between
the values of γ2 and 20s-30s in Fig.2-Fig.4) than the method given
by bounded real lemma in most conditions for the example. So,
compared with the entire frequency approach in terms of bounded
real lemma, the new proposed method can be a good alternative
for designing reliable H∞ dynamic output feedback controllers with
actuators locked in place.

Table 1 The actual achieved values of γ1 and γ2

Fi diag{1,1,1} diag{1,1,0} diag{1,0,0} diag{0,1,0}
Actual values γ1 γ2 γ1 γ2 γ1 γ2 γ1 γ2

Our design 0.4083 - 0.0989 1.7615 0.5353 1.7432 0.5130 1.7228

BRL 1.2793 - 0.8782 0.9967 0.7660 1.3259 0.6946 1.3349

VI. CONCLUSION

In this paper, the problem of reliable H∞ control via dynamic
output feedback for linear continuous-time systems against actuator
failures has been investigated. A two-step LMI-based method for
synthesizing dynamic output feedback controllers is developed to
achieve the desired disturbance/fault attenuation performances not
only when the system is operating properly, but also in the event of
some actuator failures. The advantage of the new proposed design
method in comparison with the entire frequency approach by using
bounded real lemma has been illustrated via a numerical example.

APPENDIX

Before presenting the proof for Theorem 1, some preliminaries
are required.
Lemma 1: Consider the system described by (12). Let
(A,Bi,C,Di)(i = 1,2) in (14) be given. Then the following state-
ments are equivalent:
(i)There exist symmetric matrices X > 0, P , Q > 0 and a dynamic
output feedback controller K described by (2) such that





XA+A∗X C∗ XB1

C −γ2
1 I D1

B∗
1X D∗

1 −I



 < 0 (45)

holds for ω ∈ R∪{∞}, and







−Q P −X 0 0
P −X XA+A∗X C∗ XB2

0 C −γ2
2 I D2

0 B∗
2X D∗

2 −I






< 0 (46)

holds.

(ii)There exist symmetric matrices Xa =

[

Y −N
−N N

]

> 0(Y > N >

0), Pa, Qa > 0 and a dynamic output feedback controller described
by (2) with AK = AKa, BK = BKa, CK = CKa such that





XaAa +A∗
aXa C∗

a XaB1a

Ca −γ2
1 I D1a

B∗
1aXa D∗

1a −I



 < 0 (47)

holds for ω ∈ R∪{∞}, and







−Qa Pa −Xa 0 0
Pa −Xa XaAa +A∗

aXa C∗
a XaB2a

0 Ca −γ2
2 I D2a

0 B∗
2aXa D∗

2a −I






< 0 (48)
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holds, where

Aa =

[

A BFjαCKa

BKaC1 AKa

]

, B1a =

[

B1

BKaD1

]

,

B2a =

[

BF j

0

]

, Ca =
[

C DFjαCKa

]

,

D1a = 0, D2a = DF j. (49)

Proof. Let X =

[

X11 X12

X∗
12 X22

]

where X11 = X∗
11 > 0, X22 = X∗

22 > 0

and X12 is nonsingular. Letting Y = X11 and N = X12X−1
22 X∗

12, it
follows that

Xa = T XT ∗ =

[

I 0

0 −X12X−1
22

]

X

[

I 0

0 −X12X−1
22

]∗

=

[

Y −N
−N N

]

(50)

where X > 0 is equivalent to Y > N > 0. Set Pa = TPT ∗ and Qa =
TQT ∗. Then pre- and post-multiplying (46) by diag{T,T, I, I}
and diag{T ∗,T ∗, I, I} respectively, (46) is equivalent to (48) by

letting AKa = (X−1
12 )∗X22AKX−1

22 X∗
12, BKa = −(X−1

12 )∗X22BK and

CKa = −CKX−1
22 X∗

12.
Similarly, pre- and post-multiplying (45) by diag{T, I, I} and
diag{T ∗, I, I} respectively, (45) is equivalent to (47). Thus, the
proof is complete.
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Fig. 1 Output responses comparison between solid by using our
design procedure and dashed by using bounded real lemma in
normal case.
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Fig. 2 Output responses comparison between solid by using our
design procedure and dashed by using bounded real lemma for
failure pattern (3).
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Fig. 3 Output responses comparison between solid by using our
design procedure and dashed by using bounded real lemma for
failure pattern (4).
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Fig. 4 Output responses comparison between solid by using our
design procedure and dashed by using bounded real lemma for
failure pattern (5).
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