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Abstract— The problem of performance robustness of model
reference adaptive control (MARC) schemes under reduction
in actuator effectiveness (loss-of-effectiveness) is studied in this
paper. The reduction is modeled by an uncertain gain matrix
representing the actuator effectiveness at the control inputs.
MRAC systems are analyzed to determine the robustness of
the desired closed-loop performance of stability and asymptotic
tracking with respect to such reductions. Conclusions are drawn
for direct multivariable MRAC as well as indirect MRAC for
both continuous-time and discrete-time schemes. A simulation
study is presented to illustrate some of the theoretical results.

I. INTRODUCTION

In aircraft flight control systems, actuators are driven by

control signals to generate aerodynamic forces and moments

on the aircraft to achieve the control objectives. Uncertain ac-

tuator failures and damages can occur, including reduction in

effectiveness (loss-of-effectiveness, in some research papers),

floating, lock-in-place, and hard-over. Lack of appropriate

compensation can severely deteriorate system performance,

or even lead to instability and cause catastrophic accidents.

Fault detection and diagnosis is one approach to actuator

failure compensation [5]. However, false detection due to

incomplete failure classification and discrepancy between

the model and real plant restricts its application. Adap-

tive control, on the other hand, with the ability to cope

with parametric, structural, and environmental uncertainties

is promising and viable for successful compensation for

the large uncertainties introduced by actuator failures and

damages. In adaptive control, explicit fault detection and

diagnosis is not needed for ensuring desired performance.

Both direct and indirect adaptive control designs have been

proposed in the literature. In [1], several algorithms were

compared and simulation results demonstrated their success-

ful compensation for reduction in actuator effectiveness. The

direct adaptive control design in [7] achieved satisfactory

performance under both reduction in actuator effectiveness

and saturation. Indirect adaptive control schemes were used

in [3] for compensation of reduction in actuator effec-

tiveness based on parameter-adaptive and variable-structure

approaches. Actuator failure modeling was performed in [11]

for systems with floating and lock-in-place types of failure,

and both state feedback and output feedback direct MRAC

schemes were proposed. In [2], a multiple model based

scheme was presented for fast and accurate flight control

reconfiguration. One common feature of these designs is

a proper parametrization of actuator failures and damages

based on which direct or indirect adaptive control schemes

are developed to achieve stability and tracking performance.

Some other designs exist such as those using adaptive neural

networks [4], robust control designs [12], and so on.

In this paper, we focus on reduction in actuator effective-

ness, the type of actuator failure in which partial control sur-

face is damaged and the effectiveness reduces to an uncertain

fraction of the normal level (that without reduction in effec-

tiveness). We conduct the performance robustness analysis of

some MRAC schemes with respect to such reductions, which

can be represented by an actuator effectiveness matrix at the

control inputs. The objective is to determine whether or not

an MRAC scheme designed for the normal case, i.e., that

without reduction in actuator effectiveness, can still achieve

the desired closed-loop stability and asymptotic tracking

performance in the presence of reduction in effectiveness.

Our recent results on the gain margins of MRAC systems

[8], [9] are applied for solutions of this problem.

Next, we will formulate the performance robustness prob-

lem of MRAC under reduction in actuator effectiveness in

Section II. We will show in Section III that the closed-

loop performance of direct continuous-time multivariable

MRAC designs is robust to arbitrary reduction in actuator

effectiveness, while as proved in Section IV, that of their

discrete-time counterparts is design-based. In particular, the

performance of the multivariable MRAC design based on the

LDS decomposition of the high frequency gain matrix may

not be robust to some reduction in actuator effectiveness, but

that of the LDU based design is. Indirect MRAC schemes

are considered in Section V. The main features of the

performance robustness properties of the LDS based MRAC

design are illustrated by simulation results in Section VI.

II. PROBLEM STATEMENT

The performance robustness problem of MRAC systems

in the presence of reduction in actuator effectiveness is

formulated in this section. The standard multivariable MRAC

assumptions, including those based on the high frequency

gain matrix decompositions, are also presented.

A. The Performance Robustness Issue for MRAC in the

Presence of Reduction in Actuator Effectiveness

We consider the M -input M -output linear time-invariant

plant with transfer matrix representation:

y(t) = G(D)[up](t), (1)
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Fig. 1. Adaptive control system with reduction in actuator effectiveness.

where up(t), y(t) ∈ R
M are the plant input and output vec-

tors, G(D) = Z(D)P−1(D) is strictly proper and full rank,

and Z(D), P (D) ∈ R
M×M are right coprime polynomial

matrices with P (D) being column proper. 1

Denoting u(t) ∈ R
M as the control signal generated from

an adaptive controller, and K ∈ R
M×M as the actuator

effectiveness matrix that assumes the following form

K = diag{k1, . . . , kM}, 0 < ki ≤ 1, i = 1, 2, . . . , M, (2)

we have

up(t) = Ku(t). (3)

In the absence of reduction in actuator effectiveness, K is

an identity matrix IM ∈ R
M×M , and up(t) = u(t).

Figure 1 depicts the scenario we consider in this paper.

The adaptive controller, denoted by C1(D) and C2(D),
has been designed for K = IM , and ensures closed-loop

stability (signal boundedness) and asymptotic output tracking

performance, that is, y(t) asymptotically tracks a desired

trajectory ym(t) generated from a reference model system

ym(t) = Wm(D)[r](t), (4)

where Wm(D) ∈ R
M×M is a rational transfer matrix and

r(t) ∈ R
M is a bounded reference input signal. Our objective

is to study whether or not the designed adaptive controller

still ensures the desired closed-loop performance in the

presence of reduction in actuator effectiveness, i.e., when

0 < K < IM .

The high frequency gain matrix is defined as Kp =
limD→∞ ξm(D)G(D) with ξm(D) being the modified in-

teractor matrix of G(D). For MRAC designs based on

decompositions of Kp, the reference model transfer matrix

Wm(D) in (4) is chosen to be Wm(D) = ξ−1
m (D).

Assumptions. The standard MRAC assumptions are: (A.1)

All zeros of G(D) are stable; (A.2) the observability index

ν of G(D) is known; (A.3) a modified interactor matrix

ξm(D), which has a stable inverse, of G(D) is known; (A.4)

all leading principal minors of Kp, ∆i, are nonzero with their

signs known. Besides, for discrete-time designs, we assume:

(A.4D) some upper bounds d0
i of |d∗i | = | ∆i

∆i−1

| with ∆0 = 1,

such that 0 < |d∗i | ≤ d0
i , i = 1, 2, . . . , M , are known.

For multivariable MRAC an important design condition

is given for Kp in Assumption (A.4). In the presence of

reduction in actuator effectiveness, the high frequency gain

matrix becomes KpK with K in (2). Next we present

some basic knowledge about decomposition of Kp and the

invariance under reduction in actuator effectiveness.

1The symbol D is used, in the continuous-time case, as the time-
differentiation operator: D[x](t) = ẋ(t), t ∈ [0, +∞); or in the discrete-
time case, as the time-advance operator: D[x](t) = x(t + 1), t ∈
{0, 1, 2, 3, . . .}.

B. High Frequency Gain Matrix Decomposition

With Assumption (A.4), the LDU decomposition of Kp is

Kp = LD∗U for some M×M unity lower triangular matrix

L, unity upper triangular matrix U , and diagonal matrix

D∗ = diag{d∗1, . . . , d
∗
M} = diag

{

∆1, . . . ,
∆M

∆M−1

}

. (5)

Its LDS decomposition, Kp = LsDsS, follows with Ls =
LDs(U

T )−1D−1
s , S = UT D−1

s D∗U , and

Ds = diag

{

sign[∆1]γ1, . . . , sign

[

∆M

∆M−1

]

γM

}

(6)

with γi > 0, i = 1, 2, . . . , M , which can be arbitrary.

Decomposition of KpK . The following lemma relates

the LDU decomposition of Kp with that of KpK , and is

crucial for the performance robustness analysis of matrix

decomposition based multivariable MRAC designs.

Lemma 1 [9]. The matrix KpK ∈ R
M×M with K in (2)

has a unique LDU decomposition

KpK = L̄D̄∗Ū , L̄ = L, D̄∗ = D∗K, Ū = K−1UK, (7)

where Kp = LD∗U is the LDU decomposition of the non-

singular matrix Kp with nonzero leading principle minors.

With Lemma 1, we can conclude that the leading principle

minors of KpK are also nonzero, and their sign information

is the same as that of Kp. In other words, the design

conditions stated in Assumption (A.4) is invariant in the

presence of reduction in actuator effectiveness. Furthermore,

Lemma 1 is crucial for obtaining the performance robustness

conditions for direct discrete-time MRAC designs.

The gain margin (GM) problem formulation in our recent

work [8], [9] is similar to that of the performance robustness

problem considered in this paper, with the difference in that

the control gain variations are not bounded from top by 1,

i.e., ki > 0, i = 1, 2, . . . , M in (2). Therefore, the GM results

can be applied for solutions of the performance robustness

problem under reduction in actuator effectiveness. As shown

in the following sections, by comparing the GM results with

the range of actuator effectiveness matrix defined in (2), we

can determine whether or not the performance of an MRAC

design is robust to and to what extent it can handle the

reduction in actuator effectiveness.

III. CONTINUOUS-TIME MIMO DIRECT MRAC

There are some well-known direct multivariable MRAC

designs based on decompositions of Kp [6], [10]. To study

their performance robustness under reduction in actuator

effectiveness, the actuator effectiveness matrix K , together

with the plant (1) is treated as the new controlled plant.

The gain margins of continuous-time MRAC designs are

infinity [8], [9], that is, the closed-loop performance remains

for any control gain at the control inputs, thus we have:

Proposition 1. The performance of direct continuous-time

multivariable MRAC designs based on high frequency gain

matrix decompositions is robust with respect to reduction in

actuator effectiveness.
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Proof: From (1) and (3), we have

y(t) = G(s)K[u](t)

as the new controlled plant, and its high frequency gain

matrix is KpK . From (5) and (7) in Lemma 1, we can see

that the presence of reduction in actuator effectiveness, i.e.,

0 < K < IM does not violate the assumptions of nonzero

leading principle minors of the high frequency gain matrix

under (A.4), and their sign information is the same as that

of Kp. Therefore, the adaptive law for K = IM can still be

used for 0 < K < IM to achieve closed-loop performance

of signal boundedness and asymptotic tracking. This is also

true for direct continuous-time SISO MRAC designs. ∇

The gain matrix decomposition based continuous-time

MRAC designs can adaptively compensate for arbitrary

reduction in actuator effectiveness to ensure desired closed-

loop performance. However, for discrete-time designs, al-

though the performance of SISO MRAC systems is robust

with respect to reduction in actuator effectiveness, the per-

formance robustness of multivariable MRAC systems are

design-based, which is shown in the next section.

IV. DISCRETE-TIME MIMO DIRECT MRAC

We will first analyze the performance robustness properties

of the MRAC design based on the LDS decomposition of

Kp in this section. As a comparison, the LDU based design

is analyzed to show that the performance robustness of the

discrete-time MRAC systems under reduction in actuator

effectiveness is design-based.

A. Performance Robustness of the LDS Based Design

Among the gain matrix decomposition based MRAC de-

signs, the LDS based design assumes a simple adaptive

controller structure, and its error model parametrization and

the auxiliary signal structures are simple for implementation.

A.1. The LDS Based Design

The controller for K = IM has the standard model

reference control structure:

u(t) = ΘT
1 ω1(t) + ΘT

2 ω2(t) + Θ20y(t) + Θ3r(t), (8)

where ω1(t) = F (z)[u](t), ω2(t) = F (z)[y](t) with F (z) =
A(z)
Λ(z) , A(z) = [IM , zIM , . . . , zν−2IM ]T for a stable monic

polynomial Λ(z) of degree ν − 1. The controller parameter

matrices Θi = Θi(t), i = 1, 2, 20, 3, updated from an

adaptive law, are the time-varying estimates of the nominal

controller parameter matrices Θ∗
1 = [Θ∗

11, . . . ,Θ
∗
1ν−1]

T ,

Θ∗
2 = [Θ∗

21, . . . ,Θ
∗
2ν−1]

T , Θ∗
ij , Θ

∗
20, Θ

∗
3 ∈ R

M×M , i =
1, 2, j = 1, . . . , ν − 1, satisfying the plant-model transfer

matrix matching equation

Θ∗T
1 A(z)P (z) +

(

Θ∗T
2 A(z) + Λ(z)Θ∗

20

)

Z(z)

= Λ(z) (P (z) − Θ∗
3ξm(z)Z(z)) . (9)

Error model. With Θ∗
3 = K−1

p and Kp = LsDsS, the

matching equation (9) leads to

DsS(u(t) − Θ∗T
1 ω1(t) − Θ∗T

2 ω2(t) − Θ∗
20y(t) − Θ∗

3r(t))

= L−1
s ξm(z)[y − ym](t). (10)

With Θ(t) = [ΘT
1 (t), ΘT

2 (t), Θ20(t), Θ3(t)]
T , Θ∗ =

[Θ∗T
1 , Θ∗T

2 , Θ∗
20, Θ

∗
3]

T , (8) and (10) yield

ξm(z)[y − ym](t) + Θ∗
0ξm(z)[y − ym](t) = DsSΘ̃T (t)ω(t),

where Θ̃(t) = Θ(t)−Θ∗, ω(t) = [ωT
1 (t), ωT

2 (t), y(t), r(t)]T ,

and Θ∗
0 = L−1

s − IM has a special lower triangular form

with zero diagonal elements. Denote the parameter vectors

consisting of the nonzero parameters in each row of Θ∗
0 to

be θ∗i = [θ∗i1, . . . , θ
∗
ii−1]

T ∈ R
i−1, and let their estimates to

be θi(t) = [θi1(t), . . . , θii−1(t)]
T ∈ R

i−1, i = 2, 3, . . . , M .

Introduce the estimation error as

ǫ(t) = ē(t) + [0, θT
2 (t)η2(t), . . . , θ

T
M (t)ηM (t)]T + Ψ(t)ξ(t),

where ē(t) = ξm(z) 1
f(z) [y − ym](t) = [ē1(t), . . . , ēM (t)]T

with f(z) being a chosen stable monic polynomial of the

same degree as the maximum degree of ξm(z), ηi(t) =
[ē1(t), . . . , ēi−1(t)]

T , i = 2, 3, . . . , M , Ψ(t) is the estimate

of Ψ∗ = DsS, and ξ(t) = ΘT (t)ζ(t) − h(z)[ΘT ω](t) with

ζ(t) = h(z)[ω](t). The following error equation is obtained

ǫ(t) = [0, θ̃T
2 (t)η2(t), θ̃

T
3 (t)η3(t), . . . , θ̃

T
M (t)ηM (t)]T

+DsSΘ̃T (t)ζ(t) + Ψ̃(t)ξ(t) (11)

with θ̃i(t) = θi(t) − θ∗i and Ψ̃(t) = Ψ(t) − Ψ∗.

Adaptive law. Based on the error model (11), we choose

the following gradient adaptive laws:

θi(t + 1) − θi(t) = −
Γθiǫi(t)ηi(t)

m2(t)
, (12)

ΘT (t + 1) − ΘT (t) = −
Dsǫ(t)ζ

T (t)

m2(t)
, (13)

Ψ(t + 1) − Ψ(t) = −
Γǫ(t)ξT (t)

m2(t)
, (14)

for i = 2, 3, . . . , M , where ǫ(t) = [ǫ1(t), ǫ2(t), . . . , ǫM (t)]T ,

0 < Γθi = ΓT
θi < 2Ii−1, 0 < Γ = ΓT < 2IM , m2(t) = 1 +

ζT (t)ζ(t)+ξT (t)ξ(t)+
∑M

i=2 ηT
i (t)ηi(t), and the adaptation

gain matrix Ds in (13) is chosen to satisfy

0 < DsU
T D−1

s D∗UDs < 2IM , (15)

that is, γi, i = 1, 2, . . . , M , in Ds given by (6) are chosen

such that γi ∈ (0, γ0
i ) for some γ0

i > 0, which depend on

the knowledge of the LDU decomposition of Kp = LD∗U .

The adaptive controller (8) with the adaptive laws (12)–

(14) ensures closed-loop signal boundedness and asymptotic

output tracking, i.e., limt→∞(y(t) − ym(t)) = 0 [6], [10].

A.2. Performance Robustness Analysis

Similar to the analysis in Section III, the presence of

reduction in actuator effectiveness does not violate the as-

sumption of nonzero leading principle minors of the high

frequency gain matrix, and their sign information is invariant

with 0 < K < IM .

However, for the aforementioned LDS based design to

ensure the closed-loop signal boundedness and asymptotic

tracking performance, the new condition for 0 < K < IM ,

similar to (15) for K = IM , is 0 < DsŪ
T D−1

s D̄∗ŪDs <

2IM , which needs to be satisfied for the chosen Ds in (15).
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From Lemma 1, this new condition is equivalent to

0 < DsKUT K−1D−1
s D∗UKDs < 2IM , (16)

from which it can be seen that for ki of K , there is an upper

bound which depends on γj , kj , j = 1, . . . , i − 1, d∗j , d0
j ,

j = 1, . . . , i and the nonzero elements of U , such that the

closed-loop performance is still achieved. Thus we have:

Proposition 2. The stability and asymptotic tracking perfor-

mance of direct discrete-time multivariable MRAC designs

based on the LDS decomposition of Kp may not be robust

with respect to some reduction in actuator effectiveness.

Proof: For clarity of presentation and without loss of gener-

ality, we consider the case for M = 2.

For K = I2, to ensure the desired closed-loop perfor-

mance, Ds = diag {sign[d∗1]γ1, sign[d∗2]γ2} in (13) is chosen

to satisfy (15), that is, γ1 and γ2 are chosen such that

0 < γ1 <
2

d0
1

, (17)

0 < γ2 <
4

√

(d0
2)

2 +
16a2|d0

1
|

α(γ1)
+ |d0

2|
(18)

with α(γ1) = −γ1(d
0
1γ1 − 2) and the constant a being

the nonzero off-diagonal element of the 2 × 2 unity upper

triangular matrix U . 2

In the presence of reduction in actuator effectiveness, the

performance robustness condition (16) yields

|d∗1|k1γ1 − 2 < 0,

(|d∗1|k1γ1 − 2)(|d∗2|k2γ2 − 2) > 2a2|d∗1|
k2
2γ

2
2

k1γ1
,

which, together with 0 < ki ≤ 1, i = 1, 2, leads to

k1 ∈ (0, 1] , (19)

k2 ∈

{ (

0, k0
2

)

if 0 < k1 ≤ k10,

(0, 1] if k10 < k1 ≤ 1,
(20)

k0
2 =

4
(

√

(d∗2)
2 +

16a2|d∗

1
|

ᾱ(k1γ1)
+ |d∗2|

)

γ2

(21)

with ᾱ(k1γ1) = −k1γ1(|d
∗
1|k1γ1 − 2), and

k10 =
1 −

√

1 −
2(|d∗

1
|aγ2)2

2−|d∗

2
|γ2

γ1|d∗1|
. (22)

We can conclude from (19)–(22) that there exists an

actuation level k10 such that if k10 < k1 ≤ 1, the LDS based

design can handle arbitrary actuator effectiveness reduction

in k2. However, for 0 < k1 ≤ k10, an upper bound

k0
2 < 1 depending on k1, in addition to other design and

plant parameters, is imposed on k2 to ensure closed-loop

performance. Moreover, both k10 and k0
2 depend on the

unknown parameters a in U , and d∗1, d∗2 in D∗ given in (5).

In other words, the reduction in actuator effectiveness the

2The inequalities (17) and (18) can be obtained by solving (15) with the
facts that D∗ = diag{d∗

1
, d∗

2
}, sign[d∗

i
]d∗

i
= |d∗

i
|, and the knowledge of

d0

i
such that 0 < |d∗

i
| ≤ d0

i
, i = 1, 2, from Assumption (A.4D).

LDS based design can handle, depends on the knowledge

of the leading principle minors of Kp and the nonzero

elements of U . When the needed condition (16) is violated,

the adaptive control system may become unstable. Therefore,

the performance of the LDS based design may not be robust

to some patterns of reduction in actuator effectiveness. ∇

Remark 1: In general, explicit ranges of ki in which the

LDS based design can still ensure the desired performance

is difficult to derive from (16). Numerical methods can be

used. By the Schur complement, (16) is equivalent to
[

2IM LdD
∗KUT

UKD∗Ld KLd

]

> 0 (23)

with Ds = LdD
∗ chosen to satisfy (15). A linear cost func-

tion can then be constructed, and the problem is converted

to the optimization of the cost function subject to the LMIs

in (23) and 0 < K < IM . �

Remark 2: The performance robustness properties of the

LDS based design becomes manifest when U = IM , i.e.,

Kp is lower triangular. The matrix inequalities in (15) and

(16) can thus be decomposed into simple scalar inequalities

decoupled in γi and ki, i = 1, 2, . . . , M , respectively. To

be specific, with (5) and (6), the condition in (15) leads

to 0 < γi < 2
d0

i

. In the presence of reduction in actuator

effectiveness, the condition in (16) yields 0 < ki < 2
|d∗

i
|γi

,

and we have

2

|d∗i |γi

>
d0

i

|d∗i |
≥ 1, i = 1, 2, . . . , M, (24)

from which we conclude that the performance of the LDS

based design is robust with respect to arbitrary reduction in

actuator effectiveness if Kp is lower triangular. �

Remark 3: The advantage of online computational effi-

ciency of the LDS based design is at the expenses of much

design effort, as the adaptation gain matrix Ds for (13)

should be carefully chosen such that (15), which is not

in explicit form of γi and requires knowledge of U , is

satisfied. The choices of the adaptation gains, γi, are not

straightforward even for M = 2, as shown in (17) and

(18), and require the knowledge of the off-diagonal element

a of U . Furthermore, the choices affect the performance

robustness properties of the design. �

B. Performance Robustness of the LDU Based Design

For the LDU based design [6], [10], the sign and upper

bound information stated in Assumptions (4.1) and (4.1D)

are used explicitly for the choice of adaptation gains, in

contrast to the LDS based design. The parametrization of

the error dynamics and the adaptation mechanism of the

LDU based design are an expansion in dimension from the

well-known SISO MRAC design, and it shares the same

performance robustness property with its SISO counterpart.

Proposition 3. The stability and tracking performance of

direct discrete-time multivariable MRAC designs based on

the LDU decomposition of high frequency gain matrix is

robust with respect to reduction in actuator effectiveness.
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Proof: According to (7) and D̄∗ = diag{d̄∗1, . . . , d̄
∗
M},

we have d̄∗i = d∗i ki. It can be seen that d̄∗i 6= 0 and

sign[d̄∗i ] = sign[d∗i ]. For the LDU based design for K =
IM to ensure stability and asymptotic tracking performance

under reduction in actuator effectiveness, |d̄∗i | needs to satisfy

|d̄∗i | ≤ d0
i (to ensure the stability condition on the adaptation

gain matrix), so we have ki ∈
(

0,
d0

i

|d∗

i
|

]

, i = 1, 2, . . . , M .

Noting that d0
i ≥ |d∗i | from Assumption (A.4D), the above

range for ki contains (0, 1], which implies that the closed-

loop performance of the LDU based design is robust with

respect to reduction in actuator effectiveness. ∇

Compared with the LDS based design, the auxiliary signal

structures for the LDU based design are more complex,

which need extra signal manipulations and regrouping. This

effort, however, eases the design procedure, especially for

the discrete-time cases, in which the choices of adaptation

gains are straightforward. Besides, as an extension from the

SISO discrete-time MRAC design, the LDU based design can

accommodate for reduction in actuator effectiveness while

the LDS based design cannot, in general.

V. INDIRECT MRAC DESIGNS

For indirect multivariable MRAC, the problem of non-

singular estimation of a general plant high frequency gain

matrix using system input and output measurements is still a

problem to be solved. Thus, we consider the indirect MRAC

design for SISO systems [10].

One key assumption in indirect SISO MRAC design is

the knowledge of the sign information of the plant high

frequency gain kp, sign[kp], and a lower bound kp0 of |kp|
such that 0 < kp0 ≤ |kp|, for avoiding singularity estimation

of the unknown plant parameters. Based on this assumption,

we obtain the following performance robustness properties.

Proposition 4. The performance of indirect MRAC designs

for SISO systems may not be robust with respect to some

reduction in actuator effectiveness in the sense that for the

reduction greater than some level, stability and asymptotic

tracking performance may no longer hold.

Proof: In the presence of reduction in actuator effectiveness,

i.e., with an actuator effectiveness gain k ∈ (0, 1] at the

control input, the plant high frequency gain becomes kpk.

The indirect MRAC design for k = 1 still ensures desired

closed-loop performance if the lower bound of |kpk| is no

less than kp0, i.e., k ≥
kp0

|kp|
, which is derived from the

assumption based on which a parameter projection law is

designed for k = 1. Therefore, the indirect SISO MRAC

design may not be able to compensate for the reduction in

actuator effectiveness with k ∈
(

0,
kp0

|kp|

)

. ∇

Remark 4: The performance robustness result in Proposi-

tion 4 applies directly to the class of indirect multivariable

MRAC systems in [9], that is, lower bounds exist for the

effectiveness gains of each control channel such that the

indirect MRAC design can adaptively compensate for the

reductions not below these bounds. �

VI. AN ILLUSTRATIVE EXAMPLE

In this section we present an M = 2 example to illustrate

the performance robustness properties of the discrete-time

LDS based direct MRAC design.

We consider a controlled plant (1) with up(t), y(t) ∈ R
2,

and the transfer matrix

G(z) =

[ 1
z−0.5

0.6
z+0.3

1
z+0.5

1
z+0.7

]

,

which is expressed as G(z) = Z(z)P−1(z), where

Z(z) =

[

z + 0.5 0.6(z + 0.7)
z − 0.5 z + 0.3

]

,

P (z) = diag{(z − 0.5)(z + 0.5), (z + 0.3)(z + 0.7)}

with observability index ν = 2. It can be verified that G(z) is

minimum-phase, and Z(z) and P (z) are right coprime with

P (z) column proper.

The modified interactor matrix and the associated high

frequency gain matrix Kp are

ξm(z) =

[

z 0
0 z

]

, Kp =

[

1 0.6
1 1

]

,

from which we have d∗1 = 1, d∗2 = 0.4, sign[d∗1] > 0
and sign[d∗2] > 0. With d0

1 = 1.2 and d0
2 = 1.0, the

standard MRAC assumptions (A.1)–(A.4D) are all satisfied.

Moreover, the unique LDU decomposition of Kp is

L =

[

1 0
1 1

]

, D∗ =

[

1 0
0 0.4

]

, U =

[

1 0.6
0 1

]

.

(25)

The reference model is chosen to be (4) with the transfer

matrix Wm(z) = ξ−1
m (z) and the reference input r(t) =

[10 cos(0.15t), 10 sin(0.1t) + 20 sin(0.2t)]T .

The controller structure is in (8). With the specifications of

Λ(z) = z, ξm(z), P (z), and Z(z) as above, its nominal pa-

rameter matrices Θ∗
1, Θ∗

2, Θ∗
20, Θ∗

3 = K−1
p can be computed

from (9). With (25), Ds = I2, Ls = LDs(U
T )−1D−1

s , and

S = UT D−1
s D∗U , we have Ψ∗ = DsS, and θ∗2 can obtained

from Θ∗
0 = L−1

s − I2.

The adaptive laws are (12)–(14) with Ds chosen to be

Ds = diag[γ1, γ2] = I2 satisfying the design condition (15),

and in the estimation error model, f(z) is chosen as f(z) =
z. The initial estimates of θ∗2 , Θ∗, Ψ∗ are taken to be θ2(0) =
0.95θ∗2, Θ(0) = 0.95Θ∗, and Ψ(0) = 0.8Ψ∗.

From (22) we obtain k10 = 0.2584, and by (20), we

know that for a reduction in actuator effectiveness of the first

control channel such that k1 > k10, the performance is robust

with respect to arbitrary k2 ∈ (0, 1]. This is shown in Fig.

2 where the tracking error approaches zero asymptotically

for K = diag{0.7, 0.9}. Furthermore, for a k1 ≤ k10, the

stability and asymptotic tracking performance may not hold

for some k2. As is shown in Fig. 3, with k1 = 0.15 < k10,

for k2 = 1.0, the asymptotic tracking performance is lost

(simulation was performed for a much longer time, and only

the first 1000 steps are shown here for clarity). However,

as shown in Fig. 4, asymptotic tracking is achieved for

K = diag{0.15, 0.65}, as 0.65 < k0
2 = 0.8043 from (21).
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The simulation results illustrate the main features of the

performance robustness of the LDS based design.
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Fig. 2. Tracking error e(t) for K = diag{0.7, 0.9}.
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Fig. 3. Tracking error e(t) for K = diag{0.15, 1.0}.

VII. CONCLUSIONS

In this paper, the performance robustness property of

some standard model reference adaptive control (MRAC)

designs with respect to reduction in actuator effectiveness

was studied. The reduction in effectiveness is modeled as

an actuator effectiveness gain matrix K at the control inputs

which is diagonal with the elements inside the interval (0, 1].
In the presence of reduction in actuator effectiveness, the

effectiveness gain reduces to a fraction of the normal level

(that without reduction in actuator effectiveness). Analy-

sis was performed for several direct and indirect MRAC

schemes. It was shown that the performance of continuous-

time multivariable direct MRAC designs is robust under

arbitrary reduction in actuator effectiveness, while that of

their discrete-time counterparts is design-based. In particular,

the performance of the multivariable MRAC design based on

the LDS decomposition of the high frequency gain matrix

may not be robust with respect to some reduction in actuator

effectiveness, but that of the LDU based design is. The
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Fig. 4. Tracking error e(t) for K = diag{0.15, 0.65}.

performance robustness property of the SISO indirect MRAC

design was also studied, and it was shown that the desired

performance may no longer be achieved for large reductions

in actuator effectiveness. A simulation study was presented

to verify some of the theoretical results.
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