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Abstract— Characterizing convergence speed is one of the
important research challenges in the design of distributed
consensus algorithms for networked multi-agent systems. In this
paper, we consider a group of agents that communicate via a
dynamically switching directed random network. Each link in
the network, which represents the directed information flow
between any ordered pair of agents, could be subject to failure
with certain probability. Hence we model the information
flow using dynamic random digraphs. We characterize the
convergence speed for the distributed discrete-time consensus
algorithm over a variety of random networks with arbitrary
weights. In particular, we propose the per-step (mean square)
convergence factor as a measure of the convergence speed and
derive the exact value for this factor. Numerical examples are
also given to illustrate our theoretical results.

I. INTRODUCTION

A series of work have been conducted on convergence

analysis for distributed consensus algorithms in the literature.

Convergence conditions have been derived for both stationary

network topologies and switching network topologies in [12],

[23], [16], [21], [22], [6], [18]; all focus on determinis-

tic networks. Consensus over randomly switching network

topologies has been studied in [9], [10], [19] for undirected

information flow and in [26], [20] for directed information

flow.

Previous work on analysis of convergence speed for con-

sensus algorithms includes [18], [27] for stationary network

topologies, [18], [2] for deterministically switching network

topologies, and [9], [19], [13], [14], [25] for randomly

switching network topologies. Note that both [9] and [19]

have focused on undirected networks and there does not exist

counterpart work on directed random networks in current

literature. Theoretically, problems on directed graphs are

more challenging than those on undirected graphs due to

the fact that algebraic properties are mostly known for

undirected graphs while little is known for directed graphs.

Also, practically, many important real networks have directed

edges.

As a complementary to [9] and [19], this paper mainly

focuses on directed random networks with arbitrary edge

weights and we give an analytical lower bound for the

convergence speed of a discrete-time consensus algorithm.

Particular contributions of this paper are listed as follows:

• We consider directed random networks rather than undi-

rected random networks as in [9] and [19]. Further,
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we consider networks where different edges could have

different edge probabilities and weights, rather than as-

sume that each edge has 0-1 weight and all edges share a

common edge probability as in [9], [19]. In addition, the

weight matrix of a netowrk may have negative elements,

and thus classical results on stochastic matrices [3], [4],

[24] are no longer applicable.

• In [19], a decay factor of the consensus algorithm

is characterized in terms of the spectral radius of an

augmented matrix derived from a Lyapunov-like matrix

recursion via Kronecker product. In comparison, we

characterize the convergence speed in terms of the

spectral radius of a Laplacian matrix in an explicit form.

The paper is organized as follows. In Section 2, the

problem formulation is presented. In Section 3, we derive the

convergence speed for the discrete-time consensus algorithm

over a variety of directed random networks. In Section 4,

numerical examples are presented to illustrate our theoretical

results. Conclusions are drawn in Section 5.

II. PROBLEM STATEMENT

Let 1∈R
n denote a column vector with all elements equal

to one, i.e., 1 = [1 · · ·1]T . Let In denote the n× n identity

matrix. Let ‖ · ‖2 denote the standard Euclidean norm.

A. Properties of random digraphs

We model a dynamically switching directed random net-

work by a sequence of weighted random digraphs G =
(V,E,W ) where

• V = {vi, i = 1,2, ...,n} is a node (or vertex) set whose

elements denote the agents in the network.

• E ⊆ V ×V is an edge set whose elements denote the

communication links between agents. E is a set of

ordered pairs of nodes, i.e., (vi,v j) and (v j,vi) are two

different elements of E . (vi,v j) is an element of E if

and only if agent vi receives information from agent v j,

in which case vi is referred to as the child node and

v j is referred to as the parent node. v j is also referred

to as a neighbor of vi in this case. We assume that

the existence of each edge is determined randomly and

independently of other edges with the edge probability

pi j which satisfies 0 ≤ pi j ≤ 1 for i, j = 1, ...,n, j 6= i.

pi j = 1 means that the edge (vi,v j) always exists while

pi j = 0 means that the edge (vi,v j) never exists. An

information link is referred to as a potential link when

the associated edge probability pi j > 0, which means

that the link may fail with the probability 1− pi j. We

also define an edge probability matrix P = [pi j]. In this
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paper, we do not consider self-loops or multiple edges.

Thus, we have pii = 0 for i = 1, ...,n. We then define

n(n−1) independent Bernoulli random variables, δi j’s,

i, j = 1, ...,n, j 6= i, as follows

δi j =

{

1, with probability pi j

0, with probability 1− pi j
(1)

where each random variable δi j is associated with a

directed edge (vi,v j).
• W = [wi j] ∈ R

n×n is a weight matrix with all diagonal

elements equal to 0, and each element wi j denotes the

weight associated with the edge (vi,v j). The weight

denotes how each agent evaluates the information col-

lected from its neighboring agents to update the con-

sensus algorithm. In general, we do not require W

to have nonnegative elements or to be symmetric. A

negative weight is often used to imply deteriorated

communication channels, or natural disagreement of the

child node over the information obtained from its parent

node [20].

Algebraically, a weighted random digraph G is represented

by an adjacency matrix A = [ai j] and a Laplacian matrix

L = [li j] defined as follows:

ai j =

{

0 , if i = j

wi jδi j, if i 6= j
(2)

where wi j is the corresponding entry of the weight matrix W

and

li j =

{

∑k=1,...,n aik, if i = j

−ai j , if i 6= j
(3)

Both the weighted adjacency matrix and the Laplacian

matrix defined above are essentially random. Let G, A and

L denote the sample spaces of all random digraphs, all

adjacency matrices and all Laplacian matrices respectively.

A directed graph with the Laplacian matrix L is said to be

balanced if 1T L = 0T . Next we introduce n(n−1) constant

matrices {Bi j, i = 1, ...,n−1, j = i+ 1, ...,n}:

Bi j = wi jei(ei − e j)
T (4)

where ei ∈ R
n denotes the vector with the ith entry equal

to 1 and all other entries equal to 0. Note that Bi j is the

Laplacian of a directed graph with only one edge (vi,v j).
Then the Laplacian L can be represented as follows,

L =
n

∑
i=1

n

∑
j 6=i, j=1

δi jBi j. (5)

Let Lc = [lc
i j] denote the expected value of the Laplacian.

Then,

Lc , E[L] = E[
n

∑
i=1

n

∑
j 6=i, j=1

δi jBi j] =
n

∑
i=1

n

∑
j 6=i, j=1

E[δi j]Bi j

=
n

∑
i=1

n

∑
j 6=i, j=1

pi jBi j (6)

In another word, Lc = [lc
i j] denotes the Laplacian of the

directed graph Gc ∈ G where all the edges with positive

edge probabilities exist. The elements of Lc are represented

as follows,

lc
i j =

{

∑n
k=1 wik pik, if i = j

−wi j pi j , if i 6= j
(7)

We also define a constant matrix L̃c that will be used in the

derivation of convergence speed for a consensus algorithm,

L̃c =
n

∑
i=1

n

∑
j 6=i, j=1

(pi j − p2
i j)B

T
i jBi j (8)

Note that L̃c = [l̃c
i j] is a symmetric Laplacian matrix with

entries defined as follows,

l̃c
i j =

{

∑n
k=1(w

2
ik(pik − p2

ik)+ w2
ki(pki − p2

ki)), if i = j

−(w2
i j(pi j − p2

i j)+ w2
ji(p ji − p2

ji)) , if i 6= j
(9)

When all the edge probabilities are equal, i.e., pi j = p for

i, j = 1, ...,n, j 6= i, we have

Lc = p
n

∑
i=1

n

∑
j 6=i, j=1

Bi j, L̃c = (p− p2)
n

∑
i=1

n

∑
j 6=i, j=1

BT
i jBi j

Remark 1: For any Laplacian matrix L, 0 is its eigenvalue

with the corresponding right eigenvector 1, i.e., L1 = 01 = 0.

For a graph with arbitrary weights, its Laplacian matrix L is

not guaranteed to be positive semi-definite.

B. Consensus Algorithm

Consider a dynamical system of n agents that communi-

cate via a dynamically switching directed random network.

Let xi(k) denote the state of agent i at time instant k,

i = 1, ...,n. For simplicity, xi(k) is assumed to be a scalar.

Extension to vector states can be made by using Kronecker

product and thus is omitted here. Let x(k)= [x1(k), ...,xn(k)]
T

denote the state vector of all agents. At each time instant,

each agent updates its own state based on the local infor-

mation collected from its neighboring agents according to a

distributed control law, which is referred to as the distributed

consensus algorithm.

In this paper, we consider the following discrete-time

consensus algorithm [19],

xi(k + 1) = xi(k)+ ∑
j∈N (i,k)

wi j(x j(k)− xi(k)) (10)

where wi j is the corresponding element of the weight matrix

W ; N (i,k) denotes the set of neighboring agents of agent

i at time instant k. Then the overall system of all agents is

given as,

x(k + 1) = (In −L(k))x(k) (11)

where L(k) is the Laplacian of the random graph at time

instant k. Due to the randomness of the underlying network,

the Laplacian L(k) is a random matrix and the system (11)

is a stochastic system, which makes x(k) a random vector

and {x(k)} a random sequence.

Definition 1 (agreement set): The agreement set A ⊆ R
n

is defined as the subspace spanned by {1}, i.e.,

A = {c1 : c ∈ R}.
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Note that A is the equilibrium set of the dynamical system

(11), i.e., ∀x(K0) = c1∈A , for all k ≥K0 we have x(k) = c1

since x(K0 + 1) = (In − L(K0))x(K0) = c(In − L(K0))1 = c1

and recursively.

Definition 2 (almost sure consensus): The discrete-time

consensus algorithm (11) asymptotically reaches almost sure

consensus if the equilibrium set A is almost surely stable

and if the sequence {x(k)} asymptotically converges to the

agreement set A almost surely, i.e., for each ε > 0,

lim
k0→∞

P

{

sup
k≥k0

inf
x∗∈A

‖x(k)−x∗‖2 > ε

}

= 0 (12)

Almost sure consensus is also called consensus with proba-

bility one (w.p.1).

Let Q =
[

q1 q2 · · · qn−1

]

∈ R
n×(n−1) denote a

matrix such that 1√
n
1 and qi’s (i = 1, ...,n − 1) form an

orthonormal basis of R
n. Q is not unique; however, it is true

that QT 1 = 0, QT Q = In−1 and QQT = In − 1
n
(11T ). Similar

to [20], we define the error vector ξ (k) as follows,

ξ (k) = QT x(k), (13)

The state vector x(k) can then be decomposed as,

x(k) = Qξ (k)+
1

n
(1T x(k))1. (14)

Lemma 1: infx∗∈A ‖x(k)−x∗‖2 = ‖ξ (k)‖2.

Proof: Given any c1∈A where c is a constant number,

‖x(k)− c1‖2
2

= xT (k)x(k)−2c1T x(k)+ c2n

= n

[

c− 1

n
1T x(k)

]2

+ xT (k)x(k)− 1

n
(1T x(k))2

and ‖x(k) − c1‖2
2 is minimized when c = 1

n
1T x(k),

i.e., infx∗∈A ‖x(k)− x∗‖2 =
√

xT (k)x(k)− 1
n
(1T x(k))2. On

the other hand, ‖ξ (k)‖2
2 = xT (k)QQT x(k) = xT (k)(In −

1
n
(11T ))x(k) = xT (k)x(k)− 1

n
(1T x(k))2.

Therefore, (12) is equivalent to

lim
k0→∞

P

{

sup
k≥k0

‖ξ (k)‖2 > ε

}

= 0. (15)

The discrete-time consensus algorithm (11) asymptotically

reaches almost sure consensus if and only if the equilibrium

point 0 is almost surely asymptotically stable for the error

vector ξ (k). Hence, we characterize the convergence speed of

almost sure consensus by computing the convergence speed

of the error vector ξ (k).

C. Measures of convergence speed

Per-step convergence factor has been defined in [27] as a

measure of convergence speed for consensus algorithms over

fixed, undirected network topologies. In this paper, since we

consider directed random networks, we modify the definition

of this measure in a probabilistic setting as follows:

Definition 3 (per-step (mean square) convergence fac-

tor/time): The per-step convergence factor, in the mean

square sense, for (11) is defined as

rs = sup
ξ (k) 6=0,k∈Z

E[‖ξ (k + 1)‖2
2|ξ (k)]

‖ξ (k)‖2
2

, (16)

and the associated per-step convergence time is defined as

τs =
1

log(1/rs)
. (17)

Lemma 2: rs < 1 implies almost sure consensus.

Proof: From (16), we have

E[‖ξ (k + 1)‖2
2−‖ξ (k)‖2

2|ξ (k)] ≤−(1− rs)‖ξ (k)‖2
2.

When rs < 1, 1 − rs > 0. According to [15] (Theorem 2

on pp. 197), we conclude that the equilibrium point 0 is

exponentially stable in the mean square for the error vector

ξ (k). According to [17], exponential stability in the mean

square implies almost sure asymptotic stability.

III. CONVERGENCE AND CONVERGENCE SPEED

In this section, we derive the the per-step (mean square)

convergence factor for the discrete-time consensus algorithm

(11) over a dynamically switching directed random network.

Before proceeding with the final thoerem for convergence

speed, we first give several facts that will be used in the

proof.

Proposition 1: The evolution of the error vector for

the discrete-time consensus algorithm (11) is given by the

following recursive equation,

ξ (k + 1) = QT (In −L(k))Qξ (k) (18)

Proof: According to (11) and (13),

ξ (k + 1) = QT x(k + 1) = QT (In −L(k))x(k).

Then by (14), we have

ξ (k + 1) = QT (In −L(k))(Qξ (k)+
1

n
(1T x(k))1).

Since QT 1 = 0 and L(k)1 = 0, we further have

ξ (k + 1) = QT (In −L(k))Qξ (k).

Lemma 3: BT
i jQQT Bi j = (1− 1

n
)BT

i jBi j.

Proof: Since QQT = In − 1
n
11T , we have BT

i jQQT Bi j =

BT
i jBi j − 1

n
BT

i j11T Bi j where

BT
i j11T Bi j = (wi j(ei − e j)e

T
i )11T (wi jei(ei − e j)

T )

= w2
i j(ei − e j)(ei − e j)

T

= w2
i j(ei − e j)e

T
i ei(ei − e j)

T

= BT
i jBi j

Hence,

BT
i jQQT Bi j = (1− 1

n
)BT

i jBi j.
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Next we derive the explicit form for per-step (mean

square) convergence factor over directed random networks.

Proposition 2: The conditional variance of the error vector

for the discrete-time consensus algorithm (11) over a dynam-

ically switching directed random network is

E[‖ξ (k + 1)‖2
2|ξ (k)]

= (Qξ (k))T [(In −Lc)
T R(In −Lc)+ (1− 1

n
)L̃c]

×Qξ (k) (19)

where R , In − 1
n
11T .

Proof: By Proposition 1,

E[‖ξ (k + 1)‖2
2|ξ (k)] (20)

= E[ξ T (k + 1)ξ (k + 1)|ξ (k)]

= ξ T (k)E[QT (In −LT (k))QQT (In −L(k))Q]ξ (k)

= ξ T (k)(In−1 −QT (E[LT (k)]+ E[L(k)])Q

+E[QT LT (k)QQT L(k)Q])ξ (k) (21)

Define the index sets I1 = {i, j = 1, ...,n, j 6= i}, I2 =
{i, j,s, l = 1, ...,n, j 6= i, l 6= s} and I3 = {i, j,s, l = 1, ...,n, j 6=
i,s = i, l = j}. Then by (5),

E[QT LT (k)QQT L(k)Q]

= ∑
I2

E[δi jδsl]Q
T BT

i jQQT BslQ

= ( ∑
I2\I3

+∑
I3

)E[δi jδsl]Q
T BT

i jQQT BslQ

= ∑
I2\I3

E[δi jδsl ]Q
T BT

i jQQT BslQ

+∑
I1

E[δ 2
i j]Q

T BT
i jQQT Bi jQ

Since δi j’s are independent Bernoulli random variables

with success probability pi j, we have E[δ 2
i j] = pi j for i, j =

1, ...,n, j 6= i and E[δi jδsl] = pi j psl for i, j,s, l = 1, ...,n, j 6=
i, l 6= s,s 6= i, l 6= j. Hence,

E[QT LT (k)QQT L(k)Q]

= QT

(

∑
I2\I3

pi j pslB
T
i jQQT Bsl +∑

I1

pi jB
T
i jQQT Bi j

)

Q

= ∑
I2\I3

pi j pslQ
T (Bi j)

T QQT BslQ

+QT

(

∑
I1

(pi j − p2
i j + p2

i j)B
T
i jQQT Bi j

)

Q

By the definitions of the index sets, ∑I1
p2

i j(Bi j)
T QQT Bi j =

∑I3
pi j psl(Bi j)

T QQT Bsl . Thus,

E[QT LT (k)QQT L(k)Q]

= ∑
I2\I3

pi j pslQ
T (Bi j)

T QQT BslQ

+QT

(

∑
I1

(pi j − p2
i j)(Bi j)

T QQT Bi j

)

Q

+∑
I3

pi j pslQ
T (Bi j)

T QQT BslQ

= ∑
I2

pi j pslQ
T (Bi j)

T QQT BslQ

+QT

(

∑
I1

(pi j − p2
i j)(Bi j)

T QQT Bi j

)

Q

= QT

(

n

∑
i=1

n

∑
j 6=i, j=1

pi j(Bi j)
T

)

QQT

(

n

∑
s=1

n

∑
l 6=s,l=1

pslBsl

)

Q

+QT

(

n

∑
i=1

n

∑
j 6=i, j=1

(pi j − p2
i j)(Bi j)

T QQT Bi j

)

Q.

By Lemma 3, we have (Bi j)
T QQT Bi j = (1− 1

n
)BT

i jBi j. There-

fore,

E[QT LT (k)QQT L(k)Q]

= QT

(

n

∑
i=1

n

∑
j 6=i, j=1

pi j(Bi j)
T

)

QQT

(

n

∑
s=1

n

∑
l 6=s,l=1

pslBsl

)

Q

+(1− 1

n
)QT

(

n

∑
i=1

n

∑
j 6=i, j=1

(pi j − p2
i j)B

T
i jBi j

)

Q

= (QT (Lc)
T Q)(QT LcQ)+ (1− 1

n
)QT L̃cQ (22)

By (20), (6), and (22), we have

E[‖ξ (k + 1)‖2
2|ξ (k)]

= ξ T (k)[In−1 −QT (LT
c + Lc)Q+(QT LT

c Q)(QT LcQ)

+(1− 1

n
)QT L̃cQ]ξ (k)

= ξ T (k)[QT (In −LT
c )QQT (In −Lc)Q

+(1− 1

n
)QT L̃cQ]ξ (k)

= (Qξ (k))T [(In −Lc)
T R(In −Lc)+ (1− 1

n
)L̃c]Qξ (k)

Theorem 1: The per-step (mean square) convergence factor

for the discrete-time consensus algorithm (11) over a dynam-

ically switching directed random network is

rs = ρd , ρ

(

(In −Lc)
T R(In −Lc)+ (1− 1

n
)L̃c

)

(23)

where ρ(·) denotes the spectral radius of a matrix.

Proof: From Proposition 2,

E[‖ξ (k + 1)‖2
2|ξ (k)]

= (Qξ (k))T [(In −Lc)
T R(In −Lc)+ (1− 1

n
)L̃c]Qξ (k)

≤ ρd‖Qξ (k)‖2
2

= ρdξ T (k)QT Qξ (k) = ρdξ T (k)ξ (k) = ρd‖ξ (k)‖2
2

Hence, we obtain rs ≤ ρd . To prove ρd ≤ rs, note that the

matrix

(In −Lc)
T R(In −Lc)+ (1− 1

n
)L̃c

is positive semi-definite and all its eigenvalues are nonnega-

tive; thus, ρd is the largest eigenvalue. Let v ∈ R
n−1 denote
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the eigenvector corresponding to ρd . Also, note that 0 is its

eigenvalue with corresponding eigenvector 1. Thus, v⊥1 and

vT 1 = 0. Choose x(k) = v. Then,

Qξ (k) = QQT x(k) = (In −
1

n
11T )v = v

and

E[‖ξ T (k + 1)‖2
2|ξ (k)]

= (Qξ (k))T [(In −Lc)
T R(In −Lc)+ (1− 1

n
)L̃c]Qξ (k)

= vT [(In −Lc)
T R(In −Lc)+ (1− 1

n
)L̃c]v

= ρdvT v

= ρdξ T (k)QT Qξ (k)

= ρd‖ξ T (k)‖2
2

Hence, rs ≥ ρd . Therefore, we conclude that rs = ρd .

From Proposition 2 and Theorem 1, we have the following

result. The proof is straight-forward and thus omitted due to

space limit.

Corollary 1: When Lc is balanced, the per-step (mean

square) convergence factor for the discrete-time consensus

algorithm (11) over a dynamically switching directed random

network is

rs = ρd = ρ

(

R−Lc −LT
c + LT

c Lc +(1− 1

n
)L̃c

)

IV. NUMERICAL EXAMPLES

A. Weight matrix with negative elements

This example considers the case in which some com-

munication links have negative weights. Consider a group

of 5 agents over a dynamically switching directed random

network. Both the probability matrix P and the weight matrix

W are generated randomly. In particular, each element pi j

(i, j = 1, ...,5) of the edge probability matrix P is uniformly

distributed between 0 and 1, and each element wi j (i, j =
1, ...,6) of the weight matrix W is randomly generated as

the summation of two random variables (one uniformly

distributed between 0 and 0.2 and the other uniformly

distributed between -0.1 and 0)

P =













0 0.5837 0.2896 0.8208 0.4468

0.3081 0 0.8155 0.8644 0.7873

0.2856 0.2717 0 0.0858 0.2818

0.0781 0.7836 0.6091 0 0.4700

0.9532 0.2431 0.1231 0.3875 0













,

W =












0 0.1478 0.0511 0.1093 0.0629

−0.0008 0 0.0130 0.0689 −0.0032

−0.0237 0.0094 0 −0.0321 0.0554

0.0417 −0.0011 0.0903 0 −0.0026

0.1024 0.1091 0.0099 −0.0200 0













.

Note that P and W are not symmetric and some elements

of W are negative. Hence, the corresponding matrix In−L(k)
could have negative elements and thus it is not a stochastic

matrix; therefore, the classical results in [3] [4] [24] can

not be directly applied to prove the almost sure asymptotic

stability. By simple calculation using (23), we obtain the per-

step convergence factor rs = ρd = 0.9538 < 1. We conclude

that the discrete-time consensus algorithm (11) almost surely

converges to the agreement set asymptotically. Fig (1) shows

the state trajectory of the 5 agents by applying the consensus

algorithm (11). The initial condition of the simulation is

randomly generated from a uniform distribution between 0

and 1 as X(0) = [0.0697,0.2332,0.7374,0.7585,0.6368]T.

For k > 111, ‖ξ (k)‖2
2 < 0.001 and the group decision value

is 0.6414 at the 111th step. Note that the average of X(0)
is 0.4871 rather than 0.6414. Hence, the observation for

undirected random network that agents converge to the

average of initial values [9] may not be applicable to directed

random networks.
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Fig. 1. State trajectory over a randomly switching directed network.

B. Common edge probability p

Consider a group of 6 agents over a dynamically switching

directed random network where all links share a common

edge probability p. Fig (2) plots the per-step convergence

factor rs as a function of p for a given set of weight matrices:

W1 =
















0 0.0822 0.0433 0.0913 0.0738 0.0898

0.0225 0 0.0611 0.0591 0.0511 0.0183

0.0184 0.0030 0 0.0575 0.0195 0.0022

0.0216 0.0192 0.0808 0 0.0868 0.0091

0.0427 0.0247 0.0509 0.0159 0 0.0522

0.0971 0.0567 0.0315 0.0275 0.0395 0

















is randomly generated and uniformly distributed between 0

and 0.1, and W2 = 4W1, W3 = 5W1.

From Fig (2), we see that for all 0 < p <= 1, the per-

step convergence factors for W1 and W2 are less than 1,

which guarantees almost sure consensus over the directed

random networks with these two weight matrices. For W3,

when p = 1, the spectral radius of the matrix I−Lc is 1.1813,

which implies that the discrete-time consensus algorithm

(11) diverges over the fixed directed network with weight
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Fig. 2. Per-step convergence factor as a function of the edge probability.

matrix W3 in the deterministic setting. By contrast, when

0 < p < 0.8708, the per-step convergence factor for W3 is

less than 1, which guarantees almost sure convergence of the

consensus algorithm (11) over the directed random network.

V. CONCLUSIONS

In this paper, we have derived the convergence speed of a

discrete-time consensus algorithm for a dynamically switch-

ing directed random network. The per-step convergence

factor in the mean square sense is defined and calculated

to provide a lower bound for the convergence speed of the

consensus algorithm. Simulations are also given to illustrate

the theoretic results.
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