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Abstract— In this paper we present the results of our recent
work on asymptotic regulation using zero dynamics inverse
(ZDI) design for a one dimensional heat equation applied to the
non-colocated case. In our previous works we have considered
several different types of examples for the co-located case in
which boundary control is used to track reference signals given
at the same end of the rod or on the interior of the rod. In
this work we show how this method can also be applied in the
case of boundary control in order to achieve tracking a pair of
signals prescribed at interior points of the rod.

I. INTRODUCTION

Asymptotic regulation has attracted considerable attention

in the literature on both lumped and distributed parameter

systems using an impressive variety of technical approaches.

Roughly speaking, the problem is to design a feedback

controller, using only the error e(t) and measured variables

ym(t), to achieve limt→∞ e(t) = 0 together with appropriate

boundedness conditions on the state of the system and the

controller(s). In order to reflect various degrees of uncertainty

about the signal w(·), we distinguish between three versions

of the problem of asymptotic regulation, following tradition

in robust control. In the first, and worst, case scenario, we

refer to the situation where the exogenous signals w(t) is

unknown as asymptotic regulation with unstructured uncer-

tainty. In fact, a more reasonable problem is to design a

controller which attenuate the effect of w and the current

approach of choice in this case is indisputably H∞control,

which has received enormous attention in the literature as a

method for the robust control of lumped linear and nonlinear

cases ( [7], [1], [8] and the references therein). For distributed

parameter systems, see [2] and the extensive treatises [9] -

[11]. The next most natural case is asymptotic regulation with

structured uncertainty ; i.e., the problem of output regulation.

In this approach one assumes that the signal w is the output

of an exogenous, known autonomous system but that only

w and perhaps some other functional of the state of the

exosystem is known. Since unknown parameters θ can be

incorporated into the states of the exosystem augmented by

θ̇ = 0, this formulation does indeed capture the essence

of models with structured uncertainty. Our third delineation

regarding uncertainty, asymptotic regulation with measured

signals , lies between the cases of structured and unstructured

uncertainty; viz., the case where the value w(t) of the signal

is available at any instant of time. In general, since w is

available as an input, it can be filtered through a cascade

controller which produces a feedforward contol, uR. The

ZDI design philosophy designs a cascade controller for a

class of signals which are unknown, except at the instant

when they are used as inputs to the cascade controller. In

particular, this problem formulation is in sharp contrast to

exact tracking, asymptotic tracking or dynamic inversion of

a completely known trajectory.

In a series of earlier papers [3]–[6] we have solved the

asymptotic regulation problem for some distributed param-

eter systems using the zero dynamics inverse (ZDI) design.

In each of the earlier papers we consider the co-located

case in which the actuator and sensor were placed at the

same points in the spatial domain. The non-colocated case

is somewhat more challenging for the ZDI method due to

the fact that the spatial domain for the plant and the zero

dynamics are different. Nevertheless we have been able to

overcome this problem and, in this paper, we present some

positive results in this direction for a MIMO example for

the one dimensional heat equation with two inputs and two

outputs.

In this work we consider a control system governed the

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

WeB05.3

978-1-4244-4524-0/09/$25.00 ©2009 AACC 832



one dimensional heat equation

zt(x, t) = zxx(x, t) 0 ≤ x ≤ 1, t > 0, (I.1)

z(x, 0) = 0,

B0z = zx(0, t) − k0z(0, t) = u0(t), k0 > 0, (I.2)

B1z = zx(1, t) + k1z(1, t) = u1(t), k1 > 0, (I.3)

ya(t) = (Caz)(t) = z(a, t) (I.4)

yb(t) = (Cbz)(t) = z(b, t), 0 < a < b < 1. (I.5)

We then denote the input and output for this system by

u =

[
u0

u1

]
, y =

[
ya

yb

]
.

We are also given a pair of reference signals yr,a(t) and

yr,b(t). The control objective is to design a control u so that

the error

e(t) = y(t) − yr(t)
t→∞−−−→ 0

where yr(t) = [yr,a(t), yr,b(t)]
T .

It can be shown that the problem (I.1)-(I.5) is equivalent

to the abstract problem in Z = L2(0, 1) given by

zt = Az + Bu, t > 0, (I.6)

z(0) = 0,

y(t) = Cz(t) (I.7)

where A = ∂2/∂x2 is the negative self-adjoint operator with

domain

D(A) = {ϕ ∈ H2(0, 1) : B0ϕ = 0,B1ϕ = 0} (I.8)

and where

Bu = B0u0 + B1u1, B0 = −δ0, B1 = δ1, (I.9)

(δa is the Dirac delta function located at x = a)

Cz(t) =

[
Caz
Cbz

]
=

[
z(a, t)
z(b, t)

]
. (I.10)

Related to the plant given in (I.1)-(I.5) we also consider

the so-called forced zero dynamics system

ξt(x, t) = ξxx(x, t) a ≤ x ≤ b, t > 0, (I.11)

ξ(x, 0) = 0,

ξ(a, t) = Caξ = yr,a(t), (I.12)

ξ(1, t) = Cbξ = yr,b(t), (I.13)

u0(t) = B0ξ, (I.14)

u1(t) = B1ξ. (I.15)

II. TRANSFER FUNCTION FOR FORCED ZERO DYNAMICS

In this section we compute the transfer function for the

forced zero dynamics system given in (I.11)-(I.15). To this

end we apply the Laplace transform to (I.11)-(I.15) to obtain

sξ̂(x, s) = ξ̂xx(x, s) a ≤ x ≤ b, t > 0, (II.1)

ξ̂(x, 0) = 0,

ξ̂(a, s) = Caξ̂ = ŷr,a(s), (II.2)

ξ̂(b, s) = Cbξ̂ = ŷr,b(s), (II.3)

û0(s) = B0ξ̂, (II.4)

û1(s) = B1ξ̂. (II.5)

The general solution to (II.1) is given by

ẑ(x, s) = c1ϕ1(x) + c2ϕ2(x), (II.6)

ϕ1(x) =
sinh(

√
sx)√

s
, ϕ2(x) = cosh(

√
sx)

and also we have

ẑx(x, s) = c1 cosh(
√

sx) + c2

√
s sinh(

√
sx).

Applying the conditions in (II.2) and (II.3) we have

c1(Caϕ1) + c2(Caϕ2) = Caξ̂ = ŷr,a

c1(Cbϕ1) + c2(Cbϕ2) = Cbξ̂ = ŷr,b

Let ∆ denote the coefficient matrix:

∆(s) =

∣∣∣∣∣
(Caϕ1) (Caϕ2)

(Cbϕ1) (Cbϕ2)

∣∣∣∣∣

=
1√
s

∣∣∣∣∣
sinh(

√
sa) cosh(

√
sa)

sinh(
√

sb) cosh(
√

sb)

∣∣∣∣∣

=
[sinh(

√
sa) cosh(

√
sb) − cosh(

√
sa) sinh(

√
sb)]√

s

= − sinh(
√

s(b − a))√
s

(II.7)

So we have

c1 =
1

∆
{(Cbϕ2)ŷa − (Caϕ2)ŷb}

=
1

∆

{(
sinh(

√
sb)√

s

)
ŷa −

(
cosh(

√
sa)

)
ŷb

}

and

c1 = {(Caϕ1)ŷb − (Cbϕ1)ŷa}

=
1

∆

{(
sinh(

√
sa)√

s

)
ŷb −

(
cosh(

√
sb)

)
ŷa

}
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Therefore, we have

ξ̂(x, s) =
1

∆
[{(Cbϕ2)ŷa − (Caϕ2)ŷb}ϕ1(x) (II.8)

+ {(Caϕ1)ŷb − (Cbϕ1)ŷa}ϕ2(x)]

=
1

∆

[{(
sinh(

√
sb)√

s

)
ŷa −

(
cosh(

√
sa)

)
ŷb

}
ϕ1(x)

+

{(
sinh(

√
sa)√

s

)
ŷb −

(
cosh(

√
sb)

)
ŷa

}
ϕ2(x)

]

We note that

B0ϕ1 = 1, B0ϕ2 = −k0,

and

B1ϕ1 =

[
cosh(

√
s) + k1

sinh(
√

s)√
s

]
,

B1ϕ2 =
[√

s sinh(
√

s) + k1 cosh(
√

s)
]
.

From these we readily obtain

û0 =B0ξ̂ =
1

∆
[{(Cbϕ2)ŷa − (Caϕ2)ŷb} (B0ϕ1)

+ {(Caϕ1)ŷb − (Cbϕ1)ŷa} (B0ϕ2)] (II.9)

= −
[√

s cosh(
√

sb) + k0 sinh(
√

sb)

sinh(
√

s(b − a))

]
ŷa

+

[√
s cosh(

√
sa) + k0 sinh(

√
sa)

sinh(
√

s(b − a))

]
ŷb.

and

û1 =B1ξ̂ =
1

∆
[{(Cbϕ2)ŷa − (Caϕ2)ŷb} (B1ϕ1)

+ {(Caϕ1)ŷb − (Cbϕ1)ŷa} (B1ϕ2)] (II.10)

= −
[√

s cosh(
√

s(1 − b)) + k1 sinh(
√

s(1 − b))

sinh(
√

s(b − a))

]
ŷa

+

[√
s cosh(

√
s(1 − a)) + k1 sinh(

√
s(1 − a))

sinh(
√

s(b − a))

]
ŷb

III. THE CONTROL PROBLEM – HARMONIC TRACKING

We now turn to using all these expressions to give simple

formulas for the controls u0, u1 solving the tracking problem

described in Section I.

In this section we consider the problem of tracking a pair

of sinusoids, i.e.,

yr,0(t) = M0 sin(α0t), yr,1(t) = M1 sin(α1t).

In order to compute u0 and u1 we apply inverse Laplace

transforms to (II.9) and (II.10). Namely we have

uj(t) = L−1(ûj)(t) =
1

2πi

∫ γ+i∞

γ−i∞

est ûj(s) ds. (III.1)

Here γ > 0 so that the integration is carried out in the

complex plane and all the singularities of M(s) are poles

that lie to the left of the the vertical line Re (s) = γ

corresponding to our path of integration. Indeed, since the

poles of ŵj lie (as conjugate pairs) on the imaginary axis

and the remaining poles of M(s) correspond to the nonzero

zeros of sinh(
√

s) which form infinite set of simple poles that

lie on the negative real axis and tend to minus infinity. The

calculation is easily carried out using the residue theorem

from complex analysis.

1

2πi

∫ γ+i∞

γ−i∞

est ûj(s) =
∑

Res
(
est ûj(s)

)

where the summation is taken over all poles in the closed left

half of the complex plane. In the case of tracking a sinusoid

we have

L(M sin(αt)) =
Mα

s2 + α2
=

Mα

(s − iα)(s + iα)
. (III.2)

Then the poles correspond to S = SM ∪ Sa ∪ Sb

SM = {s : ∆(s) = 0} =, S0 = {±iαa}, S1 = {±iαb}.

and we have

First we compute u0(t). To this end we set

u0(t) =
1

2πi

∫ γ+i∞

γ−i∞

est
(
est û0(s)

)
(s) ds

=
∑

s=−j2π2

Res
(
est

(
est û0(s)

)
(s)

)

+
∑

s=±iα0

Res
(
est

(
est û0(s)

)
(s)

)

+
∑

s=±iα1

Res
(
est

(
est û0(s)

)
(s)

)

≡ Hstable(t) + H00(t) + H01(t). (III.3)

The terms contained in Hstable(t) all contain expressions

in the form

hj(t) = f(ζj)e
−j2π2t.

The terms hj(t) tend to zero exponentially as t goes to

infinity. Thus these terms do not contribute to the steady
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state response and therefore are ignored in the computation

of u0(t). Certainly these terms do contribute to the transient

response of the control but the point is that it does not hurt

to ignore these terms in the sense that we still obtain a

control law. What we claim here is that the control obtained

in this way is exactly the same as that obtained by solving

the regulator equations.

Let us now focus on the residues that provide H00(t) and

H01(t). First we consider H00(t). We recall that for any

α ∈ R the Laplace transform of a sinusoid with frequency α

and amplitude M is given (III.2). For H00(t) we will need to

calculate the sum of the residues at ±iαa for the following

term

T11(s) = −

[√
s cosh(

√
sb) + k0 sinh(

√
sb)

sinh(
√

s(b − a))

]
M0α0e

st

(s − iα0)(s + iα0)

and for H01(t) we need the sum of the residues at ±iαb for

T12(s) =

[√
s cosh(

√
sa) + k0 sinh(

√
sa)

sinh(
√

s(b − a))

]
Mbαbe

st

(s − iαb)(s + iαb)
.

The residues at ±iαa give

H00(t) =Ress=iαa
T11(s) + Ress=−iαa

T11(s)

=2Re (Ress=iαa
T11(s))

=Ma [Re (Fa) sin(αat) + Im (Fa) cos(αat)]

=Re (Fa)w1
a(t) + Im (Fa)w2

a(t) (III.4)

where Fa is given by

−
{√

iαa cosh(
√

iαa b) + k0 sinh(
√

iαa b)

sinh(
√

iαa (b − a))

}
. (III.5)

Similarly, the residues at ±iαb give

H01(t) =Ress=iαb
T12(s) + Ress=−iαb

T12(s)

=2Re (Ress=iαb
T12(s))

=Mb [Re (Fb) sin(αbt) + Im (Fb) cos(αbt)]

=Re (Fb)w
1
b (t) + Im (Fb)w

2
b (t) (III.6)

where Fb is given by
{√

iαb cosh(
√

iαb a) + k0 sinh(
√

iαb a)

sinh(
√

iαb (b − a))

}
. (III.7)

Finally we have

u0(t) = H00(t) + H01(t) (III.8)

= Re (Fa)w1
a(t) + Im (Fa)w2

a(t)

+ Re (Fb)w
1
b (t) + Im (Fb)w

2
b (t)

= Γ11wa(t) + Γ12wb(t),

where Fa and Fb are given, respectively, by

−
{√

iαa cosh(
√

iαa b) + k0 sinh(
√

iαa b)

sinh(
√

iαa (b − a))

}
,

and
{√

iαb cosh(
√

iαb a) + k0 sinh(
√

iαb a)

sinh(
√

iαb (b − a))

}
.

Repeating all the above we can compute u1(t).

In particular from Section II equation (II.10) we have

û1 = −
[√

s cosh(
√

s(1 − b)) + k1 sinh(
√

s(1 − b))

sinh(
√

s(b − a))

]
ŷa

+

[√
s cosh(

√
s(1 − a)) + k1 sinh(

√
s(1 − a))

sinh(
√

s(b − a))

]
ŷb

We obtain u1(t) by applying the inverse Laplace transform

to (II.10) which has simple poles at s = −j2π2, s = ±iαa

and s = ±iαb. So it is clear that we can simply repeat what

we did to find u0(t) to obtain the desired result. Rather than

repeat the details we just give the final results.

u1(t) = H10(t) + H11(t) (III.9)

= Re (Ga)w1
a(t) + Im (Ga)w2

a(t) (III.10)

+ Re (Gb)w
1
b (t) + Im (Gb)w

2
b (t)

= Γ21wa(t) + Γ22wb(t),

where Ga and Gb are given, respectively, by

−
{√

iαa cosh(
√

iαa (1 − b)) + k1 sinh(
√

iαa (1 − b))

sinh(
√

iαa (b − a))

}
,

and
{√

iαb cosh(
√

iαb (1 − a)) + k1 sinh(
√

iαb (1 − a))

sinh(
√

iαb (b − a))

}
.

IV. EXAMPLE

In this section we present a numerical example in which

we have set k0 = k1 = 10, αa = 1, Ma = .5, αb = 2,

Mb = 1, a = .2 and b = .9. We have also taken initial

condition for the plant as ϕ(x) = 2 cos(πx). The controls
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u0 and u1 are obtained from (III.8)

rre3.19 with

Γ =

[
−14.2986 −1.1468 4.2214 −0.5982
−2.8446 0.2232 12.9105 1.2471

]
.
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