
  

  

Abstract—Almost all dynamical systems experience inherent 
uncertainties such as environmental disturbance and sensor 
noise. This paper describes a new robust stochastic control 
methodology, which is capable of controlling the statistical 
nature of state variables of a nonlinear system to designed 
(attainable) statistical properties. First, an asymptotically 
stable and robust output tracking controller is designed in 
which discontinuous functions are not involved. Second, 
undetermined control parameters in the closed-loop system are 
optimized through nonlinear programming. In this constrained 
optimization, the error between the desired and actual 
moments of state variables is minimized subject to constraints 
on statistical moments.  As the key point to overcome the 
difficulties in solving the associated Fokker-Planck equation, a 
direct quadrature method of moments is proposed. The 
advantages of the proposed method are: (1) ability to control 
any specified stationary moments of the states or output 
probability density function; (2) no need for the state process to 
be a Gaussian; (3) robustness with respect to parametric and 
functional uncertainties. 

I. INTRODUCTION 

IEWING system behaviors within a stochastic 
framework allows for the inclusion of random 

disturbances and calculation of expected long term system 
trends. Normally Monte Carlo simulation approaches are 
used to find proper control parameters such that a desired 
statistical distribution of system performance can be 
achieved. However, this approach has a polynomial 
complexity in computation [1]. It will become intractable 
when the system is large, which results in a prohibitive 
number of control design iterations and CPU and labor time. 
To reduce the computational cost, extensive research efforts 
were spent for both linear and nonlinear stochastic systems, 
as discussed below. 

On one hand, the stochastic control for linear systems, 
such as LQG, observer based covariance control, optimal 
sliding mode regulator, and minimum energy covariance 
control etc., has been well studied [2-9].  On the other hand, 
the methods have been investigated to address nonlinear 
stochastic problems, which can be broadly put into three 
categories. 

The first and the most intuitive way of handling nonlinear 
stochastic control problems is to linearize the system in a 
statistical way, after which linear stochastic control methods 
could be applied [10].  The shortcoming is obvious: it is 
expected that a linear controller will only provide a good 
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closed-loop performance locally [11]. 
The second approach to solve nonlinear stochastic control 

problems is via the solution of the associated Fokker-Planck 
Equation once the structure of the closed-loop system is 
known.  However, solving the associated Fokker-Planck 
Equation (FPE) [12] makes this problem cumbersome with 
few exceptions due to the curse of dimensionality [13].  To 
mitigate the computational cost, methods such as the path 
integral method [15], cell-mapping method [14] and 
adaptive grids methods [16-17] have been tried. However, 
the computational cost in these methodologies is still high. 

Many interests have been attracted to the third category, 
approximation methods [11, 18-25], through which the 
solution of the FPE is approximated.  In the present work, a 
novel approach is proposed, referred as the direct quadrature 
method of moments (DQMOM), along with an 
asymptotically stable nonlinear tracking control.  This 
approach involves representing the state PDF in terms of a 
finite summation of Dirac delta functions, whose weights 
and locations (abscissas) are determined based on moments 
constraints.  Using a small number of scalars, the method is 
able to efficiently and accurately model stochastic processes 
described by the multidimensional FPE through a set of 
ordinary differential equations (ODEs).  Together with the 
DQMOM approach, a nonlinear controller is designed here 
based on the concepts of sliding manifold and input-output 
feedback linearization with guaranteed asymptotic tracking 
stability.  Different from the commonly used sliding mode 
control (SMC) [26-29], the high speed switching 
(discontinuous) function shown in typical SMCs or higher 
order SMCs has been removed to satisfy the continuity 
requirement in the partial derivatives of the associated FPE.  
In addition, the inherent chattering problem experienced in 
the commonly used SMC can be eliminated. 

The main contributions of the paper can be summarized as 
follows. First, the existence of a finite moment index implies 
that the controlled system is stable up to the highest order of 
statistical moments included in the off-line design.  Second, 
selected moments of the state or output variables can be 
controlled accurately in steady state and the state process 
doesn’t need to be a Gaussian. Third, the nonlinear 
controller proposed here is asymptotically stable and robust 
to bounded parametric as well as functional uncertainties. 

The rest of this paper is organized as follows.  First, the 
system model of an affine nonlinear stochastic system is 
described along with the control objectives and the nominal 
system used in the design stage.  Second, the governing 
equations of the weights and abscissas, which are used in 
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representing the state PDF, are derived for the FPE based 
upon the proposed quadrature based moment approach.  
Third, a nonlinear robust control method is proposed based 
on the concepts of input-output feedback linearization and 
sliding manifold without involving discontinuous functions.  
Next, the undetermined control parameters, weights and 
abscissas are optimized offline through a constrained 
nonlinear optimization.  Finally, a non-trivial numerical 
example is illustrated, followed by the conclusion. 

II. THE SYSTEM MODEL AND CONTROL OBJECTIVES 

Let us consider the following control-affine nonlinear 
stochastic differential equation (SDE) with additive noise 

( )
1 1 1

1 1

( ,..., , ) ( ,..., ) ( ,..., ) ( ), 1,...,
w

i

Nm
n

i i n ij n j ij n j
j j

x f t b u g w t i n
= =

= + + = x x x x x x (1) 

and an output model to be 

1( ,..., ), 1,...,i i ny h i p= =x x       (2) 

where in
i ∈ℜx  and ( 1) 1 1/i i in n n

i ix d x dt− − −  are states with up to 

1in −  derivatives. m∈ℜu  is the control input and  n m×∈ℜB  

and n∈ℜf  are the input matrix and state function, 

respectively. The relative degree of the output p= ∈ℜy h  is 
p∈ℜr .  In this paper, only the case when p m≤  is 

considered to avoid numerical errors in the pseudo inverse 
associated with the proposed controller.  When p m> , 

singular perturbation or multi-time scale decomposition 
methods can be used [30-31].  ( ) wNt ∈ℜw  is assumed to be a 

Weiner process [12] with a zero-mean and a covariance 
matrix of ( )tQ , and wn N

ijg × = ∈ℜ G  is the associated matrix. 

The nonlinear robust controller is designed based on the 
following nominal system 

( )
1 1

1

ˆ ˆ( ,..., , ) ( ,..., ) , 1,...,i

m
n

i i n ij n j
j

x f t b u i n
=

= + = xx x x   (3) 

with the nominal output model as 

1
ˆ ( ,..., ), 1,...,i i ny h i p= =x x      (4) 

where ∧  represents the nominal information. The 
parametric uncertainties of the input matrix are bounded by 

, , 1,...,ij ijD i j pΔ ≤ = , in which the bounds are calculated by 

1 1
ˆ ˆ

ˆ( ) ( ) ( ) , p pL L L L
+

− − ×  + = ∈ℜ   
r r

B f B f
I Δ h x h x Δ   (5) 

and I  is an identity matrix with a proper dimension. B  and 

Β̂  are assumed to satisfy the matching condition [28], i.e. 
the maximum eigenvalue of the matrix D  satisfy max ( ) 1λ <D .  

“ L ” and “ + ” are used to denote the Lie derivative and the 
pseudo inverse, respectively. The error between the nominal 
and actual state functions is bounded by 1[ ,..., ]T p

pF F= ∈ℜF  

as 

ˆ
ˆ , 1,...,i ir r

i i iF L h L h i p= − + =f f
      (6) 

III. NONLINEAR STOCHASTIC CONTROL BASED UPON 

DQMOM 

Once the feedback control law 1= ( ,..., , , )j j nu u x x λ η , to be 

described in the next section, is designed, the state equation 
of the closed-loop SDE (Eq. 1) can be rewritten as 
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x x x x x x

x x

λ η
  (7) 

where λ  and η  are the control parameters to be 

determined. The th
in  order ODE equation (7) can be 

converted into the first order Itô form as 

1 1
1

( ,..., , ) ( ,..., ) ( ), 1,...,
wN

i i n ij n j s
j

dx = f ,t dt g d t i Nβ
=

+ =
 x x η x xλ,  (8) 

where 
n

s i
i

N n=  is the number of states ix
  (i.e., ( ) sNt ∈ℜx ) in 

the first order system. According to Jazwinski [12], 
( ) ~ ( ) /j jw t d t dtβ  and ( ) (0, )jd t dtβ    is a normal distribution. 

[ ] s wN N
ijg ×= ∈ℜ

 G  is the associated matrix. 

If the process described by the SDE (Eq. 8) is a 
Markovian diffusion process, the PDF characterizing this 
process is governed by the FPE [12] as 

( )2

1 1 1
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2

s s s

T
N N N

i ij

i i ji i j

ppfp

t x x x= = =

 ∂ ∂∂     = − +
∂ ∂ ∂ ∂ 

 

  
GQG

   (9) 

where ( )p p= x  is the state PDF.  The first term on the right 

hand side (RHS) of the FPE is the drift term, whereas the 
second one is the diffusion term. 

Here, a new quadrature based moment approach is 
proposed for solving the FPE efficiently.  This method 
involves the approximation of the state PDF in terms of a 
finite summation of Dirac delta functions as 

( )( )
1 1

( ) [ ]
sNN

j j

j

p t w t x xα α
α

δ
= =

= − ∏  x     (10) 

where N  is the number of nodes, ( )w w tα α=  denotes the 

corresponding weight for node α , 1,..., Nα = . 

( ), 1,...,j j sx x t j N
α α

= =   represents the property vector of 

node α , called “abscissas” here. 
Theorem 1: The dynamics of the abscissas and weights are 
governed by the following differential algebraic equations 

1

1
1

1 1 1 11 1,

,...

s ss s
q j q
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k x a k x x b

S
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k k k

j q j j q j

j jq q q j
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  − +
  
  
  

=

−

= = = == = ≠
  ∏ ∏  

(11) 

with the definitions of 
/ , 1,...,dw dt a Nα α α =                 (12) 

and 
/ , 1,..., ; 1,...,j j sd dt b j N Nα ας α= =      (13) 

The weighted abscissas j jw xα α α
ς   is introduced. The  
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moment constraint is derived as 
1 1 1
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D x

D x

   (15) 

where 1 / 2 T
 

D GQG . The proof of Theorem 1 is shown in 

omitted here due to the page limit.  Once the abscissas and 
weights are calculated, any selected statistical moment of the 
state PDF can be found from 

1 2...

1 1

s
jNs

NN
kk k k

j

j

M w xα α
α = =
 ∏       (16) 

where 1 2, ,...,
sNk k k  are nonnegative integers and used to 

denote the 1 2, ,...,
sNk k k  moments of the state statistics. 

Lemma 1: For any selected nonnegative integers 1 2, ,...,
sNk k k , 

the corresponding stationary moment of the PDF is by 

1,... 0
Ns

k kS =         (17) 

Proof: In steady state, the abscissas and weights of the 
moments will not change in time; therefore, based on Eq. 11, 
the LHS is zero. 

IV. NONLINEAR ROBUST CONTROL 

In this section, a nonlinear robust controller 

1= ( ,..., , , )j j nu u x x λ η  will be proposed.  Unlike a commonly 

used SMC approach [26-27], there is no discontinuous 
function involved. The later fact is preferred by the FPE 
based approach because of continuity requirements in the 
partial derivatives.  Let us define the sliding manifold 

1[ ]T p
ps ,...,s ∈ℜs =  as  

2
( 1)( )

,
0

, 1,...,
i

i

r
rk

i k i i i
k

s e e i pλ
−

−

=

= + =    (18) 

where , 0, 0,..., 2, 1,...k i ik r i pλ > = − =  can be any positive 

number and the error signal is defined as 

, , 1,...,i i d ie y y i p= − = . 

Theorem 2: For a nonlinear system (Eq. 1) with bounded 
parametric and functional uncertainties (Eqs. 5 and 6), the 
proposed MIMO feedback control scheme 

2
1 ( 1)

ˆ ˆ ˆ
0

ˆ ˆ( ) ( ) kd
k

k

d
L L L

dt

−+
− +

=

  = − + ⋅ + ⋅    


r r
r r

rB f f

yu h x h x λ e k s  (19) 

guarantees that the closed-loop system is globally 

asymptotically stable for tracking desired signal ,i dy . 

Lemma 2: The time varying feedback gain 1[ ,..., ]T p
pk k= ∈ℜk  

can be uniquely solved from  
2

( 1)
ˆ

0

ˆ( ) ( )kd
k

k

d
L

dt

−
+

=

+ − + ⋅ + ⋅ = − ⋅
r r

r
r f

yF D h x λ e η s I D k s  (20) 

for any positive numbers λ  and η . In the case of 0is → , the 

magnitude of i ik s  ( i i ik sς = ) instead of ik  will be calculated 

using Eq. (20) because the proposed controller Eq. (19) only 
uses i ik s .  The sign of i ik s  is determined by is  since 0ik > .  

The proofs of Theorem 2 and Lemma 2 are provided in [31]. 

V. OFFLINE CONSTRAINED NONLINEAR OPTIMIZATION 

The method to find proper control parameters λ  and η , 

under the constraints of nonnegative thus the asymptotically 
stability is guaranteed, will be illustrated here.  The 
objective is to achieve the desired moments of the closed-
loop system. The basic procedure involves the minimization 
of the weighted error norm between the desired moment 

1 2... Ns
k k k
dM  and actual moment  1 2... Ns

k k k
M  through nonlinear 

programming. The equality constraint is 
1

1

N

wα
α =

=  (property 

of the PDF), whereas 0η >  (stability requirement), 0>λ  

(stability requirement), and 0wα >  (property of the PDF) are 

inequality constraints. The parameters to be optimized are 
control parameters λ  and η , the weights wα , and the 

abscissas jx
α

 .  Note that due to the flexibility of the NLP 

approach used here, the performance index can be extended 
to a more general form, but not limited to the quadratic type 
index. 

VI. NUMERICAL SIMULATION 

The effectiveness of the proposed algorithm is 
demonstrated in the following non-trivial generic UAV 
command tracking problem.  Note that although the example 
used here is a state feedback controller, the methodologies 
proposed in this paper can be extended to output feedback 
control, in which the actual and desired moments of output 
variables instead of state variables will be in the offline 
optimization.  

A. Dynamics Model and Control Objectives 

Assuming that the Earth is flat, and the fuel expenditure is 
negligible, i.e. the center of mass is time invariant, the UAV 
dynamics can be expressed in the wind system as 

[( ) / sin ]

( / )( cos cos )

sin / ( cos )
n

n

V g T D W

g V k n

gk n V

γ
γ μ γ
χ μ γ

  − − 
   = = − +   
     

x Gw



 


   (21) 

where the drag is calculated by 
2 2 2 2 2

0 1 20.5 ( ) 2 / [ ( ) ]w D n wD V V SC kk n W V V S D Dρ ρ= − + − + (22) 

Here V , γ , and χ  represent the airspeed, flight path angle, 

2821



  

and heading angle respectively.  The control variables are 
the applied thrust 113868.8T N≤ , load factor 1 2.66n− ≤ ≤ , and 
bank angle 25 25o oμ− ≤ ≤ .  The constants used in the model 

[32] are: wing area 237.16S m= , zero lift drag coefficient 

0 0.02DC = , load factor effectiveness 1nk = , induced drag 

coefficient 0.1k = , gravitational coefficient 29.81 /g kg m= , 

atmospheric density 31.2207 /kg mρ = , and the weight of the 

selected UAV 14515W g= .  To facilitate the control design, 

the drag has been separated into two parts 
2

1 00.5 ( )w DD V V SCρ −  and 2 2 2 2
2 2 / [ ( ) ]n wD kk n W V V Sρ − , as 

shown in Eq. 22.  The gust model , ,w w n w tV V V= +  is scaled 

based on [33], and varies according to the altitude z .  In the 
simulated gust, the normal wind shear is given by  

, 100.215 log ( ) 0.285w nV U z U= +     (23) 

where 22.07 /U m s=  is the mean wind speed at an altitude of 

5,000 meter.  The turbulence part of the wind gust ,w tV  has a 

Gaussian distribution with a zero mean and a standard 
derivation of  0.09U . 

The first control objective is to track the desired output 
90 /dV m s= , 5o

dγ = , and 1o
dχ =  from the initial condition of 

0 80 /V m s= , 0 0oγ = , and 0 0oχ = .  The second objective is to 

achieve desired stationary performance statistics of the state 
variables under two different noise levels.  Here a quadratic 
form of the index is used as 

1/23 3
2 2 2

, ,

1 1

( ) ( )i i i d i i i d

i i

J ϖ μ μ ϑ σ σ
= =

 
 = − + −
 
 
     (24) 

where the mean iμ , 1, 2,3i =  and variance 2
iσ , 1, 2,3i =  

variables can be calculated from the moments (Eq. 16). The 
weights of the performance index, i.e. iϖ  and iϑ , 1, 2,3i = , 

are tuned to achieve a better convergence in NLP. 

B. Uncertainty and Noise Models 

The uncertainties and noise considered in the control 
design and simulation in Section E are described here. 

( ) 3t ∈ℜw  (Eq. 21) is assumed to be a Weiner process with a 

zero-mean and a covariance matrix of ( )tQ , and the 

associated matrix G  is assumed be identity as 3 3×∈ℜI .  For 
the purpose of illustrating the capabilities of the algorithm, 
two noise settings are tried: 

Case 1: 2 2 2 2([(0.25 / ) , (1 / ) , (1 / ) ])o odiag m s s s=Q   (25) 

Case 2: 2 2 2 2([(0.025 / ) , (0.1 / ) , (0.1 / ) ])o odiag m s s s=Q  (26) 
The control effectiveness of the thrust is assumed to be 
uniformly distributed as  

(1 )a T cT T= + Δ        (27) 

where  cT  and aT  are the command and actual thrust 

respectively. The uncertainty TΔ  is uniformly distributed 

over [ 0.05,0.05]− .  The measurement noise in a typical speed 

indicator VΔ  is assumed to be a Gaussian having a zero 
mean and 0.05 /m s  ( 0.1 knot≈ ± ) variance.  Furthermore, a 

zero mean and 0.1o variance Gaussian noise is assumed for 
both the flight path angle γΔ  and the heading angle χΔ  

measurements. 

C. Nonlinear Robust Control Design 

Rewrite the dynamics of the selected UAV (Eq. 21) in 
terms of Eq. (1) as 

( ) ( )= + =x f x B x u + Gw; y x      (28) 
in which 

 ( ) [ sin / , ( / ) cos ,0]Tg gD W g Vγ γ= − − −f x    (29) 
( ) ([ / , / , / ( cos )])n ndiag g W k g V gk V γ=B x    (30) 

To handle the non-affine issue, a set of new control 
variables 3 1×∈ℜu  are introduced as 1u T , 2 cosu n μ , and 

3 sinu n μ . Reversely, the actual control commands can be 

calculated by 3 2tan /u uμ =  and 2 2
2 3n u u= + . The nominal 

model used in the robust stochastic control design is 
ˆ ˆ( ) ( )= +x f x B x u        (31) 

where 

1
ˆ ˆ ˆˆ ˆ( ) [ sin / , ( / ) cos ,0]Tg gD W g Vγ γ= − − −f x    (32) 

ˆ ˆ ˆ ˆ( ) ([ / , / , / ( cos )])n ndiag g W k g V gk V γ=B x   (33) 

in which, 2
1 0

ˆ ˆ0.5 DD V SCρ= .  The remaining part of the drag 

will be regarded as an uncertainty. 
Based on Theorem 2, the controller has the following 

form 

-1 ˆˆ ( )dd

dt

 = − + ⋅ 
 

yu B f x k s     (34) 

and the sliding surface is d −s = y y  since the relative degree 

of the system is one (Eq. 18). To achieve the asymptotical 
stability, control parameters k  need to satisfy 

ˆ ( )dd

dt
+ − + ⋅ = − ⋅

yF D f η s I D k s    (35) 

in which 3×1> 0, ∈ℜη η  will be selected through the 

optimization to be discussed in Section D.  Taking into 
account the uncertainties mentioned above, the functional 
uncertainty bounds 1 2 3= [ , , ]TF F FF  are derived as  

1 1 1 1 1 2
ˆ ˆ/ /F f f g W D D g W D g γ= − ≤ − + + Δ   (36) 

( )2 2 2 min max
ˆ / sinF f f g V γ γ= − ≤ Δ     (37) 

and 3 0F = , where  

2 2
1 1 0 ,max max max ,max

ˆ ˆ( ) 0.5 ( 2 ( ) 2 )D w w wD D SC V V V V V VVρ− ≤ Δ + + − + Δ (38) 

( )22 2 2
2 max min ,max2 /n wD kk W n S V Vρ≤ −     (39) 

Here, the subscript “max” and “min” are used to denote the 
maximum and minimum values respectively. For example, 
in the simulation the speed of the UAV is assumed to be 
within [80,120] /m s , and the flight path angle is constrained 

by 10o± .  The uncertainty bound of the input matrix 

11 22 33= diag[ , , ]D D DD  are derived as 11 0.05D = , 

( ) ( ) ( ) 2
22 min

ˆ ˆ/ /n nD k g V V VV k g V V= − ≤ Δ   (40) 

( ) ( )2 2
33 max min min

ˆ ˆ ˆsin sin cos / cosnD k g V V V Vγ γ γ γ γ γ≤ Δ + Δ Δ + Δ  (41) 
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when γΔ  is small. 

D. Stochastic Control Design 

With the control law defined as shown in Eqs. 34 through 
41, the closed-loop system can be converted to the following 
Itô form as 

( , ) ( )d = dt d t+x f' x η G β      (42) 

where -1 ˆˆ( ) ( ) / ( )d, d dt = + − + ⋅ f' x f x BB y f x k sη  and ⋅k s  is a 

function of the control parameter > 0η .  Note that 

( ) ( )d t t dt wβ .  The corresponding FPE that governs the state 

PDF ( )p x  is derived as 

( )2'3 3 3

1 1 1

( )
i ij

i i ji i j

ppfp

t x x x= = =

 ∂ ∂∂    = − +
∂ ∂ ∂ ∂ 

D x
   (43) 

where = 1/ 2 TD GQG .  In this example, the state PDF is 

approximated through the DQMOM approach as 

 ( )
3

1 1

( ) [ ]

N

j j

j

p w t x xα α
α

δ
= =

= − ∏x     (44) 

and the 1 2 3, ,k k k  moments of the state PDF is derived as 

31 21 2 3

3

1 2 3
1 1

, , j
N

kkk kk k k
j

j

M x x x w xα α
α = =

= ∏    (45) 

E. Simulation Settings and Results 

The moment constraints in Eq. (11) are carefully selected 
for the case of 4N =  after trials and errors. In this moment 

description, for example, the first column [1,0,0]T  gives the 

mean value of the speed, whereas seventh column [1,1,0]T  

presents the covariance of the speed and the flight path 
angle.  The MATLAB® function fminsearch is used for the 
NLP optimization to find the proper control parameter η . 

The Euler-Maruyama scheme [34] is used in the propagation 
of the SDE (Eq. 42).  The found control parameters are 
tested in four thousand Monte Carlo runs, and compared 
with the case where arbitrarily selected parameter [1,1,1]T=η  

is used, i.e. without the offline stochastic optimization. To 
simplify the description, the proposed stochastic robust 
controller is denoted as “method 1”, whereas the nonlinear 
robust controller method using arbitrarily selected control 
parameters is represented as “method 2”.  Note that the 
uncertainties and noise mentioned in Section B are applied 
in the Monte Carlo simulation to show the robustness of the 
algorithm. 

It can be seen in Figs. 1-6 that the mean values of the 
speed ( V ), flight path angle ( γ ), and heading angle ( χ ) are 

successfully controlled with relatively small steady state 
errors in both methods except in the speed histories in Figs. 
1 and 2. Under the two different noise simulations, the mean 
values of the speed achieved by method 1 are 89.64 and 
89.45 respectively, whereas those of method 2 are 88.71 and 
88.80 respectively.  Therefore, in terms of controlling the 
mean value of the states, there are no significant differences 

between method 2 and the proposed method 1 since both 
methods are asymptotically stable in tracking. 
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Fig. 1 Speed mean value (Case 1)   Fig. 2 Speed mean value (Case 2) 
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Fig. 3 Mean value of γ (Case 1) Fig. 4 Mean value of γ  (Case 2) 
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Fig. 5 Mean value of χ  (Case 1) Fig. 6 Mean value of χ  (Case 2) 

The significance and advantage of method 1 can be easily 
seen from Figs. 7-10, as well, method 1 has successfully 
controlled the variances 2

,V aσ , 2
,aγσ , and 2

,aχσ  very closely 

toward the desired values as 0.095, 0.255, and 0.26 in case 
1. Notice that the units are intentionally neglected for a 
convenient description here. However, in method 2, the 
stationary variance values are 0.36 (Fig. 7), 1.04 (Fig. 9), 
and 1.05 (Fig. 9) respectively, which are far away from the 
desired statistic (0.1, 0.25, and 0.25 respectively).  The same 
conclusion can be made in case 2, as shown in Figs. 8 and 
10.  Furthermore, as shown in Figs. 7 and 8, the relatively 
larger magnitude shown in the first part of speed variance 
represents a wider distribution of the speed performance in 
the Monte Carlo simulation, which doesn’t mean a relatively 
larger transient performance. 
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Fig. 7 Speed variance (Case 1)           Fig. 8 Speed variance (Case 2) 

Furthermore, the stationary mean and variance values 
found from the optimization match well with the Monte 
Carlo simulation.  For example, the desired variance of the 
heading angle in Case 1 is 2

, 0.25dχσ = , the achieved variance 
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in the optimization is 2
, 0.25oχσ = , whereas when the control 

parameters obtained in the optimization is used in the Monte 
Carlo simulation, the achieved variance is 2

, 0.26aχσ = . 
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VII. CONCLUSION 

In this paper, a novel approach based upon the direct 
quadrature method of moments is proposed for nonlinear 
systems subject to parametric and functional uncertainties 
with random excitations. The proposed nonlinear feedback 
controller is robust with respect to parametric and functional 
uncertainties without discontinuous functions involved, 
which is preferred by the associated Fokker Planck 
Equation. The advantages of the method are (1) it is able to 
control the distribution of any specified stationary moments 
of the states/output probability density function (PDF), (2) 
the method is of interest because the process is not necessary 
a Gaussian, and (3) the controller is robust with respect to 
parametric and functional uncertainties without involving 
discontinuous functions. A non-trivial UAV tracking 
problem has demonstrated the capability of the proposed 
nonlinear stochastic control method. 
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