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Finite-Time Control for Linear Systems with Input Constraints

Hiroyuki Ichiharat and Hitoshi Katayamai

Abstract— This paper deals with finite-time boundedness
(FTB) control with input constraints for linear time-invariant
systems. A design method of state feedback FTB controllers
with input constraints is proposed based on reachable sets of
the state in finite-time period. A design method of observer-
based output feedback FTB controllers is also proposed based
on reachable sets of the estimated state. Both design methods
include controller designs for finite-time stabilization. All design
conditions are reduced to linear matrix inequalities. Numerical
examples are shown to illustrate the proposed design methods.

I. INTRODUCTION

Finite-time stability (FTS) requires that the state of a sys-
tem does not exceed a certain bound during a specified time
interval for given bound on the initial state. While Lyapunov
stability is used to deal with the behavior of a system within
a sufficiently long (or infinite) time interval, FTS is used
to deal with the behavior of a system within a finite (or
very short) time interval. Therefore there are real applications
such as operations of missiles and space vehicles from an
initial point to a final point in a specified time interval.
Computationally tractable check conditions that guarantee
FTS have been obtained and state feedback finite-time stabi-
lization are considered for linear time-invariant systems using
linear matrix inequalities (LMIs) [1]. The concept of FTS is
also extended to that of FTB by introducing an exogenous
input (2) and sufficient conditions for FTB are also given [2],
[3]. Sufficient conditions for the existence of state feedback
laws that guarantee FTB of a closed-loop system are given
for linear continuous-time systems [2], [4] and for linear
discrete-time systems [3]. Moreover sufficient conditions for
the existence of output feedback controllers that guarantee
FTS and FTB of a closed-loop system are given both for
linear continuous-time and discrete-time systems [2]. In
finite-time control problems, boundedness of the physical
state of a system is of interest from the practical point of
view and finite-time stabilization with observer-based output
feedback controllers is considered for both linear continuous-
time systems [3] and discrete-time systems [5].

In the above literatures on finite-time control, input signals
could be larger as time has passed. Since trajectories do not
always converge to the origin, input signals by state feedback
laws could be larger and exceed a physical limitation on
control. Similar situations may arise in the case of output
feedback control. Input constraints in finite-time period are
required to finite-time control from practical viewpoint. As
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far as Lyapunov stability, there exists literature on input
constraint conditions using LMI [1], [6], [7]. However, they
have not discussed any constraint conditions of finite-time
period. In this paper, we give sufficient conditions for the
existence of FTB (or FTS) controllers that satisfy a 7-
period input constraint using reachable sets in finite-time
periods. The obtained sufficient conditions are reduced to
LMI conditions.

This paper is organized as follows. Section II gives
preliminary results on a design method of state feedback
FTB controller without input constraints. An extension to
observer-based output feedback controller design is also
given. In section III, 7-period input constraint is defined
and state feedback controller design with input constraint is
discussed. Section IV discusses output feedback controller
design with input constraint. Section V gives numerical
examples. Finally, section VI concludes with remarks.

Notations: Throughout this paper, let M; be j-th row of
a matrix M. He {A} := A+ AT,

II. PRELIMINARY RESULTS

Consider
z(t) = Ax(t) + Biw(t) + Bau(t), z(0) =z (1)
w(t) = Sw(t), w(0) =wp 2)
y(t) = Cx(t) )

where £ € R" is the state, w € R™! is the disturbance
generated by the exosystem (2), u € R™? is the control
input, y € RP is the measurement and all matrices are
of compatible dimensions. Then the following concepts are
known.

Definition 2.1 ([4]): For given positive definite matrix I,
0< 6 <eand T > 0, if 2T (H)lz(t) < e, t € [0,7T]
whenever 21 Twg < §,, then the system i(t) = Ax(t) is said
to be finite-time stable (FTS) with respect to (§,,¢,T',T).

Definition 2.2 ([2]): For given positive definite matrices
[LI,0<6, <e 0<68,and T >0, if 27 (#)T2(t) < &,
t € [0,T] whenever 2l Txg < §, and wlTwy < 6,, then
the system #(t) = Axz(t) + Byw(t) + Bau(t) and w(t) =
Sw(t) is said to be finite-time bounded (FTB) with respect
to (0z, 0w, e, T, ILT).

For the system (1) and (2), we also consider state feedback

controllers
u(t) = Fa(t). 4

Then the closed-loop system (1), (2) and (4) is given by
@(t) = Apx(t) + Biw(t), x(0) = xo, ®)
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and (2) where Ap = A+ B3 F. Then we have the following
result.

Lemma 2.1 ([2]): The system (25) and (2) is FTB with
respect to (0, 0w, €, I, II, T) if there exist positive
definite matrices Q1 € R"™*", Q2 € R™*™  a matrix
L € R™2*X™ and a scalar o > 0 such that

He{{AQrf-BzL 31]}_0{621 0]<0, ©)

0 Q25 0 Q2
O ~ ge T
EEEEEE—a— + )\max Q 5’LU < — (7)
)\min(Ql) ( 2) Amax(Ql)

where Q1 = F%Qlfé and Q, = H_%QQH_%. In this case
the feedback gain F' is given by F' = LQl_l.

Remark 2.1: If we set S = 0 and 6,, = 0 in (10) and
(11), then we can also derive sufficient conditions for FTS
(4].

For the system (1)-(3), we consider output feedback con-
trollers of the form

2(t) = A2(t) + Bau(k) — K[y(t) - C2(t)],  (®)

#(0) = E),

~—

u(t) = Fi(t)

where F' and K are matrices of compatible dimensions. In
the finite-time control problems, boundedness of the physical
state of the system is of interest from the practical point of
view, we want to find a controller (8) such that the system

#(t) = Apx(t) + Biw(t) — BaFe(t),
W(t) = Sw(t)

is FTB with respect to (ds,d,,€, I, II,T) where Ap =
A+ BoF and e = x — 2. To find such observer-based
output feedback controllers, we assume that a state feedback
controller u(t) = Fxz(t), which makes the system (1) and
(2) FTB with respect to (4, dy, €, I,II,T) (or the system
(1) with w = 0 FTS with respect to (0,,¢,I',T)) exists and
has been designed.

The closed-loop system (1)-(3) with (8) can be written as

#(t) = Apa(t) + Bpo(t), z(0) = o,

B(t) = S, w(0) = [uwf of )7 O
where
- w = S 0
BF:[Bl —BQF},M_[e],S_[Bl AK:|

and Ax = A+ KC. For e = 0, the system (9) is FTB
(or FTS) while the presence of a nonzero e may bring the
norm of the state z(¢) outside the bound e. Hence we want to
design an observer gain K in (8) such that the FTB property
of the system (25) and (2) is not lost in the presence of the
estimation error. Note that the bound on the initial condition
of the exosystem in (9) satisfies

wgﬂwo + ngxo < Oy + 0.

Then if the system (9) is FTB with respect to (d,, 6, +
0z, [, diag{I,T'}, T), then the closed-loop system (1)-(3)
and (8) is FTB with respect to (0, 0y, I, II, T').

Lemma 2.2 ([2]): If there exist positive definite matrices
P, R e R"™™, P, € R™>™ and a matrix M € R"*P
and a scalar o > 0 such that

PiAr P Bp P 0
He{[ : H%J}—a[o H§2}<o, (10)

|:>\max(p1) + )\max(R):| 595 + Amax(pQ)(Sw
<ee” M Amin(P1) (1)

then an observer-based output feedback controller (8) makes
the system (1)-(3) FTB with respect to (04,0, ,I1,7T)
where

P,S 0 P, 0

1 _ 2 2 2
HQQ{RBl RA+MC}’H22{O R}’
P =T":Pl 2, P,=11"2PIl 2, R=T"2Rl 2.

In this case the observer gain K is given by K = R~'M.

Remark 2.2: If we set S = 0 and 6, = 0 in (10) and
(11), then we can also derive sufficient conditions for the
existence of observer-based output feedback FTS controllers

[2].

III. STATE FEEDBACK CONTROLLER DESIGN WITH
INPUT CONSTRAINTS

Consider 7 -period input constraints such that

uy (O] < u™, j=1,....my, t€[0,T]  (12)

where 7 is a design parameter satisfying 0 < 7 < T.
Then we want to design FTB state feedback controllers (4)
satisfying (12) for the system (1) and (2). Using reachable set
of the state given by Lyapunov-like functions, we estimate
the maximum magnitude of the input signals.

Theorem 3.1: There exist state feedback FTB controllers
that satisfy (12) for the system (1) and (2) if there exist
positive definite matrices Q; € R"*"™, Qo € R™1*X™1 4
matrix L € R™2*" and a scalar a > 0 such that (6), (7)
and

max )2 .
|:(Uj )*/dr L]:|20,j=17---7m2 (13)

LT Q@1
where
_ O g
)\min 1) 7
i (Ql)(g
eO‘T [71,, + )\max(QQ)éw:| ’ T > O’
)\min(Ql)

Q1 = F%QlF% and Qo = H_%QQH_%. In this case the
feedback gain F' is given by F' = LQl_l.
Proof: See the appendix. [ ]
To obtain more numerically tractable sufficient conditions
for FTB with 7 -period input constraints, we assume ()1 and
@2 in Theorem 3.1 satisfy

MI< Qi <1, Q< XoI (14)
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and )
ce™ T — \ob, 02

1 > 0.
02 A1

5)

Then using Shur complement formula for (15), we obtain

0y
= 4+ Xoby, < ce T,
A1

Hence

) ~
7x~ + /\max(QQ)(Sw
)\min(Ql)
590 —aT
< ZE 4 by, <ee T < =
A1

/\max(Ql) ’

which satisfy (11). Using (16), we can take an upper bounds
on d7 such as

(16)

JT = €ea(T_T) > dr

for 7 > 0 and
- ) 1)
dy = —= > —"__ =d,.
>\1 /\min(Ql)

If we assume 1 and L satisfy

(uy™)?/dr  L;

Ly Q1

then (13) holds. In particular, for A/ = 0, we may assume
@1, L and )\, satisfy

M (u)2/5, L
o

]>0, j=1,...,ma,  (I17)

]>0, j=1,....,ma.  (18)

Corollary 3.1: There exist state feedback FTB controllers
that satisfy (12) for the system (1) and (2) if there exist
positive definite matrices Q1 € R™*", Q3 € R™*"™1 3
matrix L € R™2*" gscalars & > 0 and \; > 0,7 = 1,2 such
that (6), (14), (15) and (17) where

J - 5z/>‘1a N:()v
77 ™D N>,

) = I‘%QJ‘% and Qg = H’%QQH*%. In this case the
feedback gain F is given by F' = LQ .

Corollary 3.2: There exist state feedback FTB controllers
that satisfy (12) for the system (1) with w = 0 if there exist
a positive definite matrix Q € R"*™, a matrix L € R"2*",
scalars @ > 0 and X\ > 0 such that

He {AQ + B2L} — a@ < 0,
M<O<I, 1<e Ty

O
Muf®)?/(eTs) L L
L'jT Q ZO, ]—1,...,7’77,2

where Q) = I‘%QI‘%. In this case F' is given by F' = LQfl.

IV. OBSERVER-BASED OUTPUT FEEDBACK
CONTROLLER DESIGN WITH INPUT CONSTRAINTS

Here the input constraints are discussed for observer-based
output feedback controller design. Due to the output feed-
back controllers (8), reachable sets of the state are not avail-
able to estimate the maximum magnitude of the inputs. In
contrast with the state feedback case, we focus on searching
reachable sets of the estimated state. We assume that a state
feedback controller u(t) = Fz(t), which makes the system
(1) and (2) FTB with respect to (84, d.,€, I, II,T) (or the
system (1) with w = 0 FTS with respect to (6,,e,T,T))
and satisfies (12) exists and has been designed. Thanks to
the observer-based output feedback controllers (8), it is not
required to impose the 0-period input constraints because

UJ(O) = FJJA?(O) = 0, ]: 1,...,m.

Thus we may consider 7 -period input constrains for 7 > 0.
The subsequent results represent design methods of observer-
based output feedback FTB (FTS) controllers with 7 -period
input constrains for 7 > 0.

Theorem 4.1: There exist output feedback FTB con-
trollers (8) that satisfy (12) for the system (1)-(3) if there
exist positive definite matrices P, R € R™ ", P, €
R™1>m1 g matrix M € R"*P, scalars @« > 0 and p > 1
such that (10), (11),

[ 65 i
Fr
Py = Py + R,

F,

J } >0,5=1,...,mqo, (19)
(20)

where

ar = T { [Amax(P1) + Amax (R)] 6 + Amax(P2)60 }

Pp=T"3P0 % P=1"3RIl"> and R=T"2R["3.
In this case the observer gain K is given by K = R~ M.
Proof: The proof is in the appendix. |

To obtain more numerically tractable sufficient conditions
for FTB with 7 -period input constraints, we assume Py, P>
and R in Theorem 4.1 satisfy

)\1[<151 </\2[, O<f~f<)\3f7 O<p2 <)\4I7 21

(A2 + X3)05 + Agdy < ce T\ (22)
and
,LL)\l > Ao + As. (23)
Then we have
)\max(pl) + )\max(R)i| 51 + Amax(pQ)(Sw
< (/\2 + /\3)5;p + /\4511; < Ee_aT)\l
< Ee_aTAmin(pl) (24)

and
pPy > pMI > (Mo + X3)I > PL + R,
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which satisfy (11) and (20), respectively. Using (24), we can
take an upper bounds on ds such as

)\1JT = AlEea(T_T) = eaT(ﬂi_aT)\l)

> eoT { [Amax(ﬁl) + Amax(fz)} 5y + Amax(z)aw}

=dr

for 7 > 0 where dr := geX(T-1),
we assume R and [ satisfy

Bu™)?/dr  BF; _
|: ﬂFJT R 205]_15"'7m2

then (19) holds where 3 = p\;.

Corollary 4.1: There exist output feedback FTB con-
trollers (8) that satisfy (12) for the system (1)-(3) if there ex-
ist positive definite matrices Py, R € R"*", P, € R™1 X1,
a matrix M € R™ P, scalars « > 0, 8 > 0 and \; > 0,
i = 1,2,3,4, such that (1()) (21) (23), and 25) where
dr = eea(T T> P =T"2P" 2, P,=T1"2PRII % and
R =T"2RI 2. In this case the observer gain K is given
by K =R 'M.

Remark 4.1: If the LMI problem in Corollary 4.1 has a
feasible solution, then p > 1 holds since 8 > Ag + Az > Ay
from (21) and (23).

Corollary 4.2: There exist output feedback FTS con-
trollers (8) that satisfy (12) for the system (1) with w = 0 and
(3) if there exist positive definite matrices P;, R € R"*"™,
a matrix M € R™ P, scalars « > 0, 8 > 0 and \; > 0,
i =1,2,3, such that

PiAr —PByF P o
w{ [0 ) e 0 R o
(21), (22) with 6, = 0, (23) and (25) where H = RA+MC

dr = ee®T~T) Py =T 3P T"% and R=F"2R["2. In
this case the observer gain K is given by K = R~ M.

For this upper bound, if

(25)

V. NUMERICAL EXAMPLE
Consider the system (1)-(3) where

0 1 10 0
A{o.r —0.1]’31{0 1}’32[0.1}’

0 1
S‘[—0.5 0},(]_[1 0.5 ].
We shall design state feedback FTB controllers by Corol-
lary 3.1 and output feedback FTB controllers by Corollary
4.1, respectively. To find feasible solutions of LMIs in the
corollaries, we use YALMIP [8] and SeDuMi [9] on Matlab.

We first design state feedback controllers (4) which make
the system FTB with respect to (0,,0y,,c, I, ILT) =
(1,1,50, I, I5,4.0). We set « = 0.5 in Corollary 3.1 and
we design two cases 7 = 0 and 4.0: We shall design state
feedback FTB controllers with 0-period and 4.0-period input
constraint. In the 0-period design with u . = 1.0, we obtain
F= [ —-0.7395 —-0.5121 } In the 4.0-period design with
Umax = 4.5, we obtain F' = [ —0.5795 —0.5322 ] The
reachable sets and the input constraints of the both designs

Fig. 1. Reachable sets and input constraints: The inner and outer solid
ellipsoids represent Tz < &, and 7Tz < ¢, respectively. The dotted
ellipsoid and lines represent a reachable set & from (26) and an input
constraint | F'z| < 1.0 by Corollary 3.1 at 7 = 0. The dashed ellipsoid and
lines represent 4.0 and |Fz| < 4.5 by Corollary 3.1 at 7 = 4.0.

20 . <
15¢ S
10’ I‘ e“
']
5k . s

of S

estimated X,

|
[¢)]
4

-10f e, ‘
15/ -

20 -10 0 10 20
estimated x ’

Fig. 2. Reachable sets of the estimated state and input constraints: The
dashed ellipsoid and lines represent a reachable set & ¢ from (33) and an
input constraint |Fz| < 100.0 by Corollary 4.1 at 7 = 4.0.

are shown in Fig. 1. We can see that the reachable sets are
inside of the input constraints.

We also design output feedback controllers (8) which
make the system FTB with respect to (1, 1,100, I, I, 4.0).
From the above result, we adopt a state feedback gain F'
by F = [ —0.5795 —0.5322 | which make the system
FTB with respect to (1, 1,100, I5, I5,4.0) by state feedback
control. We set & = 0.5 in Corollary 3.1 and we shall
design output feedback FTB controllers with 4.0-period input
constraint. In the 4.0-period design with umax = 100.0, we
obtain K = [ —5.7712 —3.7445 ]T and p = 5.0327. The
reachable sets and the input constraints of the both designs
are shown in Fig. 2. We can see that the reachable sets of
the estimated state are inside of the input constraints.

VI. CONCLUSIONS

We have proposed FTS/FTB control with input constraints
for linear time-invariant systems. In order to evaluate the

479



maximum magnitude of the control input signals, we esti-
mate reachable set of the state from the initial time to a
required finite-time periods. On the basis of such knowl-
edge, we have proposed design methods of state feedback
FTS/FTB controllers design whose design conditions are
reduced to LMIs. We have also proposed design methods of
observer-based output feedback FTS/FTB controllers based
on reachable sets of the estimated state. Numerical examples
have been shown to illustrate the proposed state/output
feedback FTB design methods.

APPENDIX

PROOF OF THEOREM 3.1

From (6) and (7), the system (25) and (2) is FTB with
respect to (05, Oy, €, I, II, T). Then for

V(x(t),w(t)) = 27 ()Q7 a(t) + w' (H)Qauw(t),
Via(t)w(t)) < aV(e(t),w(t) and V(z(t),w(t)) <
eV (2(0),w(0)) for ¢ € (0, 7]. Then we have
1

et (H)Qy 'x(t) < e [ng1 To + wy QQU)O} <d;
for ¢t € (0,7]. For t = 0, we have
_ 0x
z Q 0 s = = do.
0t min(Ql)

Since the control input depends on the state, it is required to
analyze reachable sets of the state for every time in [0, 7].
Define the reachable set by

& :={zeR"| 2TQ 2 < di}, t€(0,7],
Eo:={zeR"|2TQ 2 < do}.
Using o > 0 and

(26)

PO 2 <do < e | ——=—0, + Amax(Q2)0w |

1
mm(Ql)

di, < d, holds for t1,t5 € (0,7] with t; < to. Then we
can see the relation
&y, C&,.

Thus we obtain

Urepo, €t = €1 (27)

Using (27), for 7 > 0, we have
2
e |u; (2)]

= max [(LQ;!

12
ma |(LQ7 (1))
max

LO~12).2

Zeutemgtl( Q1 2);l
LO~15).12

max [(LQy " 2);] o

(L@ =)

o IA

IN

max
1
l(d7 Qi)™ 2 z[]2=1

T S 1‘5@@& [(d7Qu) 4] )jf
= [0,
= drL;Q7'LY.

Applying Schur complement formula to (13), we obtain
15T max)2
ax uj(O)* < drL;Q7 LY < (uf™)

for j =1,...,mq. For 7 = 0, we have

|u; (0)]* = |(F&(0));* < széag>§|(FZ)j|2 < doL;Q7'LT

for j =1,...,mgy. Using Shur complement formula to (13)
again, we obtain

|u](0)|2 S dQLJQflL? S (u;_nax)Q

)

thus we have the assertion.

PROOF OF THEOREM 4.1
From (10) and (11), the system (9) is FTB with respect to
(0g, 00 + 05, €, T, diag{II,T'}, T'). Then for

V(a(t), w(t), e(t))
= 2T (t)Prz(t) + wT (t) Paw(t) + T (t) Re(t),

we have V (x(t), w(t), e(t)) < aV (z(t), w(t),e(t)) and
V(z(t), w(t),et)) < eV (x(0),w(0),e(0)), t e (0,T].
Then, for ¢ € (0,7], we have
T(t)Pra(t) + w () Paw(t)

+(a(t) = 2(1)" R(a(t) — 2(1))
< e [mgPla:o + wy I Pywo + Zp Rxo] <d;. (28)

Since the control input depends on the estimated state, we
need to analyze a reachable set of the estimated state for
every time in [0,7]. For t € (0,7], using (33), we may
consider an optimization problem as follows:

inf —2TR%
T,&,w
st.  f(x,2,w) := 2T Pz + w? Pw

+@—-2)TR(x—-2) -

(29)
dy <0

where d; < d;. If we have a solution of the problem (29),
then we can obtain an upper bound on % ()T R#(t) for
t € (0,7]. It is known that strong duality holds for non-
convex quadratic optimization problem with single quadratic
constraint and their Lagrange dual problems [10] under
Slater’s constraint qualification. In this case, the constraint
in (29) is a convex set, so that there exists a (z, &, w) with
f(x,2,w) < 0. Thus the constraint satisfies the qualification.
The Lagrangian of (29) is

L(z,&,w,pu) = =" RE + pf(x, &,w), p>0
and the dual function is

g(pu) = inf

r=x*  T=* w=w*
— _:U’dk ) (20)7
—o00, otherwise

where (20) and p > 1 make

L(x7 i’? w7 M)

92 2u(PL+R)  —2uR 0
WL(x, T,w,p) = —2uR 2@—1R O
p 0 0 2Py



positive semidefinite. Also, the points
* * ok * T
pr=1[ @9 @) )" ],

which achieve the infimum of L, satisfy

Piz*+ R(z*—3*) = 0, (30)
T+ p(e"—2%) = 0, 31
w* = 0 32)

from OL/0p = 0. Using (30)-(32), we have

L(x*, &, w*, p)

— —(JA?*)TRJA?* + /J/(JJ*)TPLIT* + /J/(w*)TPQUJ*
+u(a* — &%) R(a* - &) - pd,

—(@)TR2* + p(a*)T Pia* — (z* — 2*)TRE* — ud,
n(@)" P — ()" Re* — pd,
= p(a*)" Pia* — (a*)" (uPra*) — pd,
—pd.
Then the Lagrange dual problem of the problem (29) is

max —udy s.t. (20).
p=p*

Since the optimal value of the dual problem is —p*dy, it is
also the optimal value of the problem (29). Thus we obtain

T (OR2(t) < p*dy < p*dy, t € (0,77
Define reachable set of the estimated state by
& ={zeR"|2TRz<p*d;}, t €(0,7).
Since a > 0, d¢; < dy, holds for 0 < 1 < t5. Then we have

gtl g 8t2

(33)

Thus we obtain U,c(o,71E+ = E7. Then for 7 > 0 we have
(D = Fi(t),?
e Juj ()] e |(F&(t)),]
2
|(F2);

max

2€Use(0,71€1 )
(F2)5]

max

ma.
Z1oL
l(prdr)” 2 R2 z||]2=1

x|
z€ET
prdr FyR7FT

A

|(Fz);[?

Applying Schur complement formula to (19), we obtain

(¢ 2 *d F'R_lFT< max 2
tfef[l&);]my(” < park; i< (W)

for j =1,...,mo. Hence we have the assertion.
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