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Abstract— This paper studies the problem of H∞ output
tracking control for continuous-time networked control systems
(NCSs) with communication constraints. By using the contin-
uous Jensen inequality, linear matrix inequality (LMI)-based
H∞ output tracking controller design for nominal NCSs with
controller-to-actuator communication constraints is presented,
and a new method is proposed to design H∞ output track-
ing controllers for NCSs with both controller-to-actuator and
sensor-to-controller communication constraints. The simulation
results illustrate the effectiveness of the proposed H∞ output
tracking controller design for NCSs with communication con-
straints.

I. INTRODUCTION

Networked control systems are spatially distributed sys-

tems in which the communication between sensors, actuators,

and controllers occurs through a shared band-limited digital

communication network.

The use of a multipurpose shared network to connect

spatially distributed elements results in flexible architectures

and generally reduces installation and maintenance costs.

However, the introduction of communication network will

inevitably lead to time delay, packet dropout, communication

constraints, etc.

Many researchers have studied stability/stabilization for

NCSs [1]-[3]. In [4], by using the Lyapunov-Razumikhin

function techniques, delay-dependent condition on the stabi-

lization of NCSs was obtained, and stabilizing state feedback

controllers were also constructed. For other methods dealing

with time delay and packet dropout, see also [5]-[9]. Re-

cently, there have been considerable research efforts on H∞

control for systems with delay [10]-[14].

As we can see, the main topic of the literature presented

above is time delay and packet dropout, few studies the prob-

lem of communication constraints in NCSs. In fact, NCSs

with communication constraints are also a hot topic in recent

years. [15] investigated a state estimation problem involving
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finite communication capacity constraints. In [16], a method

for optimal off-line scheduling of a limited resource used for

control purposes was presented. [17] reviewed several recent

results on estimation, analysis, and controller synthesis for

NCSs, and the problem of band-limited channels was also

discussed. For other results on systems with communication

constraints, see also [18]-[20].

Synthesizing feedback controllers to achieve asymptotic

tracking of prescribed reference outputs while rejecting dis-

turbances is a fundamental problem in control. The main

objective of tracking control is to make the output of the

plant, via a controller, track the output of a given reference

model as close as possible. For the problem of output

tracking control, [21] studied the reliable robust tracking

controller design problem against actuator faults and control

surface impairment for aircraft. [22] solved the tracking and

disturbance rejection problem for infinite-dimensional linear

systems, with reference and disturbance signals that were

finite superpositions of sinusoids. For other results on output

tracking control, see also [23]-[25] and the references therein.

The study on output tracking control and NCSs keeps

attracting considerable attention due to the demands from

practical dynamic processes in industry [26]-[27]. To the best

of our knowledge, however, few works pay attention to the

problem of output tracking control for networked control

systems with communication constraints, which motivates

the present study.

By using the continuous Jensen inequality, LMI-based H∞

output tracking controller design for nominal NCSs with

controller-to-actuator communication constraints is presented

in this paper, and a new method is proposed to design H∞

output tracking controllers for NCSs with both controller-to-

actuator and sensor-to-controller communication constraints.

The proposed controller design methods can guarantee

asymptotic tracking of prescribed reference outputs while

rejecting disturbances.

This paper is organized as follows. Section 2 presents

the closed-loop models of H∞ output tracking NCSs with

communication constraints. Section 3 is dedicated to the

H∞ output tracking controller design for nominal NCSs

with communication constraints. The results of numerical

simulation are presented in Section 4. Conclusions are stated

in Section 5.

Notation. Throughout this paper, MT represents the trans-

pose of matrix M. I and 0 represent identity matrices and

zero matrices with appropriate dimensions, respectively. ∗
denotes the entries of matrices implied by symmetry. Matri-

ces, if not explicitly stated, are assumed to have appropriate
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dimensions.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider a linear time-invariant plant described by

ẋ(t)= Ax(t)+B1u(t)+B2ω(t)
y(t)= Cx(t)+Du(t)

(1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rr, ω(t) ∈ Rq are the

state vector, control input vector, measured output, and dis-

turbance input, respectively, and ω(t) is assumed to belong

to L2[0, ∞). A, B1, B2, C, D are known constant matrices of

appropriate dimensions.

The main objective of this paper is to make the output

y(t) of the plant, via a controller, track the output of a given

reference model as close as possible. Suppose the reference

signal yr(t) is generated by

ẋr(t)= Gxr(t)+ r(t)
yr(t)= Hxr(t)

(2)

where xr(t) and r(t) are reference state and energy bounded

reference input, respectively, xr(t) ∈ Rl , r(t) ∈ Rl , yr(t) ∈
Rp, G and H are known constant matrices of appropriate

dimensions with G Hurwitz stable.

Suppose h is the length of sampling period, the con-

trol inputs which are based on plant states at the instants

ikh, ik+1h, · · · (k = 1, 2, · · · ) are transmitted to the actuator

successfully, the others are dropped, then {i1h, i2h, · · ·} is a

subset of {h, 2h, · · ·}. In this paper, we suppose the packet

dropout is stochastic, and the latest available control inputs

will be used if there exists packet dropout.

If there does not exist any communication constraints,

suppose τk denotes the time from the instant ikh when sensor

samples plant state to the instant when actuator transfers

data to the plant, then the state feedback controller takes

the following form

u(t) = K1x(ikh)+K2xr(ikh) (3)

where t ∈ [ikh + τk, ik+1h + τk+1), K1 and K2 are the state

feedback controller gains which will be designed in this

paper.

To notice that ikh = t−(t− ikh), define t− ikh = τ(t), then

ikh = t − τ(t). Suppose the lower-bound and upper-bound

of τk are τm and τM , respectively, and the upper-bound of

(ik+1− ik)h+τk+1 is ηM , then τm ≤ τk ≤ τ(t) < (ik+1− ik)h+
τk+1 ≤ ηM .

In this paper, we consider the problem of H∞ output

tracking control for nominal NCSs with sensor-to-controller

and controller-to-actuator communication constraints.

A. NCSs with controller-to-actuator communication

constraints

Suppose the shared communication medium can simul-

taneously provide Wθ (1 ≤ Wθ < m) controller-to-actuator

communication channels, and there do not exist any com-

munication constraints in the sensor-to-controller commu-

nication channels. Let the binary-valued variables θi (i =

1, 2, · · · , m) denote the medium access status of the ith

element of u(t), i.e. θi : R → {0, 1}, where 1 implies

“accessing” and 0 means “not accessing”. If θi = 0, we let

the actuator ignore the ith element of u(t) by assuming a

zero-value.

Based on the above communication protocol, we can

see that the control input u(t) for NCSs with controller-

to-actuator medium access constraints can be described as

follows

u(t) = W̃θ [K1x(ikh)+K2xr(ikh)] (4)

where t ∈ [ikh + τk, ik+1h + τk+1), W̃θ =
diag(θ1, θ2, · · · , θm), and θi = 1 or θi = 0 (i = 1, 2, · · · , m).

Define ξ (t) =

[
x(t)
xr(t)

]
, K = [K1 K2], the control input u(t)

presented in (4) can also be described as follows

u(t) = W̃θ Kξ (t − τ(t)) (5)

Considering the effect of time delay and packet dropout, from

(1)-(2) and (5), we can get the following augmented closed-

loop system

ξ̇ (t)= Ψ1ξ (t)+Ψ2W̃θ Kξ (t − τ(t))+Ψ3ν(t)

e(t) = Ψ̃1ξ (t)+ Ψ̃2W̃θ Kξ (t − τ(t))
(6)

where e(t) = y(t) − yr(t), ν(t) =

[
ω(t)
r(t)

]
, Ψ1 =

[
A 0

0 G

]
,

Ψ2 =

[
B1

0

]
, Ψ3 =

[
B2 0

0 I

]
, Ψ̃1 = [C −H], Ψ̃2 = D.

B. NCSs with both controller-to-actuator and sensor-to-

controller communication constraints

Suppose the NCSs can simultaneously provide Wθ (1 ≤
Wθ < m) controller-to-actuator communication channels

and Wδ (1 ≤ Wδ < n + l) sensor-to-controller communi-

cation channels. Let the binary-valued variables δi (i =
1, 2, · · · , n+ l) denote the medium access status of the

ith element of ξ (t), i.e. δi : R → {0, 1}, where 1 implies

“accessing” and 0 means “not accessing”. If δi = 0, we let

the controller ignore the ith element of ξ (t) by assuming a

zero-value.

Based on the above communication protocol, we can see

that the control input u(t) for NCSs with both controller-to-

actuator and sensor-to-controller communication constraints

can be described as follows

u(t) = W̃θ KW̃δ ξ (t − τ(t)) (7)

where t ∈ [ikh+τk, ik+1h+τk+1), W̃θ is the same as the one

in (5), W̃δ = diag(δ1, δ2, · · · , δn+l), and δi = 1 or δi = 0

(i = 1, 2, · · · , n+ l).

Similar to (6), we can get the following augmented closed-

loop system

ξ̇ (t)= Ψ1ξ (t)+Ψ2W̃θ KW̃δ ξ (t − τ(t))+Ψ3ν(t)

e(t) = Ψ̃1ξ (t)+ Ψ̃2W̃θ KW̃δ ξ (t − τ(t))
(8)
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where ξ (t), e(t), ν(t), Ψ1, Ψ2, Ψ3, Ψ̃1, Ψ̃2 are the same as

the ones in (6).

This paper is devoted to H∞ output tracking controller

design for NCSs with communication constraints.

Remark 1. As shown in the output tracking NCSs (6) and

(8), time delay, packet dropout and communication con-

straints are taken into consideration simultaneously, which

is different from the existing results in the literature.

The following continuous Jensen inequality will be used

in the sequel.

Lemma 1 [28]. For any symmetric positive definite matrix

M ∈Rs∗s, scalars β1 < β2, a vector function C : [β1, β2]→Rs

such that the integrals in the following are well defined, then

− (β2 −β1)
∫ β2

β1

C
T (s)MC (s)ds

≤−
(∫ β2

β1

C (s)ds
)T

M
(∫ β2

β1

C (s)ds
)

(9)

III. H∞ OUTPUT TRACKING CONTROLLER DESIGN FOR

NCSS WITH COMMUNICATION CONSTRAINTS

This section is concerned with the problem of H∞ output

tracking controller design for the augmented closed-loop

systems (6) and (8).

A. NCSs with controller-to-actuator communication

constraints

Theorem 1. For given scalars ηM and τm, if there exist

symmetric positive definite matrices W , Q̃1, Q̃2, R̃1, R̃2,

matrix V , scalar γ > 0, such that the following LMIs hold

for every feasible value of W̃θ




Ω̃11 0 R̃1 Ω̃14 Ψ3 WΨT
1 WΨT

1 W Ψ̃T
1

∗ −Q̃1 0 0 0 0 0 0

∗ ∗ Ω̃33 R̃2 0 0 0 0

∗ ∗ ∗ −2R̃2 0 Ω̃46 Ω̃46 Ω̃48

∗ ∗ ∗ ∗ −γI ΨT
3 ΨT

3 0

∗ ∗ ∗ ∗ ∗ Ω̃66 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ω̃77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −γI




< 0

(10)

where

Ω̃11 = Ψ1W +WΨT
1 + Q̃1 + Q̃2 − R̃1 − R̃2

Ω̃14 = R̃2 +Ψ2W̃θV

Ω̃33 = −Q̃2 − R̃1 − R̃2

Ω̃46 = V TW̃θ ΨT
2

Ω̃48 = V TW̃θ Ψ̃T
2

Ω̃66 = η−2
M (R̃1 −2W )

Ω̃77 = (ηM − τm)−2(R̃2 −2W )

then with the control law

u(t) = W̃θ Kξ (t − τ(t)), K = VW−1 (11)

the augmented closed-loop system described by (6) is asymp-

totically stable with H∞ output tracking performance γ .

Proof: Let us consider the following Lyapunov function

V (t) = V1(t)+V2(t)+V3(t)+V4(t)+V5(t) (12)

where

V1(t) = ξ T (t)Pξ (t)

V2(t) =
∫ t

t−τm

ξ T (α)Q1ξ (α)dα

V3(t) =
∫ t

t−ηM

ξ T (α)Q2ξ (α)dα

V4(t) = ηM

∫ 0

−ηM

∫ t

t+β
ξ̇ T (α)R1ξ̇ (α)dαdβ

V5(t) = (ηM − τm)
∫ −τm

−ηM

∫ t

t+β
ξ̇ T (α)R2ξ̇ (α)dαdβ

P, Q1, Q2, R1 and R2 are symmetric positive definite matrices

with appropriate dimensions.

From Lemma 1, we can see that

−ηM

∫ t

t−ηM

ξ̇ T (α)R1ξ̇ (α)dα

≤−[ξ (t)−ξ (t −ηM)]T R1[ξ (t)−ξ (t −ηM)] (13)

On the other hand,

− (ηM − τm)
∫ t−τm

t−ηM

ξ̇ T (α)R2ξ̇ (α)dα

= −(ηM − τm)
∫ t−τm

t−τ(t)
ξ̇ T (α)R2ξ̇ (α)dα

− (ηM − τm)
∫ t−τ(t)

t−ηM

ξ̇ T (α)R2ξ̇ (α)dα

≤−[ξ (t)−ξ (t − τ(t))]T R2[ξ (t)−ξ (t − τ(t))]

− [ξ (t − τ(t))−ξ (t −ηM)]T R2[ξ (t − τ(t))−ξ (t −ηM)]
(14)

To notice that

V̇1(t) =2ξ T (t)Pξ̇ (t) (15)

V̇2(t) =ξ T (t)Q1ξ (t)−ξ T (t − τm)Q1ξ (t − τm) (16)

V̇3(t) =ξ T (t)Q2ξ (t)−ξ T (t −ηM)Q2ξ (t −ηM) (17)

V̇4(t) =η2
M ξ̇ T (t)R1ξ̇ (t)−ηM

∫ t

t−ηM

ξ̇ T (α)R1ξ̇ (α)dα (18)

V̇5(t) =(ηM − τm)2ξ̇ T (t)R2ξ̇ (t)

− (ηM − τm)
∫ t−τm

t−ηM

ξ̇ T (α)R2ξ̇ (α)dα (19)

Considering the definition of e(t), for any nonzero ξ̃ (t), we

have

γ−1eT (t)e(t)− γνT (t)ν(t) = ξ̃ T (t)Ξξ̃ (t) (20)

where

ξ̃ (t) = [ξ T (t) ξ T (t − τm) ξ T (t −ηM) ξ T (t − τ(t)) νT (t)]T

Ξ =




γ−1Ψ̃T
1 Ψ̃1 0 0 γ−1Ψ̃T

1 Ψ̃2W̃θ K 0

0 0 0 0 0

0 0 0 0 0

γ−1KTW̃θ Ψ̃T
2 Ψ̃1 0 0 γ−1X 0

0 0 0 0 −γI




,

and X = (Ψ̃2W̃θ K)T (Ψ̃2W̃θ K).
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Combining (13)-(20) together, we have

γ−1eT (t)e(t)− γνT (t)ν(t)+V̇ (t) ≤ ξ̃ T (t)Λξ̃ (t)

In the following, we will prove that γ−1eT (t)e(t) −
γνT (t)ν(t) + V̇ (t) < 0, that is Λ < 0. Using the Schur

complement, we can see that Λ < 0 is equivalent to




Ω11 0 R1 Ω14 PΨ3 ΨT
1 ΨT

1 Ψ̃T
1

∗ −Q1 0 0 0 0 0 0
∗ ∗ Ω33 R2 0 0 0 0
∗ ∗ ∗ −2R2 0 Ω46 Ω46 Ω48

∗ ∗ ∗ ∗ −γI ΨT
3 ΨT

3 0
∗ ∗ ∗ ∗ ∗ Ω66 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ω77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −γI




< 0

(21)

where

Ω11 = PΨ1 +ΨT
1 P+Q1 +Q2 −R1 −R2

Ω14 = R2 +PΨ2W̃θ K

Ω33 = −Q2 −R1 −R2

Ω46 = KTW̃θ ΨT
2

Ω48 = KTW̃θ Ψ̃T
2

Ω66 = −η−2
M R−1

1

Ω77 = −(ηM − τm)−2R−1
2

Pre- and post-multiply (21) by diag(P−1, P−1, P−1, P−1,

I, I, I, I) and diag(P−1, P−1, P−1, P−1, I, I, I, I), define

P−1 = W , P−1R1P−1 = R̃1, P−1R2P−1 = R̃2, P−1Q1P−1 =
Q̃1, P−1Q2P−1 = Q̃2, KP−1 = V , then (21) is equivalent to




Ω̃11 0 R̃1 Ω̃14 Ψ3 WΨT
1 WΨT

1 W Ψ̃T
1

∗ −Q̃1 0 0 0 0 0 0

∗ ∗ Ω̃33 R̃2 0 0 0 0

∗ ∗ ∗ −2R̃2 0 Ω̃46 Ω̃46 Ω̃48

∗ ∗ ∗ ∗ −γI ΨT
3 ΨT

3 0
∗ ∗ ∗ ∗ ∗ Ω66 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ω77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −γI




< 0

(22)

where Ω̃11, Ω̃14, Ω̃33, Ω̃46, Ω̃48 are the same as the ones

in (10), Ω66 and Ω77 are the same as the ones in (21).

On the other hand, for symmetric positive definite matrices

P and Ri (i = 1, 2), we have (P − Ri)R
−1
i (P − Ri) ≥ 0,

which is equivalent to −R−1
i ≤ P−1RiP

−1 −2P−1. From the

definition of R̃i and W , we can see that if (10) is satisfied,

(22) is also feasible. Then, for any nonzero ξ̃ (t), if (10)

is satisfied, we have γ−1eT (t)e(t)− γνT (t)ν(t)+ V̇ (t) < 0.

From γ−1eT (t)e(t)−γνT (t)ν(t)+V̇ (t) < 0 and the definition

of H∞, it is easy to prove that the augmented closed-loop

system described by (6) with K = VW−1 is asymptotically

stable with H∞ output tracking performance γ , this completes

the proof.

In the following, we will design H∞ output tracking

controllers for NCSs with both sensor-to-controller and

controller-to-actuator communication constraints.

B. NCSs with both controller-to-actuator and sensor-to-

controller communication constraints

For convenience of understanding, define Ji =
[0 · · · 0 1︸ ︷︷ ︸

i

· · · 0], δ̃i = [0 · · · 0 δiI︸ ︷︷ ︸
i

· · · 0], where δi is

the same as the one defined in Section 2.

Theorem 2. For given scalars ηM and τm, if there exist

symmetric positive definite matrices Pi (i = 1, 2, · · · , n+ l),

Q̃1, Q̃2, R̃1, R̃2, matrices Vi (i = 1, 2, · · · , n + l), scalar

γ > 0, such that the following LMIs hold for every feasible

value of W̃θ and δ̃i




Ω̃11 0 R̃1 Ω̃14 Ψ3 Ω̃16 Ω̃16 Ω̃18

∗ −Q̃1 0 0 0 0 0 0

∗ ∗ Ω̃33 R̃2 0 0 0 0

∗ ∗ ∗ −2R̃2 0 Ω̃46 Ω̃46 Ω̃48

∗ ∗ ∗ ∗ −γI ΨT
3 ΨT

3 0

∗ ∗ ∗ ∗ ∗ Ω̃66 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ω̃77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −γI




< 0

(23)

where

Ω̃11 = Ψ1

n+l

∑
i=1

JT
i PiJi +

n+l

∑
i=1

JT
i PiJiΨ

T
1 + Q̃1 + Q̃2 − R̃1 − R̃2

Ω̃14 = R̃2 +Ψ2W̃θ

n+l

∑
i=1

Viδ̃i

Ω̃16 =
n+l

∑
i=1

JT
i PiJiΨ

T
1

Ω̃18 =
n+l

∑
i=1

JT
i PiJiΨ̃

T
1

Ω̃33 = −Q̃2 − R̃1 − R̃2

Ω̃46 = (Ψ2W̃θ

n+l

∑
i=1

Viδ̃i)
T

Ω̃48 = (Ψ̃2W̃θ

n+l

∑
i=1

Viδ̃i)
T

Ω̃66 = η−2
M (R̃1 −2

n+l

∑
i=1

JT
i PiJi)

Ω̃77 = (ηM − τm)−2(R̃2 −2
n+l

∑
i=1

JT
i PiJi)

then with the control law

u(t) = W̃θ KW̃δ ξ (t − τ(t)), K = [V1P−1
1 V2P−1

2 · · · Vn+lP
−1
n+l ]
(24)

the augmented closed-loop system described by (8) is asymp-

totically stable with H∞ output tracking performance γ .

Proof: Similar to the proof of Theorem 1, we can see

that if (25) is satisfied, the augmented closed-loop system

described by (8) is asymptotically stable with H∞ output

tracking performance γ .




Ω̃11 0 R̃1 Ω̃14 Ψ3 WΨT
1 WΨT

1 W Ψ̃T
1

∗ −Q̃1 0 0 0 0 0 0

∗ ∗ Ω̃33 R̃2 0 0 0 0

∗ ∗ ∗ −2R̃2 0 Ω̃46 Ω̃46 Ω̃48

∗ ∗ ∗ ∗ −γI ΨT
3 ΨT

3 0

∗ ∗ ∗ ∗ ∗ Ω̃66 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ω̃77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −γI




< 0

(25)
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where

Ω̃11 = Ψ1W +WΨT
1 + Q̃1 + Q̃2 − R̃1 − R̃2

Ω̃14 = R̃2 +Ψ2W̃θ KW̃δ P−1

Ω̃33 = −Q̃2 − R̃1 − R̃2

Ω̃46 = P−1W̃δ KTW̃θ ΨT
2

Ω̃48 = P−1W̃δ KTW̃θ Ψ̃T
2

Ω̃66 = η−2
M (R̃1 −2W )

Ω̃77 = (ηM − τm)−2(R̃2 −2W )

Suppose P−1 = diag(P1, P2, · · · , Pn+l), K =
[K1 K2 · · · Kn+l ], define KiPi = Vi (i = 1, 2, · · · , n + l).

Considering W̃δ = diag(δ1, δ2, · · · , δn+l), we have

Ψ2W̃θ KW̃δ P−1

= Ψ2W̃θ{V1[δ1I 0 · · · 0]+V2[0 δ2I 0 · · · 0]

+ · · ·+Vn+l [0 · · · 0 δn+lI]}

= Ψ2W̃θ

n+l

∑
i=1

Viδ̃i

where δ̃i = [0 · · · 0 δiI︸ ︷︷ ︸
i

· · · 0]. Similarly, we have

P−1W̃δ KTW̃θ ΨT
2 = (Ψ2W̃θ

n+l

∑
i=1

Viδ̃i)
T , P−1W̃δ KTW̃θ Ψ̃T

2 =

(Ψ̃2W̃θ

n+l

∑
i=1

Viδ̃i)
T .

On the other hand, from the proof of Theorem 1, we can

see that W = P−1 = diag(P1, P2, · · · , Pn+l) =
n+l

∑
i=1

JT
i PiJi,

where Ji = [0 · · · 0 1︸ ︷︷ ︸
i

· · · 0], substitute W , Ψ2W̃θ KW̃δ P−1,

P−1W̃δ KTW̃θ ΨT
2 , P−1W̃δ KTW̃θ Ψ̃T

2 of (25) by
n+l

∑
i=1

JT
i PiJi,

Ψ2W̃θ

n+l

∑
i=1

Viδ̃i, (Ψ2W̃θ

n+l

∑
i=1

Viδ̃i)
T , (Ψ̃2W̃θ

n+l

∑
i=1

Viδ̃i)
T , respec-

tively, we can see that (25) is equivalent to (23), this

completes the proof.

In the following, we will show the effectiveness of the

proposed controller design methods for NCSs with commu-

nication constraints.

IV. NUMERICAL EXAMPLES

Example 1. To illustrate the effectiveness of the proposed

H∞ output tracking controller design, we present an open

loop unstable system as follows

ẋ(t) =

[
−0.1999 0.4078

0.3450 0.3560

]
x(t)+

[
−0.8020

0.1287

]
ω(t)

+

[
0.6451 0.5954 −0.0099

0.3343 −0.6012 −0.0784

]
u(t)

y(t) =
[
−0.5282 0.7076

]
x(t)

+
[
−0.4025 −0.3986 0.0576

]
u(t)

(26)

The reference model is described as follows

ẋr(t) = −xr(t)+ r(t)
yr(t) = 0.8xr(t)

(27)

TABLE I

THE H∞ OUTPUT TRACKING PERFORMANCE BOUNDS

Theorem 1 Theorem 2

0.5411 6.3140

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (s)

τ
(t

)

Fig. 1. τ(t)

In this example, we suppose the sampling period h = 0.1s,

ηM = 0.36s, τm = 0.06s, τm ≤ τk ≤ τM , the maximum number

of consecutive packet dropout is 1, the initial states of

the augmented closed-loop systems (6) and (8) are ξ0 =
[0 0 0]T .

If there exist controller-to-actuator communication con-

straints, we suppose W̃θ may switch between W̃θ1 =
diag(1, 1, 0) and W̃θ2 = diag(0, 1, 1), if there exist sensor-

to-controller communication constraints, we suppose J1 =
[1, 0, 0], J2 = [0, 1, 0], J3 = [0, 0, 1], and δ̃1, δ̃2, δ̃3 may

switch between δ̃1 = [1, 0, 0], δ̃2 = [0, 1, 0], δ̃3 = [0, 0, 0]
and δ̃1 = [0, 0, 0], δ̃2 = [0, 1, 0], δ̃3 = [0, 0, 1].

The H∞ output tracking performance bounds correspond-

ing to different cases are shown in Table 1. From Table 1,

we can see that the less the communication constraints, the

better the H∞ output tracking performance. Table 1 illustrates

the effectiveness of the proposed controller design for NCSs

0 1 2 3 4 5 6 7 8
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0

5

x 10
−3

Time (s)
(a)

0 1 2 3 4 5 6 7 8
−0.06
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0
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Time (s)
(b)

ω(t)

r(t)

Fig. 2. ω(t) and r(t)
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Fig. 3. Outputs y(t) and yr(t)

with communication constraints.

Solving the LMIs in Theorem 1, we can get the controller

gain

K =



−0.7608 −0.9845 −0.3489

−0.3271 1.3961 −0.5978

7.4717 9.6679 3.4261




If the system with only controller-to-actuator communica-

tion constraints is considered, suppose the sum of time delay

and packet dropout τ(t) is given in Fig. 1, the disturbance

input ω(t) and reference input r(t) are give in Fig. 2 (a) and

Fig. 2 (b), respectively, the controller-to-actuator communi-

cation constraints matrix W̃θ = W̃θ1 = diag(1, 1, 0), then

the output y(t) of the system (26) and yr(t) of the reference

model (27) are pictured in Fig. 3, which illustrates the

effectiveness of the proposed H∞ output tracking controller

design.

V. CONCLUSIONS

In this paper, the problem of H∞ output tracking

control for NCSs with communication constraints has been

investigated. By using the continuous Jensen inequality,

LMI-based H∞ output tracking controller design for nominal

NCSs with controller-to-actuator communication constraints

is presented, the results are also extended to NCSs

with both controller-to-actuator and sensor-to-controller

communication constraints. Numerical examples have

illustrated the effectiveness of the proposed H∞ output

tracking controller design for NCSs with communication

constraints.

REFERENCES

[1] W. Zhang, M. S. Branicky, and S. M. Phillips, Stability of networked
control systems, IEEE Control Systems Magazine, vol. 21, no. 1, 2001,
pp. 84-99.

[2] X. L. Zhu and G. H. Yang, Jensen integral inequality approach to
stability analysis of continuous-time systems with time-varying delay,
IET Control Theory Applications, vol. 2, no. 6, 2008, pp. 524-534.

[3] H. Ishii and B. A. Francis, Stabilization with control networks,
Automatica, 38, 2002, pp. 1745-1751.

[4] M. Yu, L. Wang, T. G. Chu, and F. Hao, Stabilization of networked
control systems with data packet dropout and transmission delays:
continuous-time case, European Journal of Control, 11, 2005, pp. 40-
49.

[5] H. J. Gao and T. W. Chen, New results on stability of discrete-
time systems with time-varying state delay, IEEE Transactions on

Automatic Control, vol. 52, no. 2, 2007, pp. 328-334.
[6] X. Li and C. E. de Souza, Delay-dependent robust stability and sta-

bilization of uncertain linear delay systems: a linear matrix inequality
approach, IEEE Transactions on Automatic Control, vol. 42, no. 8,
1997, pp. 1144-1148.

[7] M. Wu, Y. He, J. H. She, and G. P. Liu, Delay-dependent criteria for
robust stability of time-varying delay systems, Automatica, 40, 2004,
pp. 1435-1439.

[8] J. L. Xiong and J. Lam, Stabilization of linear systems over networks
with bounded packet loss, Automatica, 43, 2007, pp. 80-87.

[9] H. Gao, J. Lam, C. Wang, and Y. Wang, Delay-dependent output-
feedback stabilisation of discrete-time systems with time-varying state
delay, IEE Proc. Control Theory Applications, vol. 151, no. 6, 2004,
pp. 691-698.

[10] S. Y. Xu and T. W. Chen, H∞ output feedback control for uncertain
stochastic systems with time-varying delays, Automatica, 40, 2004,
pp. 2091-2098.

[11] H. Ishii, H∞ control with limited communication and message losses,
Systems & Control Letters, 57, 2008, pp. 322-331.

[12] Y. L. Wang and G. H. Yang, Multiple communication channels-
based packet dropout compensation for networked control systems,
IET Control Theory Applications, vol. 2, no. 8, 2008, pp. 717-727.

[13] D. Yue, Q. L. Han, and J. Lam, Network-based robust H∞ control of
systems with uncertainty, Automatica, 41, 2005, pp. 999-1007.

[14] F. W. Yang, Z. D. Wang, Y. S. Hung, and M. Gani, H∞ control
for networked systems with random communication delays, IEEE

Transactions on Automatic Control, vol. 51, no. 3, 2006, pp. 511-518.
[15] W. S. Wong and R. W. Brockett, Systems with finite communication

bandwidth constraints-Part I: state estimation problems, IEEE Trans-

actions on Automatic Control, vol. 42, no. 9, 1997, pp. 1294-1299.
[16] H. Rehbinder and M. Sanfridson, Scheduling of a limited communica-

tion channel for optimal control, Automatica, 40, 2004, pp. 491-500.
[17] J. P. Hespanha, P. Naghshtabrizi, and Y. G. Xu, A survey of recent

results in networked control systems, Proc. of the IEEE, vol. 95, no.
1, 2007, pp. 138-162.

[18] N. Elia and S. K. Mitter, Stabilization of linear systems with limited
information, IEEE Transactions on Automatic Control, vol. 46, no. 9,
2001, pp. 1384-1400.

[19] S. Tatikonda and S. Mitter, Control under communication constraints,
IEEE Transactions on Automatic Control, vol. 49, no. 7, 2004, pp.
1056-1068.

[20] S. Klinkhieo, C. Kambhampati, and R. J. Patton, Fault tolerant
control in NCS medium access constraints, Proc. of the 2007 IEEE

International Conference on Networking, Sensing and Control, 2007,
pp. 416-423.

[21] F. Liao, J. L. Wang, and G. H. Yang, Reliable robust flight tracking
control: an LMI approach, IEEE Transactions on Control Systems

Technology, vol. 10, no. 1, 2002, pp. 76-89.
[22] R. Rebarber and G. Weiss, Internal model based tracking and distur-

bance rejection for stable well-posed systems, Automatica, 39, 2003,
pp. 1555-1569.

[23] N. C. Shieh, K. Liang, and C. Mao, Robust output tracking control
of an uncertain linear system via a modified optimal linear-quadratic
method, Journal of Optimization Theory and Applications, vol. 117,
no. 3, 2003, pp. 649-659.
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